1
|
Zherdeva VV, Likhov AR, Saidvaliev UA, Fixler D, Demin D, Volodina VN, Apukhtina UA, Pawar S, Atuar B, Tuchin VV. Enhanced Fluorescence Imaging of Implants Based on Polyester Copolymers in Combination With MRI. JOURNAL OF BIOPHOTONICS 2025:e202400147. [PMID: 39899887 DOI: 10.1002/jbio.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Nowadays, many biodegradable materials are offered for biomedical applications, but there are only a few in vivo methods for their detection and monitoring. In this work, implants based on biodegradable polyester copolymers were labeled with indocyanine green (ICG) for fluorescence imaging in combination with tissue optical clearing (TOC) and magnetic resonance imaging (MRI). The results include in vitro degradation modeling followed by in vivo imaging of copolymer samples that were subcutaneously implanted in BALB/c mice. TOC with 70% glycerol has been demonstrated to significantly improve sample visualization. The TOC efficiency parameter Q demonstrated the variability of effects correlating with the timing of follow-up in the postimplantation period. It has been shown that nonhealing wounds, peri-implantation inflammation, or fibrosis, confirmed by MRI, affect the effectiveness of TOC in the range from Q = -30% to 70%.
Collapse
Affiliation(s)
- Victoria V Zherdeva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Astemir R Likhov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Ulugbek A Saidvaliev
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dmitry Demin
- MIREA - Russian Technological University, Moscow, Russia
| | - Veronika N Volodina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Uliana A Apukhtina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Shweta Pawar
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Bar Atuar
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Valery V Tuchin
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
| |
Collapse
|
2
|
Culbreath CJ, McCullen SD, Mefford OT. Controlling Mechanical Properties of Medical-Grade Scaffolds through Electrospinning Parameter Selection. ACS OMEGA 2024; 9:36982-36992. [PMID: 39246470 PMCID: PMC11375708 DOI: 10.1021/acsomega.4c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024]
Abstract
Electrospinning (ES) is a versatile process mode for creating fibrous materials with various structures that have broad applications ranging from regenerative medicine to tissue engineering and surgical mesh implants. The recent commercialization of this technology for implant use has driven the use of resorbable electrospun products. Resorbable electrospun meshes offer great promise as temporary implants that can utilize the layer upon layer method of additive manufacturing to incorporate porosity as a function of process parameters into a scaffold structure. The interconnected porosity and feature size known to ES have previously been observed to hold great potential for simulating the natural cellular environment of soft tissue. This microstructure, proper degradation kinetics, and mechanical properties combine to provide the design basis for artificial tissue structures that could aid in not only wound healing but also true tissue engineering and regenerative medicine. While current advancement in the field is understood to be limited by material properties, the importance of optimizing mechanical properties with currently available materials should not be overlooked. This work investigated the process parameter effects and interactions that control the structure-property relationship for a range of medical-grade aliphatic polyester materials with a range of intrinsic properties. An ε-caprolactone homopolymer (PCL), l-lactide homopolymer (PLLA), and Lactoflex, a copolymer with intermediate properties relative to the homopolymers, were characterized before, during, and after the additive manufacturing process. The interacting effects of process parameters, distance to collector, and dispensing rate were shown to produce variable-density, nonwoven scaffold structures. The resorbable mesh scaffolds of PLLA, PCL, and Lactoflex demonstrated a broad range of mechanical properties (approximately 1-10 MPa ultimate tensile strength and 5-390 MPa tensile modulus). Postprocessing of scaffolds demonstrated removal of solvents and preservation of micrometer-sized features. Resorbable polymers and electrospinning can produce scaffold materials with excellent features and offer tremendous potential in the field of implantable resorbable devices.
Collapse
Affiliation(s)
- Clayton J Culbreath
- Poly-Med, Inc. Anderson, South Carolina 29625, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Seth D McCullen
- Poly-Med, Inc. Anderson, South Carolina 29625, United States
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - O Thompson Mefford
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
3
|
Gao J, Wen J, Hu D, Liu K, Zhang Y, Zhao X, Wang K. Bottlebrush inspired injectable hydrogel for rapid prevention of postoperative and recurrent adhesion. Bioact Mater 2022; 16:27-46. [PMID: 35386330 PMCID: PMC8958549 DOI: 10.1016/j.bioactmat.2022.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Postsurgical adhesion is a common clinic disease induced by surgical trauma, accompanying serious subsequent complications. Current non-surgical approaches of drugs treatment and biomaterial barrier administration only show limited prevention effects and couldn't effectively promote peritoneum repair. Herein, inspired by bottlebrush, a novel self-fused, antifouling, and injectable hydrogel is fabricated by the free-radical polymerization in aqueous solution between the methacrylate hyaluronic acid (HA-GMA) and N-(2-hydroxypropyl) methacrylamide (HPMA) monomer without any chemical crosslinkers, termed as H-HPMA hydrogel. The H-HPMA hydrogel can be tuned to perform excellent self-fused properties and suitable abdominal metabolism time. Intriguingly, the introduction of the ultra-hydrophilic HPMA chains to the H-HPMA hydrogel affords an unprecedented antifouling capability. The HPMA chains establish a dense hydrated layer that rapidly prevents the postsurgical adhesions and recurrent adhesions after adhesiolysis in vivo. The H-HPMA hydrogel can repair the peritoneal wound of the rat model within 5 days. Furthermore, an underlying mechanism study reveals that the H-HPMA hydrogel significantly regulated the mesothelial-to-mesenchymal transition (MMT) process dominated by the TGF-β-Smad2/3 signal pathway. Thus, we developed a simple, effective, and available approach to rapidly promote peritoneum regeneration and prevent peritoneal adhesion and adhesion recurrence after adhesiolysis, offering novel design ideas for developing biomaterials to prevent peritoneal adhesion.
Collapse
Affiliation(s)
- Jushan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinpeng Wen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Datao Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kailai Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinxin Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
4
|
Wang Y, Zhao W, Han M, Xu J, Zhou X, Luu W, Han L, Tam KC. Topographical Design and Thermal-Induced Organization of Interfacial Water Structure to Regulate the Wetting State of Surfaces. JACS AU 2022; 2:1989-2000. [PMID: 36186561 PMCID: PMC9516702 DOI: 10.1021/jacsau.2c00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Smart surfaces with superhydrophobic/superhydrophilic characteristics can be controlled by external stimuli, such as temperature. These transitions are attributed to the molecular-level conformation of the grafted polymer chains due to the varied interactions at the interface. Here, tunable surfaces were prepared by grafting two well-known thermo-responsive polymers, poly(N-isopropylacrylamide) (PNIPAM) and poly(oligoethylene glycol)methyl ether acrylate (POEGMA188) onto micro-pollen particles of uniform morphology and roughness. Direct Raman spectra and thermodynamic analyses revealed that above the lower critical solution temperature, the bonded and free water at the interface partially transformed to intermediate water that disrupted the "water cage" surrounding the hydrophobic groups. The increased amounts of intermediate water produced hydrogen bonding networks that were less ordered around the polymer grafted microparticles, inducing a weaker binding interaction at the interface and a lower tendency to wet the surface. Combining the roughness factor, the bulk surface assembled by distinct polymer-grafted-pollen microparticles (PNIPAM or POEGMA188) could undergo a different wettability transition for liquid under air, water, and oil. This work identifies new perspectives on the interfacial water structure variation at a multiple length scale, which contributed to the temperature-dependent surface wettability transition. It offers inspiration for the application of thermo-responsive surface to liquid-gated multiphase separation, water purification and harvesting, biomedical devices, and printing.
Collapse
|
5
|
Steele JAM, Moore AC, St-Pierre JP, McCullen SD, Gormley AJ, Horgan CC, Black CR, Meinert C, Klein T, Saifzadeh S, Steck R, Ren J, Woodruff MA, Stevens MM. In vitro and in vivo investigation of a zonal microstructured scaffold for osteochondral defect repair. Biomaterials 2022; 286:121548. [PMID: 35588688 PMCID: PMC7615488 DOI: 10.1016/j.biomaterials.2022.121548] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/28/2022] [Accepted: 04/23/2022] [Indexed: 01/15/2023]
Abstract
Articular cartilage is comprised of zones that vary in architecture, extracellular matrix composition, and mechanical properties. Here, we designed and engineered a porous zonal microstructured scaffold from a single biocompatible polymer (poly [ϵ-caprolactone]) using multiple fabrication strategies: electrospinning, spherical porogen leaching, directional freezing, and melt electrowriting. With this approach we mimicked the zonal structure of articular cartilage and produced a stiffness gradient through the scaffold which aligns with the mechanics of the native tissue. Chondrocyte-seeded scaffolds accumulated extracellular matrix including glycosaminoglycans and collagen II over four weeks in vitro. This prompted us to further study the repair efficacy in a skeletally mature porcine model. Two osteochondral lesions were produced in the trochlear groove of 12 animals and repaired using four treatment conditions: (1) microstructured scaffold, (2) chondrocyte seeded microstructured scaffold, (3) MaioRegen™, and (4) empty defect. After 6 months the defect sites were harvested and analyzed using histology, micro computed tomography, and Raman microspectroscopy mapping. Overall, the scaffolds were retained in the defect space, repair quality was repeatable, and there was clear evidence of osteointegration. The repair quality of the microstructured scaffolds was not superior to the control based on histological scoring; however, the lower score was biased by the lack of histological staining due to the limited degradation of the implant at 6 months. Longer follow up studies (e.g., 1 yr) will be required to fully evaluate the efficacy of the microstructured scaffold. In conclusion, we found consistent scaffold retention, osteointegration, and prolonged degradation of the microstructured scaffold, which we propose may have beneficial effects for the long-term repair of osteochondral defects.
Collapse
Affiliation(s)
- Joseph A M Steele
- Department of Materials, Imperial College London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, UK; Division of Biomaterials and Regenerative Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, SE 171 77, Sweden
| | - Axel C Moore
- Department of Materials, Imperial College London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, UK
| | - Jean-Philippe St-Pierre
- Department of Materials, Imperial College London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, UK
| | - Seth D McCullen
- Department of Materials, Imperial College London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, UK
| | - Adam J Gormley
- Department of Materials, Imperial College London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, UK; Division of Biomaterials and Regenerative Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, SE 171 77, Sweden
| | - Conor C Horgan
- Department of Materials, Imperial College London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, UK
| | - Cameron Rm Black
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Developmental Origins of Health and Disease, Institute of Developmental Sciences, University of Southampton Medical School, Southampton, SO16 6YD, UK; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Medical Engineering Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Christoph Meinert
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Travis Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; ARC Training Centre in Additive Biomanufacturing, Brisbane, Australia
| | - Siamak Saifzadeh
- Medical Engineering Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Roland Steck
- Medical Engineering Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Jiongyu Ren
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; ARC Training Centre in Additive Biomanufacturing, Brisbane, Australia
| | - Maria A Woodruff
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; ARC Training Centre in Additive Biomanufacturing, Brisbane, Australia.
| | - Molly M Stevens
- Department of Materials, Imperial College London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, UK; Division of Biomaterials and Regenerative Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, SE 171 77, Sweden.
| |
Collapse
|
6
|
Petre DG, Leeuwenburgh SCG. The Use of Fibers in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:141-159. [PMID: 33375900 DOI: 10.1089/ten.teb.2020.0252] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bone tissue engineering aims to restore and maintain the function of bone by means of biomaterial-based scaffolds. This review specifically focuses on the use of fibers in biomaterials used for bone tissue engineering as suitable environment for bone tissue repair and regeneration. We present a bioinspired rationale behind the use of fibers in bone tissue engineering and provide an overview of the most common fiber fabrication methods, including solution, melt, and microfluidic spinning. Subsequently, we provide a brief overview of the composition of fibers that are used in bone tissue engineering, including fibers composed of (i) natural polymers (e.g., cellulose, collagen, gelatin, alginate, chitosan, and silk, (ii) synthetic polymers (e.g., polylactic acid [PLA], polycaprolactone, polyglycolic acid [PGA], polyethylene glycol, and polymer blends of PLA and PGA), (iii) ceramic fibers (e.g., aluminium oxide, titanium oxide, and zinc oxide), (iv) metallic fibers (e.g., titanium and its alloys, copper and magnesium), and (v) composite fibers. In addition, we review the most relevant fiber modification strategies that are used to enhance the (bio)functionality of these fibers. Finally, we provide an overview of the applicability of fibers in biomaterials for bone tissue engineering, with a specific focus on mechanical, pharmaceutical, and biological properties of fiber-functionalized biomaterials for bone tissue engineering. Impact statement Natural bone is a complex composite material composed of an extracellular matrix of mineralized fibers containing living cells and bioactive molecules. Consequently, the use of fibers in biomaterial-based scaffolds offers a wide variety of opportunities to replicate the functional performance of bone. This review provides an overview of the use of fibers in biomaterials for bone tissue engineering, thereby contributing to the design of novel fiber-functionalized bone-substituting biomaterials of improved functionality regarding their mechanical, pharmaceutical, and biological properties.
Collapse
Affiliation(s)
- Daniela Geta Petre
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Zhou D, Zhu LW, Wu BH, Xu ZK, Wan LS. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022. [DOI: 10.1039/d1py01252e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on end-functionalized polymers synthesized by controlled/living radical polymerizations and the applications in fields including bioconjugate formation, surface modification, topology construction, and self-assembly.
Collapse
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang-Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Camacho P, Fainor M, Seims KB, Tolbert JW, Chow LW. Fabricating spatially functionalized 3D-printed scaffolds for osteochondral tissue engineering. J Biol Methods 2021; 8:e146. [PMID: 33889653 PMCID: PMC8054918 DOI: 10.14440/jbm.2021.353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/30/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing of biodegradable polymers has rapidly become a popular approach to create scaffolds for tissue engineering. This technique enables fabrication of complex architectures and layer-by-layer spatial control of multiple components with high resolution. The resulting scaffolds can also present distinct chemical groups or bioactive cues on the surface to guide cell behavior. However, surface functionalization often includes one or more post-fabrication processing steps, which typically produce biomaterials with homogeneously distributed chemistries that fail to mimic the biochemical organization found in native tissues. As an alternative, our laboratory developed a novel method that combines solvent-cast 3D printing with peptide-polymer conjugates to spatially present multiple biochemical cues in a single scaffold without requiring post-fabrication modification. Here, we describe a detailed, stepwise protocol to fabricate peptide-functionalized scaffolds and characterize their physical architecture and biochemical spatial organization. We used these 3D-printed scaffolds to direct human mesenchymal stem cell differentiation and osteochondral tissue formation by controlling the spatial presentation of cartilage-promoting and bone-promoting peptides. This protocol also describes how to seed scaffolds and evaluate matrix deposition driven by peptide organization.
Collapse
Affiliation(s)
- Paula Camacho
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Matthew Fainor
- Integrated Degree in Engineering, Arts and Sciences Program, Lehigh University, Bethlehem, PA 18015, USA
| | - Kelly B Seims
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - John W Tolbert
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Lesley W Chow
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA.,Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
9
|
Synthesis and characterization of as-grown doped polymerized (PMMA-PVA)/ZnO NPs hybrid thin films. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03600-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Ippel BD, Komil MI, Bartels PAA, Söntjens SHM, Boonen RJEA, Smulders MMJ, Dankers PYW. Supramolecular Additive-Initiated Controlled Atom Transfer Radical Polymerization of Zwitterionic Polymers on Ureido-pyrimidinone-Based Biomaterial Surfaces. Macromolecules 2020; 53:4454-4464. [PMID: 32581395 PMCID: PMC7304927 DOI: 10.1021/acs.macromol.0c00160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/21/2020] [Indexed: 11/28/2022]
Abstract
![]()
Surface-initiated controlled
radical polymerization is a popular technique for the modification
of biomaterials with, for example, antifouling polymers. Here, we
report on the functionalization of a supramolecular biomaterial with
zwitterionic poly(sulfobetaine methacrylate) via atom transfer radical
polymerization from a macroinitiator additive, which is embedded in
the hard phase of the ureido-pyrimidinone-based material. Poly(sulfobetaine
methacrylate) was successfully polymerized from these surfaces, and
the polymerized sulfobetaine content, with corresponding antifouling
properties, depended on both the macroinitiator additive concentration
and polymerization time. Furthermore, the polymerization from the
macroinitiator additive was successfully translated to functional
electrospun scaffolds, showing the potential for this functionalization
strategy in supramolecular material systems.
Collapse
Affiliation(s)
- Bastiaan D Ippel
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Muhabbat I Komil
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Paul A A Bartels
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Roy J E A Boonen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maarten M J Smulders
- Laboratory of Organic Chemistry, Wageningen University, Stippenweg 4, 6708 WE Wageningen, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
11
|
Víšová I, Smolková B, Uzhytchak M, Vrabcová M, Zhigunova Y, Houska M, Surman F, de Los Santos Pereira A, Lunov O, Dejneka A, Vaisocherová-Lísalová H. Modulation of Living Cell Behavior with Ultra-Low Fouling Polymer Brush Interfaces. Macromol Biosci 2020; 20:e1900351. [PMID: 32045093 DOI: 10.1002/mabi.201900351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Indexed: 12/23/2022]
Abstract
Ultra-low fouling and functionalizable coatings represent emerging surface platforms for various analytical and biomedical applications such as those involving examination of cellular interactions in their native environments. Ultra-low fouling surface platforms as advanced interfaces enabling modulation of behavior of living cells via tuning surface physicochemical properties are presented and studied. The state-of-art ultra-low fouling surface-grafted polymer brushes of zwitterionic poly(carboxybetaine acrylamide), nonionic poly(N-(2-hydroxypropyl)methacrylamide), and random copolymers of carboxybetaine methacrylamide (CBMAA) and HPMAA [p(CBMAA-co-HPMAA)] with tunable molar contents of CBMAA and HPMAA are employed. Using a model Huh7 cell line, a systematic study of surface wettability, swelling, and charge effects on the cell growth, shape, and cytoskeleton distribution is performed. This study reveals that ultra-low fouling interfaces with a high content of zwitterionic moieties (>65 mol%) modulate cell behavior in a distinctly different way compared to coatings with a high content of nonionic HPMAA. These differences are attributed mostly to the surface hydration capabilities. The results demonstrate a high potential of carboxybetaine-rich ultra-low fouling surfaces with high hydration capabilities and minimum background signal interferences to create next-generation bioresponsive interfaces for advanced studies of living objects.
Collapse
Affiliation(s)
- Ivana Víšová
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic
| | - Mariia Uzhytchak
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic
| | - Markéta Vrabcová
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic
| | - Yulia Zhigunova
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic
| | - Milan Houska
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic
| | - František Surman
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00, Prague, Czech Republic
| | - Andres de Los Santos Pereira
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00, Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21, Prague, Czech Republic
| | | |
Collapse
|
12
|
Heggestad JT, Fontes CM, Joh DY, Hucknall AM, Chilkoti A. In Pursuit of Zero 2.0: Recent Developments in Nonfouling Polymer Brushes for Immunoassays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903285. [PMID: 31782843 PMCID: PMC6986790 DOI: 10.1002/adma.201903285] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/17/2019] [Indexed: 05/11/2023]
Abstract
"Nonfouling" polymer brush surfaces can greatly improve the performance of in vitro diagnostic (IVD) assays due to the reduction of nonspecific protein adsorption and consequent improvement of signal-to-noise ratios. The development of synthetic polymer brush architectures that suppress adventitious protein adsorption is reviewed, and their integration into surface plasmon resonance and fluorescent sandwich immunoassay formats is discussed. Also, highlighted is a novel, self-contained immunoassay platform (the D4 assay) that transforms time-consuming laboratory-based assays into a user-friendly and point-of-care format with a sensitivity and specificity comparable or better than standard enzyme-linked immunosorbent assay (ELISA) directly from unprocessed samples. These advancements clearly demonstrate the utility of nonfouling polymer brushes as a substrate for ultrasensitive and robust diagnostic assays that may be suitable for clinical testing, in field and laboratory settings.
Collapse
Affiliation(s)
- Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cassio M Fontes
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Daniel Y Joh
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Angus M Hucknall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
13
|
Li Z, Kosuri S, Foster H, Cohen J, Jumeaux C, Stevens MM, Chapman R, Gormley AJ. A Dual Wavelength Polymerization and Bioconjugation Strategy for High Throughput Synthesis of Multivalent Ligands. J Am Chem Soc 2019; 141:19823-19830. [PMID: 31743014 DOI: 10.1021/jacs.9b09899] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Structure-function relationships for multivalent polymer scaffolds are highly complex due to the wide diversity of architectures offered by such macromolecules. Evaluation of this landscape has traditionally been accomplished case-by-case due to the experimental difficulty associated with making these complex conjugates. Here, we introduce a simple dual-wavelength, two-step polymerize and click approach for making combinatorial conjugate libraries. It proceeds by incorporation of a polymerization friendly cyclopropenone-masked dibenzocyclooctyne into the side chain of linear polymers or the α-chain end of star polymers. Polymerizations are performed under visible light using an oxygen tolerant porphyrin-catalyzed photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) process, after which the deprotection and click reaction is triggered by UV light. Using this approach, we are able to precisely control the valency and position of ligands on a polymer scaffold in a manner conducive to high throughput synthesis.
Collapse
Affiliation(s)
- Zihao Li
- Centre for Advanced Macromolecular Design (CAMD) and the Australian Centre for Nanotechnology (ACN), School of Chemistry , University of New South Wales , Sydney 2052 , Australia
| | - Shashank Kosuri
- Department of Biomedical Engineering , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Henry Foster
- Centre for Advanced Macromolecular Design (CAMD) and the Australian Centre for Nanotechnology (ACN), School of Chemistry , University of New South Wales , Sydney 2052 , Australia
| | - Jarrod Cohen
- New Jersey Center for Biomaterials , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Coline Jumeaux
- Department of Materials, Department of Bioengineering, and the Institute for Biomedical Engineering , Imperial College London , London SW7 2AZ , United Kingdom.,Department of Medical Biochemistry and Biophysics , Karolinska Institutet , SE-17177 , Stockholm , Sweden
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and the Institute for Biomedical Engineering , Imperial College London , London SW7 2AZ , United Kingdom.,Department of Medical Biochemistry and Biophysics , Karolinska Institutet , SE-17177 , Stockholm , Sweden
| | - Robert Chapman
- Centre for Advanced Macromolecular Design (CAMD) and the Australian Centre for Nanotechnology (ACN), School of Chemistry , University of New South Wales , Sydney 2052 , Australia
| | - Adam J Gormley
- Department of Biomedical Engineering , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
14
|
Sun Y, Zhao YQ, Zeng Q, Wu YW, Hu Y, Duan S, Tang Z, Xu FJ. Dual-Functional Implants with Antibacterial and Osteointegration-Promoting Performances. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36449-36457. [PMID: 31532178 DOI: 10.1021/acsami.9b14572] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multifunctional antibacterial materials have great significance for treating biomedical device-associated infections (BAIs). In the present work, a facile and rational strategy was developed to produce dual-functional implants with antibacterial and osteointegration-promoting properties for the treatment of BAI. A titanium implant, as a representative demo of implants, was first functionalized with ethanediamine-functionalized poly(glycidyl methacrylate) (PGED) brushes. Then, low-molecular-weight quaternized polyethyleneimine (QPEI, a cationic antibacterial agent) and alendronate (ALN, a clinically used drug with high affinity for bone minerals) were covalently conjugated onto PGED brushes to produce dual-functional dental implants (Ti-AQ). The QPEI component imparted Ti-AQ with antibacterial abilities, and the ALN component could balance the cytotoxicity of a cationic antibacterial agent, improving the biocompatibility for osteoblast cells. The effective performances of anti-infection and osteointegration were demonstrated in a BAI animal model. The results indicated that Ti-AQ inhibited bacterial infection at the early stage and enhanced the osteointegration and biomechanical properties between the implants and bone tissues at the late stage. This study will provide one facile and universal strategy for the design and development of novel multifunctional antibacterial implants.
Collapse
Affiliation(s)
- Yujie Sun
- Second Clinical Division, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Peking University School and Hospital of Stomatology , Beijing 100101 , China
| | - Yu-Qing Zhao
- Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Qiang Zeng
- Second Clinical Division, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Peking University School and Hospital of Stomatology , Beijing 100101 , China
| | - Yu-Wei Wu
- Second Clinical Division, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Peking University School and Hospital of Stomatology , Beijing 100101 , China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Shun Duan
- Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Zhihui Tang
- Second Clinical Division, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology , Peking University School and Hospital of Stomatology , Beijing 100101 , China
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
15
|
Chen X, Lin Z, Feng Y, Tan H, Xu X, Luo J, Li J. Zwitterionic PMCP-Modified Polycaprolactone Surface for Tissue Engineering: Antifouling, Cell Adhesion Promotion, and Osteogenic Differentiation Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903784. [PMID: 31448570 DOI: 10.1002/smll.201903784] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Biodegradable polycaprolactone (PCL) has been widely applied as a scaffold material in tissue engineering. However, the PCL surface is hydrophobic and adsorbs nonspecific proteins. Some traditional antifouling modifications using hydrophilic moieties have been successful but inhibit cell adhesion, which is not ideal for tissue engineering. The PCL surface is modified with bioinspired zwitterionic poly[2-(methacryloyloxy)ethyl choline phosphate] (PMCP) via surface-initiated atom transfer radical polymerization to improve cell adhesion through the unique interaction between choline phosphate (CP, on PMCP) and phosphate choline (PC, on cell membranes). The hydrophilicity of the PCL surface is significantly enhanced after surface modification. The PCL-PMCP surface reduces nonspecific protein adsorption (e.g., up to 91.7% for bovine serum albumin) due to the zwitterionic property of PMCP. The adhesion and proliferation of bone marrow mesenchymal stem cells on the modified surface is remarkably improved, and osteogenic differentiation signs are detected, even without adding any osteogenesis-inducing supplements. Moreover, the PCL-PMCP films are more stable at the early stage of degradation. Therefore, the PMCP-functionalized PCL surface promotes cell adhesion and osteogenic differentiation, with an antifouling background, and exhibits great potential in tissue engineering.
Collapse
Affiliation(s)
- Xingyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- College of Medicine, Southwest Jiaotong University, Chengdu, 610003, P. R. China
| | - Zaifu Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ying Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
16
|
Camacho P, Busari H, Seims KB, Schwarzenberg P, Dailey HL, Chow LW. 3D printing with peptide-polymer conjugates for single-step fabrication of spatially functionalized scaffolds. Biomater Sci 2019; 7:4237-4247. [PMID: 31393469 DOI: 10.1039/c9bm00887j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biodegradable polymer-based scaffolds are widely used to provide support during early stages of regeneration and can be functionalized with various chemical groups or bioactive cues to promote desired cellular behavior. However, these scaffolds are often modified post-fabrication, which can lead to undesired changes and homogeneously distributed chemistries that fail to mimic the spatial biochemical organization found in native tissues. To address these challenges, surface functionalization can be achieved by 3D printing with pre-functionalized biodegradable polymers, such as peptide-modified polymer conjugates, to control the deposition of preferred chemistries. Peptide-PCL conjugates were synthesized with the canonical cell adhesion peptide motif RGDS or its negative control RGES and 3D printed into scaffolds displaying one or both peptides. The peptides were also modified with bioorthogonal groups, biotin and azide, to visualize peptide concentration and location by labeling with complementary fluorophores. Peptide concentration on the scaffold surface increased with increasing peptide-PCL conjugate concentration added to the ink prior to 3D printing, and scaffolds printed with the highest RGDS(biotin)-PCL concentrations showed a significant increase in NIH3T3 fibroblast adhesion. To demonstrate spatial control of peptide functionalization, multiple printer heads were used to print both peptide-PCL conjugates into the same construct in alternating patterns. Cells preferentially attached and spread on RGDS(biotin)-PCL fibers compared to RGES(azide)-PCL fibers, illustrating how spatial functionalization can be used to influence local cell behavior within a single biomaterial. This presents a versatile platform to generate multifunctional biomaterials that can mimic the biochemical organization found in native tissues to support functional regeneration.
Collapse
Affiliation(s)
- Paula Camacho
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| | - Hafiz Busari
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA
| | - Kelly B Seims
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA
| | | | - Hannah L Dailey
- Department of Mechanical Engineering and Mechanics, Bethlehem, PA, USA
| | - Lesley W Chow
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA. and Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
17
|
Casci Ceccacci A, Cagliani A, Marizza P, Schmid S, Boisen A. Thin Film Analysis by Nanomechanical Infrared Spectroscopy. ACS OMEGA 2019; 4:7628-7635. [PMID: 31058251 PMCID: PMC6492230 DOI: 10.1021/acsomega.9b00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/08/2019] [Indexed: 05/31/2023]
Abstract
There is a fundamental need for techniques for thin film characterization. The current options for obtaining infrared (IR) spectra typically suffer from low signal-to-noise-ratios (SNRs) for sample thicknesses confined to a few nanometers. We present nanomechanical infrared spectroscopy (NAM-IR), which enables the measurement of a complete infrared fingerprint of a polyvinylpyrrolidone (PVP) layer as thin as 20 nm with an SNR of 307. Based on the characterization of the given NAM-IR setup, a minimum film thickness of only 160 pm of PVP can be analyzed with an SNR of 2. Compared to a conventional attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) system, NAM-IR yields an SNR that is 43 times larger for a 20 nm-thick PVP layer and requires only a fraction of the acquisition time. These results pave the way for NAM-IR as a highly sensitive, fast, and practical tool for IR analysis of polymer thin films.
Collapse
Affiliation(s)
- Andrea Casci Ceccacci
- Department
of Micro- and Nanotechnology, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Alberto Cagliani
- Department
of Micro- and Nanotechnology, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Paolo Marizza
- Department
of Micro- and Nanotechnology, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Silvan Schmid
- Institute
of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Abstract
Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
Joh DY, Zimmers Z, Avlani M, Heggestad JT, Aydin HB, Ganson N, Kumar S, Fontes C, Achar RK, Hershfield MS, Hucknall AM, Chilkoti A. Architectural Modification of Conformal PEG-Bottlebrush Coatings Minimizes Anti-PEG Antigenicity While Preserving Stealth Properties. Adv Healthc Mater 2019; 8:e1801177. [PMID: 30908902 PMCID: PMC6819148 DOI: 10.1002/adhm.201801177] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/12/2019] [Indexed: 01/18/2023]
Abstract
Poly(ethylene glycol) (PEG), a linear polymer known for its "stealth" properties, is commonly used to passivate the surface of biomedical implants and devices, and it is conjugated to biologic drugs to improve their pharmacokinetics. However, its antigenicity is a growing concern. Here, the antigenicity of PEG is investigated when assembled in a poly(oligoethylene glycol) methacrylate (POEGMA) "bottlebrush" configuration on a planar surface. Using ethylene glycol (EG) repeat lengths of the POEGMA sidechains as a tunable parameter for optimization, POEGMA brushes with sidechain lengths of two and three EG repeats are identified as the optimal polymer architecture to minimize binding of anti-PEG antibodies (APAs), while retaining resistance to nonspecific binding by bovine serum albumin and cultured cells. Binding of backbone- versus endgroup-selective APAs to POEGMA brushes is further investigated, and finally the antigenicity of POEGMA coatings is assessed against APA-positive clinical plasma samples. These results are applied toward fabricating immunoassays on POEGMA surfaces with minimal reactivity toward APAs while retaining a low limit-of-detection for the analyte. Taken together, these results offer useful design concepts to reduce the antigenicity of polymer brush-based surface coatings used in applications involving human or animal matrices.
Collapse
Affiliation(s)
- Daniel Y. Joh
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Zackary Zimmers
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Manav Avlani
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Jacob T. Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Hakan B. Aydin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Nancy Ganson
- Department of Medicine, Division of Rheumatology, Duke University Medical Center, Durham, NC 27710 USA
| | - Shourya Kumar
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Cassio Fontes
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Rohan K. Achar
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Michael S. Hershfield
- Department of Medicine, Division of Rheumatology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710 USA
| | - Angus M. Hucknall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham NC 27708 USA
| |
Collapse
|
20
|
Liu Y, Tas S, Zhang K, de Vos WM, Ma J, Vancso GJ. Thermoresponsive Membranes from Electrospun Mats with Switchable Wettability for Efficient Oil/Water Separations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01853] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| | | | | | | | - Jinghong Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| | | |
Collapse
|
21
|
Ippel BD, Dankers PYW. Introduction of Nature's Complexity in Engineered Blood-compatible Biomaterials. Adv Healthc Mater 2018; 7. [PMID: 28841771 DOI: 10.1002/adhm.201700505] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/04/2017] [Indexed: 01/07/2023]
Abstract
Biomaterials with excellent blood-compatibility are needed for applications in vascular replacement therapies, such as vascular grafts, heart valves and stents, and in extracorporeal devices such as hemodialysis machines and blood-storage bags. The modification of materials that are being used for blood-contacting devices has advanced from passive surface modifications to the design of more complex, smart biomaterials that respond to relevant stimuli from blood to counteract coagulation. Logically, the main source of inspiration for the design of new biomaterials has been the endogenous endothelium. Endothelial regulation of hemostasis is complex and involves a delicate interplay of structural components and feedback mechanisms. Thus, challenges to develop new strategies for blood-compatible biomaterials now lie in incorporating true feedback controlled mechanisms that can regulate blood compatibility in a dynamic way. Here, supramolecular material systems are highlighted as they provide a promising platform to introduce dynamic reciprocity, due to their inherent dynamic nature.
Collapse
Affiliation(s)
- Bastiaan D. Ippel
- Institute for Complex Molecular Systems; Laboratory for Chemical Biology; and Laboratory for Cell and Tissue Engineering; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular Systems; Laboratory for Chemical Biology; and Laboratory for Cell and Tissue Engineering; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
22
|
Duque-Sánchez L, Brack N, Postma A, Pigram PJ, Meagher L. Optimisation of grafting of low fouling polymers from three-dimensional scaffolds via surface-initiated Cu(0) mediated polymerisation. J Mater Chem B 2018; 6:5896-5909. [DOI: 10.1039/c8tb01828f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Well-controlled low fouling polymers brushes were grafted from the surface of biodegradable electrospun fibres for advanced tissue engineering applications.
Collapse
Affiliation(s)
- Lina Duque-Sánchez
- Centre for Materials and Surface Science and Department of Chemistry and Physics
- La Trobe University
- Melbourne
- Australia
- CSIRO Manufacturing
| | - Narelle Brack
- Centre for Materials and Surface Science and Department of Chemistry and Physics
- La Trobe University
- Melbourne
- Australia
| | | | - Paul J. Pigram
- Centre for Materials and Surface Science and Department of Chemistry and Physics
- La Trobe University
- Melbourne
- Australia
| | - Laurence Meagher
- Monash Institute of Medical Engineering and Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
| |
Collapse
|
23
|
Abstract
Electrospinning polymers is a versatile technique to generate fibrous, three-dimensional scaffolds for tissue engineering applications. Modifying polymers with functional groups prior to electrospinning offers the opportunity to control the spatial presentation of functional groups within the scaffold as well as incorporate multiple bioactive cues. This chapter describes methods to modify poly(ε-caprolactone) (PCL) with peptides and electrospin these peptide-PCL conjugates to functionalize a scaffold surface in a single step. Methods to adapt standard electrospinning setups to create single- or dual-peptide gradients within a single construct are also described.
Collapse
Affiliation(s)
- Lesley W Chow
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA.
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
24
|
Rucinskaite G, Thompson SA, Paterson S, de la Rica R. Enzyme-coated Janus nanoparticles that selectively bind cell receptors as a function of the concentration of glucose. NANOSCALE 2017; 9:5404-5407. [PMID: 28426045 DOI: 10.1039/c7nr00298j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A method is proposed for controlling the number of nanoparticles bound to cell membranes via RGDS peptide-integrin interactions. It consists of propelling nanoparticles bearing the peptides with enzymes (glucose oxidase), which disrupts biomolecular interactions as a function of the concentration of enzyme substrate (glucose).
Collapse
Affiliation(s)
- Gabriele Rucinskaite
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, Scotland, UK.
| | | | | | | |
Collapse
|
25
|
Pape AC, Ippel BD, Dankers PYW. Cell and Protein Fouling Properties of Polymeric Mixtures Containing Supramolecular Poly(ethylene glycol) Additives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4076-4082. [PMID: 28363017 PMCID: PMC5413964 DOI: 10.1021/acs.langmuir.7b00467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/22/2017] [Indexed: 06/01/2023]
Abstract
Fouling properties of new biomaterials are important for the performance of a material in a biological environment. Here, a set of three supramolecular polymeric additives consisting of ureidopyrimidinone (UPy)-functionalized poly(ethylene glycol) (UPyPEG) were formulated with UPy-modified polycaprolactone into thin supramolecular material films. The antifouling properties of these material films were determined by investigation of the relation of cell adhesion and protein adsorption on these materials films. The presence of the UPyPEG additives at the surface of the films was evident by an increased hydrophilicity. Adhesion of human epithelial and endothelial cells was strongly reduced for two of the UPyPEG-containing films. Analysis of adsorption of the first three proteins from the Vroman series, albumin, γ-globulin, and fibrinogen, using quartz crystal microbalance with dissipation in combination with viscoelastic modeling, revealed that the surfaces containing the UPyPEG additives had a limited effect on adsorption of these proteins. Despite a limited reduction of protein adsorption, UPyPEG-containing mixtures were non-cell-adhesive, which shows that non-cell-adhesive properties of supramolecular polymer surfaces are not always directly correlated to protein adsorption.
Collapse
Affiliation(s)
- A. C.
H. Pape
- Institute
for Complex Molecular Systems, Laboratory for Chemical Biology, and Laboratory for
Cell and Tissue Engineering, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bastiaan D. Ippel
- Institute
for Complex Molecular Systems, Laboratory for Chemical Biology, and Laboratory for
Cell and Tissue Engineering, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems, Laboratory for Chemical Biology, and Laboratory for
Cell and Tissue Engineering, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
26
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 619] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Rodda AE, Ercole F, Glattauer V, Nisbet DR, Healy KE, Dove AP, Meagher L, Forsythe JS. Controlling integrin-based adhesion to a degradable electrospun fibre scaffold via SI-ATRP. J Mater Chem B 2016; 4:7314-7322. [PMID: 32263733 DOI: 10.1039/c6tb02444k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While polycaprolactone (PCL) and similar polyesters are commonly used as degradable scaffold materials in tissue engineering and related applications, non-specific adsorption of environmental proteins typically precludes any control over the signalling pathways that are activated during cell adhesion to these materials. Here we describe the preparation of PCL-based fibres that facilitate cell adhesion through well-defined pathways while preventing adhesion via adsorbed proteins. Surface-initiated atom transfer radical polymerisation (SI-ATRP) was used to graft a protein-resistant polymer brush coating from the surface of fibres, which had been electrospun from a brominated PCL macroinitiator. This coating also provided alkyne functional groups for the attachment of specific signalling molecules via the copper-mediated azide-alkyne click reaction; in this case, a cyclic RGD peptide with high affinity for αvβ3 integrins. Mesenchymal stem cells were shown to attach to the fibres via the peptide, but did not attach in its absence, nor when blocked with soluble peptide, demonstrating the effective control of cell adhesion pathways.
Collapse
Affiliation(s)
- Andrew E Rodda
- Department of Materials Science and Engineering, and Monash Institute for Medical Engineering, Monash University, Wellington Rd, Clayton 3800, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods. Biomaterials 2016; 106:24-45. [DOI: 10.1016/j.biomaterials.2016.08.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
|
29
|
Zhang Q, Jia D, Yang Z, Duan X, Chen Q, Zhou Y. Synthesis of Novel Cobalt-Containing Polysilazane Nanofibers with Fluorescence by Electrospinning. Polymers (Basel) 2016; 8:polym8100350. [PMID: 30974640 PMCID: PMC6432467 DOI: 10.3390/polym8100350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/03/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022] Open
Abstract
Emission in the nanostructured materials is important in micro/nanoelectronic devices. We report here a strategy for the processing of micron and submicron fibers from a cobalt-containing hyperbranched polysilazane by electrospinning. The electrospun nanofibers have uniform average diameters of ~600 nm and lengths of ~10 μm. The photophysical properties of polycobaltsilazane (PCSN) are studied using UV-VIS and photoluminescence spectroscopies. PCSN fibers display a series of emission peaks between 490 and 615 nm. The Co(II) doping into polysilazane leads to the emission from 465 to 415 nm. The emission wavelength shift of Co(III)-containing polysilazane is specific under 340 and 470 nm excitation wavelengths, respectively, while it is not observed with metal-free polysilazane. Thermogravimetric analysis-Differentical thermal analysis (TGA-DTA) profiles also show good thermostability of the PCSN fibers at 800 °C under Ar atmosphere. The use of PCSN offers both enhanced ceramic yields against ~5 wt % starting material and the fluorescence intensity of polymeric fibers.
Collapse
Affiliation(s)
- Qian Zhang
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Yikuang Street, Nangang District, Harbin 150001, China.
| | - Dechang Jia
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Yikuang Street, Nangang District, Harbin 150001, China.
| | - Zhihua Yang
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Yikuang Street, Nangang District, Harbin 150001, China.
| | - Xiaoming Duan
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Yikuang Street, Nangang District, Harbin 150001, China.
| | - Qingqing Chen
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Yikuang Street, Nangang District, Harbin 150001, China.
| | - Yu Zhou
- Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Yikuang Street, Nangang District, Harbin 150001, China.
| |
Collapse
|
30
|
Abstract
Biomaterials for tissue engineering provide scaffolds to support cells and guide tissue regeneration. Despite significant advances in biomaterials design and fabrication techniques, engineered tissue constructs remain functionally inferior to native tissues. This is largely due to the inability to recreate the complex and dynamic hierarchical organization of the extracellular matrix components, which is intimately linked to a tissue's biological function. This review discusses current state-of-the-art strategies to control the spatial presentation of physical and biochemical cues within a biomaterial to recapitulate native tissue organization and function.
Collapse
Affiliation(s)
- Lesley W Chow
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA
| | - Jacob F Fischer
- Bioengineering Program, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
31
|
Kim SE, Zhang C, Advincula AA, Baer E, Pokorski JK. Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8928-8938. [PMID: 27043205 DOI: 10.1021/acsami.6b00093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches. The resulting fiber mats show submicrometer cross-sectional fiber dimensions and yield pore sizes that were nearly uniform, with a mean pore size of 1.6 ± 0.9 μm. Several antifouling polymers, including hydrophilic, zwitterionic, and amphipathic molecules, are grafted to the surface of the mats using a two-step procedure that includes photochemistry followed by the copper-catalyzed azide-alkyne cycloaddition reaction. Fiber mats are evaluated using separate adsorption tests for serum proteins and E. coli. The results indicate that poly(oligo(ethylene glycol) methyl ether methacrylate)-co-(trifluoroethyl methacrylate) (poly(OEGMEMA-co-TFEMA)) grafted mats exhibit approximately 85% less protein adhesion and 97% less E. coli adsorption when compared to unmodified PCL fibermats. In dynamic antifouling testing, the amphiphilic fluorous polymer surface shows the highest flux and highest rejection value of foulants. The work presented within has implications on the high-throughput production of antifouling microporous patches for medical applications.
Collapse
Affiliation(s)
- Si-Eun Kim
- Department of Macromolecular Science & Engineering, Case Western Reserve University , 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Cong Zhang
- Department of Macromolecular Science & Engineering, Case Western Reserve University , 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Abigail A Advincula
- Department of Macromolecular Science & Engineering, Case Western Reserve University , 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Eric Baer
- Department of Macromolecular Science & Engineering, Case Western Reserve University , 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Jonathan K Pokorski
- Department of Macromolecular Science & Engineering, Case Western Reserve University , 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|