1
|
Vigo M, Haro-Martínez E, Ruiz E, Fumadó-Navarro J, Placci M, Muro S. New Cellular Models to Support Preclinical Studies on ICAM-1-Targeted Drug Delivery. J Drug Deliv Sci Technol 2024; 101:106170. [PMID: 39669707 PMCID: PMC11633371 DOI: 10.1016/j.jddst.2024.106170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a cell-surface protein actively explored for targeted drug delivery. Anti-ICAM-1 nanocarriers (NCs) target ICAM-1-positive sites after intravenous injection in animal models, but quantitative mechanistic examination of cellular-level transport in vivo is not possible. Prior studies in human cell cultures indicated efficient uptake of these formulations via cell adhesion molecule-(CAM)-mediated endocytosis. However, ICAM-1 sequence differs among species; thus, whether anti-ICAM-1 NCs induce similar behavior in animal cells, key for intracellular drug delivery, is unknown. To begin bridging this gap, we first qualitatively verified intracellular transport of anti-ICAM-1 NCs in vivo and then developed new cellular models expressing ICAM-1 from mouse, dog, pig, and monkey, species relevant to pharmaceutical translation and veterinary medicine. ICAM-1 expression was verified by flow cytometry and confocal microscopy. These cells showed specific targeting compared to IgG NCs or cells treated with anti-ICAM-1 blocker. Anti-ICAM-1 NCs entered cells in a time- and temperature-dependent manner, with kinetics and pathway compatible with CAM-mediated endocytosis. All parameters tested were strikingly similar to those from human cells expressing ICAM-1 endogenously. Therefore, this new cellular platform represents a valuable tool that can be used in parallel to support in vivo studies on ICAM-1-targeted NCs during pharmaceutical translation.
Collapse
Affiliation(s)
- Marco Vigo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Biomedicine Doctorate Program, University of Barcelona, 08007, Spain
| | - Elena Haro-Martínez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
| | - Eloy Ruiz
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
| | - Josep Fumadó-Navarro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
| | - Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Biotechnology Doctorate Program, University of Barcelona, 080007, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Institution of Catalonia for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
- Institute for Bioscience and Biotechnology Research and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
2
|
Wu J, Zheng X, Lin W, Chen L, Wu ZS. Persistent Targeting DNA Nanocarrier Made of 3D Structural Unit Assembled from Only One Basic Multi-Palindromic Oligonucleotide for Precise Gene Cancer Therapy. Adv Healthc Mater 2024; 13:e2303865. [PMID: 38289018 DOI: 10.1002/adhm.202303865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/19/2024] [Indexed: 02/13/2024]
Abstract
Construction of a simple, reconfigurable, and stimuli-responsive DNA nanocarrier remains a technical challenge. In this contribution, by designing three palindromic fragments, a simplest four-sticky end-contained 3D structural unit (PS-unit) made of two same DNA components is proposed. Via regulating the rotation angle of central longitudinal axis of PS-unit, the oriented assembly of one-component spherical architecture is accomplished with high efficiency. Introduction of an aptamer and sticky tail warehouse into one component creates a size-change-reversible targeted siRNA delivery nanovehicle. Volume swelling of 20 nm allows one carrier to load 1987 siPLK1s. Once entering cancer cells and responding to glutathione (GSH) stimuli, siPLK1s are almost 100% released and original size of nanovehicle is restored, inhibiting the expression of PLK1 protein and substantially suppressing tumor growth (superior to commercial transfection agents) in tumor-bearing mice without systemic toxicity.
Collapse
Affiliation(s)
- Jingting Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoqi Zheng
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Wenqing Lin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Linhuan Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
3
|
Roki N, Solomon M, Bowers J, Getts L, Getts RC, Muro S. Tuning Design Parameters of ICAM-1-Targeted 3DNA Nanocarriers to Optimize Pulmonary Targeting Depending on Drug Type. Pharmaceutics 2022; 14:1496. [PMID: 35890393 PMCID: PMC9316040 DOI: 10.3390/pharmaceutics14071496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
3DNA holds promise as a carrier for drugs that can be intercalated into its core or linked to surface arms. Coupling 3DNA to an antibody targeting intercellular adhesion molecule 1 (ICAM-1) results in high lung-specific biodistributions in vivo. While the role of individual parameters on ICAM-1 targeting has been studied for other nanocarriers, it has never been examined for 3DNA or in a manner capable of revealing the hierarchic interplay among said parameters. In this study, we used 2-layer vs. 4-layer anti-ICAM 3DNA and radiotracing to examine biodistribution in mice. We found that, below saturating conditions and within the ranges tested, the density of targeting antibodies on 3DNA is the most relevant parameter driving lung targeting over liver clearance, compared to the number of antibodies per carrier, total antibody dose, 3DNA dose, 3DNA size, or the administered concentration, which influenced the dose in organs but not the lung specific-over-liver clearance ratio. Data predicts that lung-specific delivery of intercalating (core loaded) drugs can be tuned using this biodistribution pattern, while that of arm-linked (surface loaded) drugs requires a careful parametric balance because increasing anti-ICAM density reduces the number of 3DNA arms available for drug loading.
Collapse
Affiliation(s)
- Nikša Roki
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA;
| | - Jessica Bowers
- Genisphere, Hatfield, PA 19940, USA; (J.B.); (L.G.); (R.C.G.)
| | - Lori Getts
- Genisphere, Hatfield, PA 19940, USA; (J.B.); (L.G.); (R.C.G.)
- Code Biotherapeutics, Hatfield, PA 19940, USA
| | - Robert C. Getts
- Genisphere, Hatfield, PA 19940, USA; (J.B.); (L.G.); (R.C.G.)
- Code Biotherapeutics, Hatfield, PA 19940, USA
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA;
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institute of Catalonia for Research and Advanced Studies, 08010 Barcelona, Spain
| |
Collapse
|
4
|
Roki N, Solomon M, Casta L, Bowers J, Getts RC, Muro S. A method to improve quantitative radiotracing-based analysis of the in vivo biodistribution of drug carriers. Bioeng Transl Med 2021; 6:e10208. [PMID: 34027094 PMCID: PMC8126812 DOI: 10.1002/btm2.10208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 11/20/2022] Open
Abstract
Biodistribution studies are essential in drug carrier design and translation, and radiotracing provides a sensitive quantitation for this purpose. Yet, for biodegradable formulations, small amounts of free-label signal may arise prior to or immediately after injection in animal models, causing potentially confounding biodistribution results. In this study, we refined a method to overcome this obstacle. First, we verified free signal generation in animal samples and then, mimicking it in a controllable setting, we injected mice intravenously with a radiolabeled drug carrier formulation (125I-antibody/3DNA) containing a known amount of free radiolabel (125I), or free 125I alone as a control. Corrected biodistribution data were obtained by separating the free radiolabel from blood and organs postmortem, using trichloroacetic acid precipitation, and subtracting the confounding signal from each tissue measurement. Control free 125I-radiolabel was detected at ≥85% accuracy in blood and tissues, validating the method. It biodistributed very heterogeneously among organs (0.6-39 %ID/g), indicating that any free 125I generated in the body or present in an injected formulation cannot be simply corrected to the free-label fraction in the original preparation, but the free label must be empirically measured in each organ. Application of this method to the biodistribution of 125I-antibody/3DNA, including formulations directed to endothelial target ICAM-1, showed accurate classification of free 125I species in blood and tissues. In addition, this technique rendered data on the in vivo degradation of the traced agents over time. Thus, this is a valuable technique to obtain accurate measurements of biodistribution using 125I and possibly other radiotracers.
Collapse
Affiliation(s)
- Nikša Roki
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology Research, University of MarylandCollege ParkMarylandUSA
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of MarylandCollege ParkMarylandUSA
| | - Lou Casta
- Genisphere, LLCHatfieldPennsylvaniaUSA
| | | | - Robert C. Getts
- Genisphere, LLCHatfieldPennsylvaniaUSA
- Present address:
Code Biotherapeutics, Hatfield, PennsylvaniaUSA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of MarylandCollege ParkMarylandUSA
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and TechnologyBarcelonaSpain
- Institution of Catalonia for Research and Advanced StudiesBarcelonaSpain
| |
Collapse
|
5
|
Qamar B, Solomon M, Marin A, Fuerst TR, Andrianov AK, Muro S. Intracellular Delivery of Active Proteins by Polyphosphazene Polymers. Pharmaceutics 2021; 13:249. [PMID: 33578893 PMCID: PMC7916676 DOI: 10.3390/pharmaceutics13020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Achieving intracellular delivery of protein therapeutics within cells remains a significant challenge. Although custom formulations are available for some protein therapeutics, the development of non-toxic delivery systems that can incorporate a variety of active protein cargo and maintain their stability, is a topic of great relevance. This study utilized ionic polyphosphazenes (PZ) that can assemble into supramolecular complexes through non-covalent interactions with different types of protein cargo. We tested a PEGylated graft copolymer (PZ-PEG) and a pyrrolidone containing linear derivative (PZ-PYR) for their ability to intracellularly deliver FITC-avidin, a model protein. In endothelial cells, PZ-PYR/protein exhibited both faster internalization and higher uptake levels than PZ-PEG/protein, while in cancer cells both polymers achieved similar uptake levels over time, although the internalization rate was slower for PZ-PYR/protein. Uptake was mediated by endocytosis through multiple mechanisms, PZ-PEG/avidin colocalized more profusely with endo-lysosomes, and PZ-PYR/avidin achieved greater cytosolic delivery. Consequently, a PZ-PYR-delivered anti-F-actin antibody was able to bind to cytosolic actin filaments without needing cell permeabilization. Similarly, a cell-impermeable Bax-BH3 peptide known to induce apoptosis, decreased cell viability when complexed with PZ-PYR, demonstrating endo-lysosomal escape. These biodegradable PZs were non-toxic to cells and represent a promising platform for drug delivery of protein therapeutics.
Collapse
Affiliation(s)
- Bareera Qamar
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA;
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; (M.S.); (A.M.); (T.R.F.)
- Institute of Catalonia for Research and Advanced Studies, 08010 Barcelona, Spain
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Thai HB, Kim KR, Hong KT, Voitsitskyi T, Lee JS, Mao C, Ahn DR. Kidney-Targeted Cytosolic Delivery of siRNA Using a Small-Sized Mirror DNA Tetrahedron for Enhanced Potency. ACS CENTRAL SCIENCE 2020; 6:2250-2258. [PMID: 33376785 PMCID: PMC7760472 DOI: 10.1021/acscentsci.0c00763] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 05/30/2023]
Abstract
A proper intracellular delivery method with target tissue specificity is critical to utilize the full potential of therapeutic molecules including siRNAs while minimizing their side effects. Herein, we prepare four small-sized DNA tetrahedrons (sTds) by self-assembly of different sugar backbone-modified oligonucleotides and screened them to develop a platform for kidney-targeted cytosolic delivery of siRNA. An in vivo biodistribution study revealed the kidney-specific accumulation of mirror DNA tetrahedron (L-sTd). Low opsonization of L-sTd in serum appeared to avoid liver clearance and keep its size small enough to be filtered through the glomerular basement membrane (GBM). After GBM filtration, L-sTd could be delivered into tubular cells by endocytosis. The kidney preference and the tubular cell uptake property of the mirror DNA nanostructure could be successfully harnessed for kidney-targeted intracellular delivery of p53 siRNA to treat acute kidney injury (AKI) in mice. Therefore, L-sTd could be a promising platform for kidney-targeted cytosolic delivery of siRNA to treat renal diseases.
Collapse
Affiliation(s)
- Hien Bao
Dieu Thai
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Kyoung-Ran Kim
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Kyung Tae Hong
- Division
of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Taras Voitsitskyi
- Division
of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jun-Seok Lee
- Division
of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
- Molecular
Recognition Research Center, Korea Institute
of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Chengde Mao
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dae-Ro Ahn
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
- Division
of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
7
|
Ross-Munro E, Kwa F, Kreiner J, Khore M, Miller SL, Tolcos M, Fleiss B, Walker DW. Midkine: The Who, What, Where, and When of a Promising Neurotrophic Therapy for Perinatal Brain Injury. Front Neurol 2020; 11:568814. [PMID: 33193008 PMCID: PMC7642484 DOI: 10.3389/fneur.2020.568814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Midkine (MK) is a small secreted heparin-binding protein highly expressed during embryonic/fetal development which, through interactions with multiple cell surface receptors promotes growth through effects on cell proliferation, migration, and differentiation. MK is upregulated in the adult central nervous system (CNS) after multiple types of experimental injury and has neuroprotective and neuroregenerative properties. The potential for MK as a therapy for developmental brain injury is largely unknown. This review discusses what is known of MK's expression and actions in the developing brain, areas for future research, and the potential for using MK as a therapeutic agent to ameliorate the effects of brain damage caused by insults such as birth-related hypoxia and inflammation.
Collapse
Affiliation(s)
- Emily Ross-Munro
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Faith Kwa
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Jenny Kreiner
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Madhavi Khore
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Mary Tolcos
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Bobbi Fleiss
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,Neurodiderot, Inserm U1141, Universita de Paris, Paris, France
| | - David W Walker
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| |
Collapse
|
8
|
Merlo LM, Bowers J, Stefanoni T, Getts R, Mandik-Nayak L. B-Cell-Targeted 3DNA Nanotherapy Against Indoleamine 2,3-Dioxygenase 2 (IDO2) Ameliorates Autoimmune Arthritis in a Preclinical Model. CLINICAL PATHOLOGY 2020; 13:2632010X20951812. [PMID: 32924009 PMCID: PMC7457693 DOI: 10.1177/2632010x20951812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
The tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase 2 (IDO2) has been identified as an immunomodulatory agent promoting autoimmunity in preclinical models. As such, finding ways to target the expression of IDO2 in B cells promises a new avenue for therapy for debilitating autoimmune disorders such as rheumatoid arthritis. IDO2, like many drivers of disease, is an intracellular protein expressed in a range of cells, and thus therapeutic inhibition of IDO2 requires a mechanism for targeting this intracellular protein in specific cell types. DNA nanostructures are a promising novel way of delivering small molecule drugs, antibodies, or siRNAs to the cytoplasm of a cell. These soluble, branched structures can carry cell-specific targeting moieties along with their therapeutic deliverable. Here, we examined a 3DNA nanocarrier specifically targeted to B cells with an anti-CD19 antibody. We find that this 3DNA is successfully delivered to and internalized in B cells. To test whether these nanostructures can deliver an efficacious therapeutic dose to alter autoimmune responses, a modified anti-IDO2 siRNA was attached to B-cell-directed 3DNA nanocarriers and tested in an established preclinical model of autoimmune arthritis, KRN.g7. The anti-IDO2 3DNA formulation ameliorates arthritis in this system, delaying the onset of joint swelling and reducing total arthritis severity. As such, a 3DNA nanocarrier system shows promise for delivery of targeted, specific, low-dose therapy for autoimmune disease.
Collapse
|
9
|
Van Steenwinckel J, Schang AL, Krishnan ML, Degos V, Delahaye-Duriez A, Bokobza C, Csaba Z, Verdonk F, Montané A, Sigaut S, Hennebert O, Lebon S, Schwendimann L, Le Charpentier T, Hassan-Abdi R, Ball G, Aljabar P, Saxena A, Holloway RK, Birchmeier W, Baud O, Rowitch D, Miron V, Chretien F, Leconte C, Besson VC, Petretto EG, Edwards AD, Hagberg H, Soussi-Yanicostas N, Fleiss B, Gressens P. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain 2020; 142:3806-3833. [PMID: 31665242 DOI: 10.1093/brain/awz319] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Microglia of the developing brain have unique functional properties but how their activation states are regulated is poorly understood. Inflammatory activation of microglia in the still-developing brain of preterm-born infants is associated with permanent neurological sequelae in 9 million infants every year. Investigating the regulators of microglial activation in the developing brain across models of neuroinflammation-mediated injury (mouse, zebrafish) and primary human and mouse microglia we found using analysis of genes and proteins that a reduction in Wnt/β-catenin signalling is necessary and sufficient to drive a microglial phenotype causing hypomyelination. We validated in a cohort of preterm-born infants that genomic variation in the Wnt pathway is associated with the levels of connectivity found in their brains. Using a Wnt agonist delivered by a blood-brain barrier penetrant microglia-specific targeting nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, white matter injury and behavioural deficits. Collectively, these data validate that the Wnt pathway regulates microglial activation, is critical in the evolution of an important form of human brain injury and is a viable therapeutic target.
Collapse
Affiliation(s)
| | - Anne-Laure Schang
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,UMR CNRS 8638-Chimie Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 Avenue de l'Observatoire, F-75006 Paris, France
| | - Michelle L Krishnan
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Vincent Degos
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Department of Anesthesia and Intensive Care, Pitié Salpétrière Hospital, F-75013 Paris France
| | - Andrée Delahaye-Duriez
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France
| | - Cindy Bokobza
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Zsolt Csaba
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Franck Verdonk
- Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, F-75006 Paris, France
| | - Amélie Montané
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Stéphanie Sigaut
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Olivier Hennebert
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Sophie Lebon
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Leslie Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Tifenn Le Charpentier
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Rahma Hassan-Abdi
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Rebecca K Holloway
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrueck Center for Molecular Medicine in the Helmholtz Society, Berlin-Buch, Germany
| | - Olivier Baud
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - David Rowitch
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Veronique Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Fabrice Chretien
- UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France.,Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Laboratoire de Neuropathologie, Centre Hospitalier Sainte Anne, F-75014 Paris, France
| | - Claire Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Valérie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | | | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,Perinatal Center, Institute of Clinical Sciences and Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, 41390 Gothenburg, Sweden
| | - Nadia Soussi-Yanicostas
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Bobbi Fleiss
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
10
|
Hsueh PY, Ju Y, Vega A, Edman MC, MacKay JA, Hamm-Alvarez SF. A Multivalent ICAM-1 Binding Nanoparticle which Inhibits ICAM-1 and LFA-1 Interaction Represents a New Tool for the Investigation of Autoimmune-Mediated Dry Eye. Int J Mol Sci 2020; 21:ijms21082758. [PMID: 32326657 PMCID: PMC7216292 DOI: 10.3390/ijms21082758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/31/2022] Open
Abstract
The autoimmune disorder, Sjögren’s syndrome (SS), is characterized by lymphocytic infiltration and loss of function of exocrine glands such as the lacrimal gland (LG) and salivary gland. SS-associated changes in the LG are associated with the development of autoimmune-mediated dry eye disease. We have previously reported the accumulation of intercellular adhesion molecule 1 (ICAM-1) in the LG of Non-Obese Diabetic (NOD) mice, a murine model of autoimmune-mediated dry eye in SS, in both LG acinar cells and infiltrating lymphocytes. ICAM-1 initiates T-cell activation and can trigger T-cell migration through binding to lymphocyte function-associated 1 antigen (LFA). To modulate this interaction, this study introduces a new tool, a multivalent biopolymeric nanoparticle assembled from a diblock elastin-like polypeptide (ELP) using the S48I48 (SI) ELP scaffold fused with a mouse ICAM-1 targeting peptide to form IBP-SI. IBP-SI forms a multivalent, monodisperse nanoparticle with a radius of 21.9 nm. Unlike the parent SI, IBP-SI binds mouse ICAM-1 and is internalized by endocytosis into transfected HeLa cells before it accumulates in lysosomes. In vitro assays measuring lymphocyte adhesion to Tumor Necrosis Factor TNF-α-treated bEnd.3 cells, which express high levels of ICAM-1, show that adhesion is inhibited by IBP-SI but not by SI, with IC50 values of 62.7 μM and 81.2 μM, respectively, in two different assay formats. IBP-SI, but not SI, also blocked T-cell proliferation in a mixed lymphocyte reaction by 74% relative to proliferation in an untreated mixed cell reaction. These data suggest that a biopolymeric nanoparticle with affinity for ICAM-1 can disrupt ICAM-1 and LFA interactions in vitro and may have further utility as an in vivo tool or potential therapeutic.
Collapse
Affiliation(s)
- Pang-Yu Hsueh
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
| | - Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
| | - Adrianna Vega
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
| | - Maria C. Edman
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA;
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: (J.A.M.); (S.F.H.-A.)
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA; (P.-Y.H.); (Y.J.); (A.V.)
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence: (J.A.M.); (S.F.H.-A.)
| |
Collapse
|
11
|
Roki N, Tsinas Z, Solomon M, Bowers J, Getts RC, Muro S. Unprecedently high targeting specificity toward lung ICAM-1 using 3DNA nanocarriers. J Control Release 2019; 305:41-49. [PMID: 31100312 PMCID: PMC7171557 DOI: 10.1016/j.jconrel.2019.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
DNA nanostructures hold great potential for drug delivery. However, their specific targeting is often compromised by recognition by scavenger receptors involved in clearance. In our previous study in cell culture, we showed targeting specificity of a 180 nm, 4-layer DNA-built nanocarrier called 3DNA coupled with antibodies against intercellular adhesion molecule-1 (ICAM-1), a glycoprotein overexpressed in the lungs in many diseases. Here, we examined the biodistribution of various 3DNA formulations in mice. A formulation consisted of 3DNA whose outer-layer arms were hybridized to secondary antibody-oligonucleotide conjugates. Anchoring IgG on this formulation reduced circulation and kidney accumulation vs. non-anchored IgG, while increasing liver and spleen clearance, as expected for a nanocarrier. Anchoring anti-ICAM changed the biodistribution of this antibody similarly, yet this formulation specifically accumulated in the lungs, the main ICAM-1 target. Since lung targeting was modest (2-fold specificity index over IgG formulation), we pursued a second preparation involving direct hybridization of primary antibody-oligonucleotide conjugates to 3DNA. This formulation had prolonged stability in serum and showed a dramatic increase in lung distribution: the specificity index was 424-fold above a matching IgG formulation, 144-fold more specific than observed for PLGA nanoparticles of similar size, polydispersity, ζ-potential and antibody valency, and its lung accumulation increased with the number of anti-ICAM molecules per particle. Immunohistochemistry showed that anti-ICAM and 3DNA components colocalized in the lungs, specifically associating with endothelial markers, without apparent histological changes. The degree of in vivo targeting for anti-ICAM/3DNA-nanocarriers is unprecedented, for which this platform technology holds great potential to develop future therapeutic applications.
Collapse
Affiliation(s)
- Nikša Roki
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Zois Tsinas
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | | | | | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA; Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
12
|
Manthe RL, Rappaport JA, Long Y, Solomon M, Veluvolu V, Hildreth M, Gugutkov D, Marugan J, Zheng W, Muro S. δ-Tocopherol Effect on Endocytosis and Its Combination with Enzyme Replacement Therapy for Lysosomal Disorders: A New Type of Drug Interaction? J Pharmacol Exp Ther 2019; 370:823-833. [PMID: 31101681 DOI: 10.1124/jpet.119.257345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Induction of lysosomal exocytosis alleviates lysosomal storage of undigested metabolites in cell models of lysosomal disorders (LDs). However, whether this strategy affects other vesicular compartments, e.g., those involved in endocytosis, is unknown. This is important both to predict side effects and to use this strategy in combination with therapies that require endocytosis for intracellular delivery, such as lysosomal enzyme replacement therapy (ERT). We investigated this using δ-tocopherol as a model previously shown to induce lysosomal exocytosis and cell models of type A Niemann-Pick disease, a LD characterized by acid sphingomyelinase (ASM) deficiency and sphingomyelin storage. δ-Tocopherol and derivative CF3-T reduced net accumulation of fluid phase, ligands, and polymer particles via phagocytic, caveolae-, clathrin-, and cell adhesion molecule (CAM)-mediated pathways, yet the latter route was less affected due to receptor overexpression. In agreement, δ-tocopherol lowered uptake of recombinant ASM by deficient cells (known to occur via the clathrin pathway) and via targeting intercellular adhesion molecule-1 (associated to the CAM pathway). However, the net enzyme activity delivered and lysosomal storage attenuation were greater via the latter route. Data suggest stimulation of exocytosis by tocopherols is not specific of lysosomes and affects endocytic cargo. However, this effect was transient and became unnoticeable several hours after tocopherol removal. Therefore, induction of exocytosis in combination with therapies requiring endocytic uptake, such as ERT, may represent a new type of drug interaction, yet this strategy could be valuable if properly timed for minimal interference.
Collapse
Affiliation(s)
- Rachel L Manthe
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Jeffrey A Rappaport
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Yan Long
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Melani Solomon
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Vinay Veluvolu
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Michael Hildreth
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Dencho Gugutkov
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Juan Marugan
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Wei Zheng
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| | - Silvia Muro
- Fischell Department of Bioengineering (R.L.M., J.A.R., V.V., M.H.) and Institute for Bioscience and Biotechnology Research (M.S., S.M.), University of Maryland, College Park, Maryland; National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland (Y.L., J.M., W.Z.); Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain (D.G., S.M.); and Institution of Catalonia for Research and Advanced Studies, Barcelona, Spain (S.M.)
| |
Collapse
|
13
|
Liu C, Qin H, Kang L, Chen Z, Wang H, Qiu H, Ren J, Qu X. Graphitic carbon nitride nanosheets as a multifunctional nanoplatform for photochemical internalization-enhanced photodynamic therapy. J Mater Chem B 2018; 6:7908-7915. [PMID: 32255036 DOI: 10.1039/c8tb02535e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) has been widely used as a noninvasive and moderate technique in precision cancer therapy by destroying cancer cells via light-induced reactive oxygen species (ROS). However, the overproduction of heat shock protein 70 (HSP70) induced by ROS will contribute to the cell survival under harsh conditions, finally leading to decreased PDT efficiency. To overcome this issue, herein, for the first time, we have prepared an HSP70 inhibitor (2-phenylethynesulfonamide (PES))-loaded graphitic carbon nitride nanosheet (GCNS) as a multifunctional nanoplatform (GCNS-PES) for enhanced PDT. By taking advantage of commendable PDT efficiency, strong blue fluorescence, satisfactory drug loading capacity and good water dispersity, the GCNS can simultaneously serve as a photosensitizer, an imaging agent and a drug carrier. Moreover, when the nanoplatform is restricted in the endo/lysosome vesicles through endocytosis, the GCNS can generate ROS effectively under visible light irradiation to promote the lipid peroxidation of endo/lysosomal membranes and accelerate the liberation of GCNS and PES into the cytoplasm. Finally, the tolerance of cancer cells to ROS is decreased by PES-induced HSP70 inactivation, and therefore the efficiency of PDT is significantly enhanced. As a result, GCNS-PES can serve as a promising therapeutic nanoplatform for photo-controlled cancer therapy.
Collapse
Affiliation(s)
- Chaoqun Liu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Muro S. Alterations in Cellular Processes Involving Vesicular Trafficking and Implications in Drug Delivery. Biomimetics (Basel) 2018; 3:biomimetics3030019. [PMID: 31105241 PMCID: PMC6352689 DOI: 10.3390/biomimetics3030019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| |
Collapse
|
15
|
Zhu D, Yan H, Zhou Z, Tang J, Liu X, Hartmann R, Parak WJ, Feliu N, Shen Y. Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomater Sci 2018; 6:1800-1817. [DOI: 10.1039/c8bm00128f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Given the various cationic polymers developed as non-viral gene delivery vectors, polyethylenimine (PEI) has been/is frequently used in in vitro transfection.
Collapse
Affiliation(s)
- Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
- Fachbereich Physik
| | - Huijie Yan
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
- Fachbereich Physik
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| | | | - Wolfgang J. Parak
- Fachbereich Physik
- Philipps Universität Marburg
- Germany
- Fachbereich Physik und Chemie and CHyN
- Universität Hamburg
| | - Neus Feliu
- Fachbereich Physik
- Philipps Universität Marburg
- Germany
- Fachbereich Physik und Chemie and CHyN
- Universität Hamburg
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- China
| |
Collapse
|
16
|
Kim J, Sinha S, Solomon M, Perez-Herrero E, Hsu J, Tsinas Z, Muro S. Co-coating of receptor-targeted drug nanocarriers with anti-phagocytic moieties enhances specific tissue uptake versus non-specific phagocytic clearance. Biomaterials 2017; 147:14-25. [PMID: 28923682 PMCID: PMC5667353 DOI: 10.1016/j.biomaterials.2017.08.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/11/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Nanocarriers (NCs) help improve the performance of therapeutics, but their removal by phagocytes in the liver, spleen, tissues, etc. diminishes this potential. Although NC functionalization with polyethylene glycol (PEG) lowers interaction with phagocytes, it also reduces interactions with tissue cells. Coating NCs with CD47, a protein expressed by body cells to avoid phagocytic removal, offers an alternative. Previous studies showed that coating CD47 on non-targeted NCs reduces phagocytosis, but whether this alters binding and endocytosis of actively-targeted NCs remains unknown. To evaluate this, we used polymer NCs targeted to ICAM-1, a receptor overexpressed in many diseases. Co-coating of CD47 on anti-ICAM NCs reduced macrophage phagocytosis by ∼50% for up to 24 h, while increasing endothelial-cell targeting by ∼87% over control anti-ICAM/IgG NCs. Anti-ICAM/CD47 NCs were endocytosed via the CAM-mediated pathway with efficiency similar (0.99-fold) to anti-ICAM/IgG NCs. Comparable outcomes were observed for NCs targeted to PECAM-1 or transferrin receptor, suggesting broad applicability. When injected in mice, anti-ICAM/CD47 NCs reduced liver and spleen uptake by ∼30-50% and increased lung targeting by ∼2-fold (∼10-fold over IgG NCs). Therefore, co-coating NCs with CD47 and targeting moieties reduces macrophage phagocytosis and improves targeted uptake. This strategy may significantly improve the efficacy of targeted drug NCs.
Collapse
Affiliation(s)
- Joshua Kim
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Sauradeep Sinha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States
| | - Edgar Perez-Herrero
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States
| | - Janet Hsu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Zois Tsinas
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States.
| |
Collapse
|
17
|
Tetramer as efficient structural mode for organizing antioxidative carboxylic acids: The case in inhibiting DNA oxidation. Arch Biochem Biophys 2017; 631:1-10. [DOI: 10.1016/j.abb.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 01/12/2023]
|
18
|
Garnacho C, Muro S. ICAM-1 targeting, intracellular trafficking, and functional activity of polymer nanocarriers coated with a fibrinogen-derived peptide for lysosomal enzyme replacement. J Drug Target 2017; 25:786-795. [PMID: 28665212 DOI: 10.1080/1061186x.2017.1349771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enzyme replacement is a viable treatment for diseases caused by genetic deficiency of lysosomal enzymes. However, suboptimal access of enzymes to target sites limits this strategy. Polymer nanocarriers (NCs) coated with antibody against intercellular adhesion molecule 1 (ICAM-1), a protein overexpressed on most cells under disease states, enhanced biodistribution and lysosomal delivery of these therapeutics. Whether this can be achieved using more biocompatible ICAM-1-targeting moieties is unknown, since intracellular uptake via this route is sensitive to the receptor epitope being targeted. We examined this using polymer NCs coated with an ICAM-1-targeting peptide derived from the fibrinogen sequence. Scrambled-sequence peptide and anti-ICAM were used as controls. NCs carried acid sphingomyelinase (ASM), used for treatment of type B Niemann-Pick disease, and fluorescence microscopy was employed to examine cellular performance. Peptide-coated/enzyme NCs efficiently targeted ICAM-1 (22-fold over non-specific counterparts; Bmax ∼180 NCs/cell; t1/2 ∼28 min), recognised human and mouse cells (1.2- to 0.7-fold binding vs. antibody/enzyme NCs), were efficiently endocytosed (71% at 1 h chase), and trafficked to lysosomes (30--45% of internalised NCs; 2 h chase). This restored lysosomal levels of sphingomyelin and cholesterol within 5 h chase (∼95% reduction over disease levels), similar to antibody-enzyme NCs. This fibrinogen-derived ICAM-1-targeting peptide holds potential for lysosomal enzyme replacement therapy.
Collapse
Affiliation(s)
- Carmen Garnacho
- a Department of Normal and Pathological Histology and Cytology , University of Seville School of Medicine , Seville , Spain
| | - Silvia Muro
- b Institute for Bioscience & Biotechnology Research, University of Maryland , College Park , MD , USA.,c Fischell Department of Bioengineering , University of Maryland , College Park , MD , USA
| |
Collapse
|
19
|
Gerhart J, Greenbaum M, Casta L, Clemente A, Mathers K, Getts R, George-Weinstein M. Antibody-Conjugated, DNA-Based Nanocarriers Intercalated with Doxorubicin Eliminate Myofibroblasts in Explants of Human Lens Tissue. J Pharmacol Exp Ther 2017; 361:60-67. [DOI: 10.1124/jpet.116.239079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
|
20
|
Munsell EV, Ross NL, Sullivan MO. Journey to the Center of the Cell: Current Nanocarrier Design Strategies Targeting Biopharmaceuticals to the Cytoplasm and Nucleus. Curr Pharm Des 2016; 22:1227-44. [PMID: 26675220 DOI: 10.2174/1381612822666151216151420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023]
Abstract
New biopharmaceutical molecules, potentially able to provide more personalized and effective treatments, are being identified through the advent of advanced synthetic biology strategies, sophisticated chemical synthesis approaches, and new analytical methods to assess biological potency. However, translation of many of these structures has been significantly limited due to the need for more efficient strategies to deliver macromolecular therapeutics to desirable intracellular sites of action. Engineered nanocarriers that encapsulate peptides, proteins, or nucleic acids are generally internalized into target cells via one of several endocytic pathways. These nanostructures, entrapped within endosomes, must navigate the intracellular milieu to orchestrate delivery to the intended destination, typically the cytoplasm or nucleus. For therapeutics active in the cytoplasm, endosomal escape continues to represent a limiting step to effective treatment, since a majority of nanocarriers trapped within endosomes are ultimately marked for enzymatic degradation in lysosomes. Therapeutics active in the nucleus have the added challenges of reaching and penetrating the nuclear envelope, and nuclear delivery remains a preeminent challenge preventing clinical translation of gene therapy applications. Herein, we review cutting-edge peptide- and polymer-based design strategies with the potential to enable significant improvements in biopharmaceutical efficacy through improved intracellular targeting. These strategies often mimic the activities of pathogens, which have developed innate and highly effective mechanisms to penetrate plasma membranes and enter the nucleus of host cells. Understanding these mechanisms has enabled advances in synthetic peptide and polymer design that may ultimately improve intracellular trafficking and bioavailability, leading to increased access to new classes of biotherapeutics.
Collapse
Affiliation(s)
| | | | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, Delaware.
| |
Collapse
|
21
|
Ghaffarian R, Roki N, Abouzeid A, Vreeland W, Muro S. Intra- and trans-cellular delivery of enzymes by direct conjugation with non-multivalent anti-ICAM molecules. J Control Release 2016; 238:221-230. [PMID: 27473764 DOI: 10.1016/j.jconrel.2016.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a cell-surface protein overexpressed in many diseases and explored for endocytosis and transcytosis of drug delivery systems. All previous evidence demonstrating ICAM-1-mediated transport of therapeutics into or across cells was obtained using nanocarriers or conjugates coupled to multiple copies of anti-ICAM antibodies or peptides. Yet, transport of therapeutics linked to non-multivalent anti-ICAM ligands has never been shown, since multivalency was believed to be necessary to induce transport. Our goal was to explore whether non-multivalent binding to ICAM-1 could drive endocytosis and/or transcytosis of model cargo in different cell types. We found that anti-ICAM was specifically internalized by all tested ICAM-1-expressing cells, including epithelial, fibroblast and neuroblastoma cells, primary or established cell lines. Uptake was inhibited at 4°C and in the presence of an inhibitor of the ICAM-1-associated pathway, rather than inhibitors of the clathrin or caveolar routes. We observed minimal transport of anti-ICAM to lysosomes, yet prominent and specific transcytosis across epithelial monolayers. Finally, we coupled a model cargo (the enzyme horseradish peroxidase (HRP)) to anti-ICAM and separated a 1:2 antibody:enzyme conjugate for non-multivalent ICAM-1 targeting. Similar to anti-ICAM, anti-ICAM-HRP was specifically internalized and transported across cells, which rendered intra- and trans-cellular enzyme activity. Therefore, non-multivalent ICAM-1 targeting also provides transport of cargoes into and across cells, representing a new alternative for future therapeutic applications via this route.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Niksa Roki
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Abraham Abouzeid
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Wyatt Vreeland
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute of Bioscience & Biotechnology Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
22
|
Liu C, Chen Z, Wang Z, Li W, Ju E, Yan Z, Liu Z, Ren J, Qu X. A graphitic hollow carbon nitride nanosphere as a novel photochemical internalization agent for targeted and stimuli-responsive cancer therapy. NANOSCALE 2016; 8:12570-8. [PMID: 26661708 DOI: 10.1039/c5nr07719b] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As a novel technique, photochemical internalization (PCI) has been employed as a new approach to overcome endo/lysosomal restriction, which is one of the main difficulties in both drug and gene delivery. However, the complicated synthesis procedure (usually requiring the self-assembly of polymers, photosensitizers and cargos) and payload specificity greatly limit its further application. In this paper, we employ a highly fluorescent graphitic hollow carbon nitride nanosphere (GHCNS) to simultaneously serve as a PCI photosensitizer, an imaging agent and a drug carrier. The surface modification of GHCNS with multifunctional polysaccharide hyaluronic acid (HA) endows the system with colloidal stability, biocompatibility and cancer cell targeting ability. After CD44 receptor-mediated endocytosis, the nanosystem is embedded in endo/lysosomal vesicles and HA could be specially degraded by hyaluronidase (Hyal), inducing open pores. In the following, with visible light illumination, GHCNS could produce ROS that effectively induced lipid peroxidation and caused endo/lysosomal membrane break, accelerating the cytoplasmic release of the drug in the targeted and irradiated cells. As a result, significantly increased therapeutic potency and specificity against cancer cells could be achieved.
Collapse
Affiliation(s)
- Chaoqun Liu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Huang Y, Huang W, Chan L, Zhou B, Chen T. A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity. Biomaterials 2016; 103:183-196. [PMID: 27388944 DOI: 10.1016/j.biomaterials.2016.06.053] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 12/20/2022]
Abstract
The use of metal complexes in cancer treatment is hampered by the insufficient accumulation in tumor regions and observable systemic toxicity due to their nonspecificity in vivo. Herein we present a cancer-targeted DNA origami as biocompatible nanocarrier of metal complexes to achieve advanced antitumor effect. The formation of unique tetrahedral nanostructure of DNA cages effectively enhances the interaction between ruthenium polypyridyl complexes (RuPOP) and the cages, thus increasing the drug loading efficacy. Conjugation of biotin to the DNA-based nanosystem (Bio-cage@Ru) enhances its specific cellular uptake, drug retention and cytotoxicity against HepG2 cells. Different from free RuPOP and the cage itself, Bio-cage@Ru translocates to cell nucleus after internalization, where it undergoes self-immolative cleavage in response to DNases, leading to triggered drug release and induction of ROS-mediated cell apoptosis. Moreover, in the nude mice model, the nanosystem specifically accumulates in tumor sites, thus exhibits satisfactory in vivo antitumor efficacy, and alleviates the damage of liver, kidney, lung and heart function of nude mice induced by RuPOP and tumor xenografts. Collectively, this study demonstrates a strategy for construction of biocompatible and cancer-targeted DNA origami with enhanced anticancer efficacy and reduced toxicity for next-generation cancer therapy.
Collapse
Affiliation(s)
- Yanyu Huang
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Wei Huang
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Binwei Zhou
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
24
|
Ghaffarian R, Herrero EP, Oh H, Raghavan SR, Muro S. Chitosan-Alginate Microcapsules Provide Gastric Protection and Intestinal Release of ICAM-1-Targeting Nanocarriers, Enabling GI Targeting In Vivo. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3382-3393. [PMID: 27375374 PMCID: PMC4926773 DOI: 10.1002/adfm.201600084] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
When administered intravenously, active targeting of drug nanocarriers (NCs) improves biodistribution and endocytosis. Targeting may also improve oral delivery of NCs to treat gastrointestinal (GI) pathologies or for systemic absoption. However, GI instability of targeting moieties compromises this strategy. We explored whether encapsulation of antibody-coated NCs in microcapsules would protect against gastric degradation, providing NCs release and targeting in intestinal conditions. We used nanoparticles coated with antibodies against intercellular adhesion molecule-1 (anti-ICAM) or non-specific IgG. NCs (~160-nm) were encapsulated in ~180-μm microcapsules with an alginate core, in the absence or presence of a chitosan shell. We found >95% NC encapsulation within microcapsules and <10% NC release from microcapsules in storage. There was minimal NC release at gastric pH (<10%) and burst release at intestinal pH (75-85%), slightly attenuated by chitosan. Encapsulated NCs afforded increased protection against degradation (3-4 fold) and increased cell targeting (8-20 fold) after release vs. non-encapsulated NCs. Mouse oral gavage showed that microencapsulation provided 38-65% greater protection of anti-ICAM NCs in the GI tract, 40% lower gastric retention, and 4-9-fold enhanced intestinal biodistribution vs. non-encapsulated NCs. Therefore, microencapsulation of antibody-targeted NCs may enable active targeting strategies to be effective in the context of oral drug delivery.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, 2330 Jeong H. Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - Edgar Pérez Herrero
- Institute for Bioscience and Biotechnology Research, 5115 Plant Sciences Building, University of Maryland, College Park, MD 20742, USA
| | - Hyuntaek Oh
- Department of Chemical and Biomolecular Engineering, 1227C Chemical & Nuclear Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - Srinivasa R. Raghavan
- Department of Chemical and Biomolecular Engineering, 1227C Chemical & Nuclear Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Fischell Department of Bioengineering and Institute for Bioscience and Biotechnology Research, 5115 Plant Sciences Building, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
25
|
Jia HZ, Zhang W, Wang XL, Yang B, Chen WH, Chen S, Chen G, Zhao YF, Zhuo RX, Feng J, Zhang XZ. Polymeric assembly of hyperbranched building blocks to establish tunable nanoplatforms for lysosome acidity-responsive gene/drug co-delivery. Biomater Sci 2014. [PMID: 26221940 DOI: 10.1039/c4bm00382a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study plans to develop a nanoparticle technology that can assemble different polymeric "building blocks" with various desired functionalities into one nanosystem in a pH-dependent manner. For this purpose, polymeric building blocks were specifically designed with hyperbranched architectures, and orthogonal pH-reversible phenylboronic acid-diols were taken as "joints" to integrate them together. To verify the idea, a corona-core dual-polymer nanoassembly was prepared as the vehicle for lysosomotropic gene/drug co-delivery. Phenylboronic acid modified hyperbranched oligoethylenimine (OEI-PBA) was arranged to cluster around the hydrophobic core composed of hyperbranched polyglycerol, just by mixing two polymers in an appropriate ratio at neutral conditions. Compared with the parent OEI-PBA, this nanoassembly demonstrated better capture of plasmid DNA, highly enhanced activity for cellular transport and gene transfection (up to 100 fold), the ability to further load hydrophobic drugs, lysosome acidity-targeting pH-dependent release of both carried cargoes, and improved cell-biocompatibility. To evaluate its potential for combinational gene/drug therapy, in vitro experiments using the therapeutic p53 gene and antitumor doxorubicin as models were carried out. This intracellular co-delivery led to apparently synergetic anti-cancer effects in cultured cancer cells. This dynamic paradigm shows interesting features including easy manipulation, reversible conjugation, lysosome-targeting pH-responsiveness, high co-delivery efficiency, and functional expandability by further accommodating other building blocks.
Collapse
Affiliation(s)
- Hui-Zhen Jia
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ghaffarian R, Muro S. Distinct subcellular trafficking resulting from monomeric vs multimeric targeting to endothelial ICAM-1: implications for drug delivery. Mol Pharm 2014; 11:4350-62. [PMID: 25301142 PMCID: PMC4255724 DOI: 10.1021/mp500409y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Ligand-targeted,
receptor-mediated endocytosis is commonly exploited for intracellular
drug delivery. However, cells-surface receptors may follow distinct
endocytic fates when bound by monomeric vs multimeric ligands. Our
purpose was to study this paradigm using ICAM-1, an endothelial receptor
involved in inflammation, to better understand its regulation and
potential for drug delivery. Our procedure involved fluorescence microscopy
of human endothelial cells to determine the endocytic behavior of
unbound ICAM-1 vs ICAM-1 bound by model ligands: monomeric (anti-ICAM)
vs multimeric (anti-ICAM biotin–streptavidin conjugates or
anti-ICAM coated onto 100 nm nanocarriers). Our findings suggest that
both monomeric and multimeric ligands undergo a similar endocytic
pathway sensitive to amiloride (∼50% inhibition), but not inhibitors
of clathrin-pits or caveoli. After 30 min, ∼60–70% of
both ligands colocalized with Rab11a-compartments. By 3–5 h,
∼65–80% of multimeric anti-ICAM colocalized with perinuclear
lysosomes with ∼60–80% degradation, while 70% of monomeric
anti-ICAM remained associated with Rab11a at the cell periphery and
recycled to and from the cell-surface with minimal (<10%) lysosomal
colocalization and minimal (≤15%) degradation. In the absence
of ligands, ICAM-1 also underwent amiloride-sensitive endocytosis
with peripheral distribution, suggesting that monomeric (not multimeric)
anti-ICAM follows the route of this receptor. In conclusion, ICAM-1
can mediate different intracellular itineraries, revealing new insight
into this biological pathway and alternative avenues for drug delivery.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, University of Maryland , 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | | |
Collapse
|
27
|
Targeting, endocytosis, and lysosomal delivery of active enzymes to model human neurons by ICAM-1-targeted nanocarriers. Pharm Res 2014; 32:1264-78. [PMID: 25319100 DOI: 10.1007/s11095-014-1531-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023]
Abstract
PURPOSE Delivery of therapeutics to neurons is paramount to treat neurological conditions, including many lysosomal storage disorders. However, key aspects of drug-carrier behavior in neurons are relatively unknown: the occurrence of non-canonical endocytic pathways (present in other cells); whether carriers that traverse the blood-brain barrier are, contrarily, retained within neurons; if neuron-surface receptors are accessible to bulky carriers compared to small ligands; or if there are differences regarding neuronal compartments (neuron body vs. neurites) pertaining said parameters. We have explored these questions using model polymer nanocarriers targeting intercellular adhesion molecule-1 (ICAM-1). METHODS Differentiated human neuroblastoma cells were incubated with anti-ICAM-coated polystyrene nanocarriers and analyzed by fluorescence microscopy. RESULTS ICAM-1 expression and nanocarrier binding was enhanced in altered (TNFα) vs. control conditions. While small ICAM-1 ligands (anti-ICAM) preferentially accessed the cell body, anti-ICAM nanocarriers bound with faster kinetics to neurites, yet reached similar saturation over time. Anti-ICAM nanocarriers were also endocytosed with faster kinetics and lower saturation levels in neurites. Non-classical cell adhesion molecule (CAM) endocytosis ruled uptake, and neurite-to-cell body transport was inferred. Nanocarriers trafficked to lysosomes, delivering active enzymes (dextranase) with substrate reduction in a lysosomal-storage disease model. CONCLUSION ICAM-1-targeting holds potential for intracellular delivery of therapeutics to neurons.
Collapse
|