1
|
Guyon L, Tessier S, Croyal M, Gourdel M, Lafont M, Segeron F, Chabaud L, Gautier H, Weiss P, Gaudin A. Influence of physico-chemical properties of two lipoxin emulsion-loaded hydrogels on pre-polarized macrophages: a comparative analysis. Drug Deliv Transl Res 2025; 15:231-241. [PMID: 38565761 DOI: 10.1007/s13346-024-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Inflammation, a crucial defense mechanism, must be rigorously regulated to prevent the onset of chronic inflammation and subsequent tissue damage. Specialized pro resolving mediators (SPMs) such as lipoxin A4 (LXA4) have demonstrated their ability to facilitate the resolution of inflammation by orchestrating a transition of M1 pro-inflammatory macrophages towards an anti-inflammatory M2 phenotype. However, the hydrophobic and chemically labile nature of LXA4 necessitates the development of a delivery system capable of preserving its integrity for clinical applications. In this study, two types of emulsion were formulated using different homogenization processes:mechanical overhead stirrer (MEB for blank Emulsion and MELX for LXA4 loaded-Emulsion) or Luer-lock syringes (SEB for blank Emulsion and SELX for LXA4 loaded-Emulsion)). Following characterization, including size and droplet morphology assessment by microscopy, the encapsulation efficiency (EE) was determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). To exert control over LXA4 release, these emulsions were embedded within silanized hyaluronic acid hydrogels. A comprehensive evaluation, encompassing gel time, swelling, and degradation profiles under acidic, basic, and neutral conditions, preceded the assessment of LXA4 cumulative release using LC-MS/MS. Physicochemical results indicate that H-MELX (Mechanical overhead stirrer LXA4 Emulsion loaded-Hydrogel) exhibits superior efficiency over H-SELX (Luer-lock syringes LXA4 Emulsion loaded-Hydrogel). While both formulations stimulated pro-inflammatory cytokine secretion and promoted a pro-inflammatory macrophage phenotype, LXA4 emulsion-loaded hydrogels displayed a diminished pro-inflammatory activity compared to blank emulsion-loaded hydrogels. These findings highlight the biological efficacy of LXA4 within both systems, with H-SELX outperforming H-MELX in terms of efficiency. To the best of our knowledge, this is the first successful demonstration of the biological efficacy of LXA4 emulsion-loaded hydrogel systems on macrophage polarization. These versatile H-MELX and H-SELX formulations can be customized to enhance their biological activity making them promising tools to promote the resolution of inflammation in diverse clinical applications.
Collapse
Affiliation(s)
- Léna Guyon
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Solène Tessier
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Mikaël Croyal
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
- Nantes Université, CHU Nantes, Inserm CNRS, SFR Santé, Inserm UMS 016, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Mathilde Gourdel
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Marianne Lafont
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Florian Segeron
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Lionel Chabaud
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
- Nantes Université, UFR Sciences Biologiques et Pharmaceutiques, F-44035, Nantes, France
| | - Hélène Gautier
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
- Nantes Université, UFR Sciences Biologiques et Pharmaceutiques, F-44035, Nantes, France
| | - Pierre Weiss
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Alexis Gaudin
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
- Department of Endodontics, University of Nantes, 1 place Alexis Ricordeau, 44093 Nantes Cedex 01, Nantes, France.
| |
Collapse
|
2
|
Dong J, Zhou W, Hu X, Bai J, Zhang S, Zhang X, Yu L, Yang P, Kong L, Liu M, Shang X, Su Z, Geng D, Zhu C. Honeycomb-inspired ZIF-sealed interface enhances osseointegration via anti-infection and osteoimmunomodulation. Biomaterials 2024; 307:122515. [PMID: 38401481 DOI: 10.1016/j.biomaterials.2024.122515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Implant-associated infections (IAIs) pose a significant threat to orthopedic surgeries. Bacteria colonizing the surface of implants disrupt bone formation-related cells and interfere with the osteoimmune system, resulting in an impaired immune microenvironment and osteogenesis disorders. Inspired by nature, a zeolitic imidazolate framework (ZIF)-sealed smart drug delivery system on Ti substrates (ZSTG) was developed for the "natural-artificial dual-enzyme intervention (NADEI)" strategy to address these challenges. The subtle sealing design of ZIF-8 on the TiO2 nanotubes ensured glucose oxidase (GOx) activity and prevented its premature leakage. In the acidic infection microenvironment, the degradation of ZIF-8 triggered the rapid release of GOx, which converted glucose into H2O2 for disinfection. The Zn2+ released from degraded ZIF-8, as a DNase mimic, can hydrolyze extracellular DNA, which further enhances H2O2-induced disinfection and prevents biofilm formation. Importantly, Zn2+-mediated M2 macrophage polarization significantly improved the impaired osteoimmune microenvironment, accelerating bone repair. Transcriptomics revealed that ZSTG effectively suppressed the inflammatory cascade induced by lipopolysaccharide while promoting cell proliferation, homeostasis maintenance, and bone repair. In vitro and in vivo results confirmed the superior anti-infective, osteoimmunomodulatory, and osteointegrative capacities of the ZSTG-mediated NADEI strategy. Overall, this smart bionic platform has significant potential for future clinical applications to treat IAIs.
Collapse
Affiliation(s)
- Jiale Dong
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wei Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianli Hu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Siming Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Peng Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai 200433, China
| | - Mingkai Liu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xifu Shang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zheng Su
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
3
|
Fiore L, Mazzaracchio V, Gosti C, Duranti L, Vitiello R, Maccauro G, Arduini F. Functionalized orthopaedic implant as pH electrochemical sensing tool for smart diagnosis of hardware infection. Analyst 2024; 149:3085-3096. [PMID: 38712737 DOI: 10.1039/d4an00253a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In the orthopaedic surgery field, the use of medical implants to treat a patient's bone fracture is nowadays a common practice, nevertheless, it is associated with possible cases of infection. The consequent hardware infection can lead to implant failure and systemic infections, with prolonged hospitalization, time-consuming rehabilitation treatments, and extended antibiotic therapy. Hardware infections are strictly related to bacterial adhesion to the implant, leading to infection occurrence and consequent pH decreasing from physiological level to acid pH. Here, we demonstrate the new strategy to use an orthopaedic implant functionalized with iridium oxide film as the working electrode for the potentiometric monitoring of pH in hardware infection diagnosis. A functional investigation was focused on selecting the implant material, namely titanium, titanium alloy, and stainless steel, and the component, namely screws and implants. After selecting the titanium-based implant as the working electrode and a silver wire as the reference electrode in the final configuration of the smart sensing orthopaedic implant, a calibration curve was performed in standard solutions. An equation equal to y = (0.76 ± 0.02) - (0.068 ± 0.002) x, R2 = 0.996, was obtained in the pH range of 4-8. Subsequently, hysteresis, interference, matrix effect, recovery study, and storage stability were investigated to test the overall performance of the sensing device, demonstrating the tremendous potential of electrochemical sensors to deliver the next generation of smart orthopaedic implants.
Collapse
Affiliation(s)
- Luca Fiore
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133 Rome, Italy.
- SENSE4MED, Via Bitonto 139, 00133, Rome, Italy
| | - Vincenzo Mazzaracchio
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Christian Gosti
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Leonardo Duranti
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133 Rome, Italy.
| | - Raffaele Vitiello
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giulio Maccauro
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133 Rome, Italy.
- SENSE4MED, Via Bitonto 139, 00133, Rome, Italy
| |
Collapse
|
4
|
Judl T, Popelka S, Tomšík E, Hrubý M, Daniel M, Fojt J, Melicherčík P, Landor I, Jahoda D. Acidity Is an Excellent Marker of Infection in Hip and Knee Arthroplasty. J Clin Med 2024; 13:688. [PMID: 38337382 PMCID: PMC10856596 DOI: 10.3390/jcm13030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The diagnosis of joint replacement infection is a difficult clinical challenge that often occurs when the implant cannot be salvaged. We hypothesize that the pH value of synovial fluid could be an important indicator of the inflammatory status of the joint. However, in the literature, there is a lack of data on the pH changes in hip and knee joint replacements and their relation to infection and implant failure. In this study, we aimed to measure the pH levels of synovial fluid in patients with hip and knee joint replacements. We also investigated the potential of pH measurement as a diagnostic tool for joint replacement infection. In this study, we recorded the pH values to be 7.55 and 7.46 in patients where Pseudomonas aeruginosa was identified as the cause of the prosthetic joint infection. We attribute this to the different environments created by this specific bacterium. In other cases where the pH was higher, chronic mitigated infections were diagnosed, caused by strains of Staphylococcus aureus, Streptococcus agalactiase, and coagulase negative staphylococcus. MATERIALS AND METHODS In our cohort of 155 patients with implanted hip (THA; n = 85) or knee (TKA; n = 70) joint replacements, we conducted a prospective study with a pH measurement. Out of the whole cohort, 44 patients had confirmed joint replacement infection (28.4%) (44/155). In 111 patients, infection was ruled out (71.6%) (111/155). Joint replacement infection was classified according to the criteria of the Musculoskeletal Infection Society (MSIS) from 2018. Based on the measured values, we determined the cut-off level for the probability of ongoing inflammation. We also determined the sensitivity and specificity of the measurement. RESULTS The group of patients with infection (n = 44) had a significantly lower synovial fluid pH (pH = 6.98 ± 0.48) than the group of patients with no infection (n = 111, pH = 7.82 ± 0.29, p < 0.001). The corresponding median pH values were 7.08 for the patients with infection and 7.83 for the patients with no infection. When we determined the cut-off level of pH 7.4, the sensitivity level of infected replacements was 88.6%, and the specificity level of the measurement was 95.5%. The predictive value of a positive test was 88.6%, and the predictive value of a negative test was 95.5%. CONCLUSIONS Our results confirm that it is appropriate to include a pH measurement in the diagnostic spectrum of hip and knee replacements. This diagnostic approach has the potential to provide continuous in vivo feedback, facilitated by specialized biosensors. The advantage of this method is the future incorporation of a pH-detecting sensor into intelligent knee and hip replacements that will assess pH levels over time. By integrating these biosensors into intelligent implants, the early detection of joint replacement infections could be achieved, enhancing proactive intervention strategies.
Collapse
Affiliation(s)
- Tobiáš Judl
- Department of Orthopaedics, 1st Faculty of Medicine, Charles University in Prague and University Hospital in Motol, V Úval 84, 150 06 Prague 5, Czech Republic; (S.P.); (D.J.)
| | - Stanislav Popelka
- Department of Orthopaedics, 1st Faculty of Medicine, Charles University in Prague and University Hospital in Motol, V Úval 84, 150 06 Prague 5, Czech Republic; (S.P.); (D.J.)
| | - Elena Tomšík
- Institute of Macromolecular Chemistry CAS, Heyrovsého nám. 2, 162 00 Prague 6, Czech Republic (M.H.)
| | - Martin Hrubý
- Institute of Macromolecular Chemistry CAS, Heyrovsého nám. 2, 162 00 Prague 6, Czech Republic (M.H.)
| | - Matěj Daniel
- Faculty of Mechanical Engineering, Czech Technical University, Technická 4, 166 07 Prague 6, Czech Republic;
| | - Jaroslav Fojt
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic;
| | - Pavel Melicherčík
- Department of Orthopaedics, 1st Faculty of Medicine, Charles University in Prague and University Hospital in Motol, V Úval 84, 150 06 Prague 5, Czech Republic; (S.P.); (D.J.)
| | - Ivan Landor
- Department of Orthopaedics, 1st Faculty of Medicine, Charles University in Prague and University Hospital in Motol, V Úval 84, 150 06 Prague 5, Czech Republic; (S.P.); (D.J.)
| | - David Jahoda
- Department of Orthopaedics, 1st Faculty of Medicine, Charles University in Prague and University Hospital in Motol, V Úval 84, 150 06 Prague 5, Czech Republic; (S.P.); (D.J.)
| |
Collapse
|
5
|
Wang J, Chu J, Song J, Li Z. The application of impantable sensors in the musculoskeletal system: a review. Front Bioeng Biotechnol 2024; 12:1270237. [PMID: 38328442 PMCID: PMC10847584 DOI: 10.3389/fbioe.2024.1270237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
As the population ages and the incidence of traumatic events rises, there is a growing trend toward the implantation of devices to replace damaged or degenerated tissues in the body. In orthopedic applications, some implants are equipped with sensors to measure internal data and monitor the status of the implant. In recent years, several multi-functional implants have been developed that the clinician can externally control using a smart device. Experts anticipate that these versatile implants could pave the way for the next-generation of technological advancements. This paper provides an introduction to implantable sensors and is structured into three parts. The first section categorizes existing implantable sensors based on their working principles and provides detailed illustrations with examples. The second section introduces the most common materials used in implantable sensors, divided into rigid and flexible materials according to their properties. The third section is the focal point of this article, with implantable orthopedic sensors being classified as joint, spine, or fracture, based on different practical scenarios. The aim of this review is to introduce various implantable orthopedic sensors, compare their different characteristics, and outline the future direction of their development and application.
Collapse
Affiliation(s)
- Jinzuo Wang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning, China
| | - Jian Chu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Jinhui Song
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Zhonghai Li
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning, China
| |
Collapse
|
6
|
Liu J, Zhao W, Li J, Li C, Xu S, Sun Y, Ma Z, Zhao H, Ren L. Multimodal and flexible hydrogel-based sensors for respiratory monitoring and posture recognition. Biosens Bioelectron 2024; 243:115773. [PMID: 37879270 DOI: 10.1016/j.bios.2023.115773] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
The accurate monitoring of respiratory events and human motion states holds paramount importance in the realm of health surveillance and disease prognostication. An exquisitely precise, multifaceted, portable, and environmentally resilient sensor designed for health monitoring would undeniably be of utmost desirability, despite its persisting as a formidable challenge. Here, we propose a breath monitoring and posture recognition system that utilizes hydrogel electrolytes based on polyvinyl alcohol, sodium alginate, and starch, suitable for supercapacitors and multimodal wearable sensors. The multimodal smart sensors can independently detect mechanical and thermal changes through the output signals of capacitance and resistance, respectively. Moreover, we have cultivated an artificial neural network to achieve a finger-pressing posture recognition accuracy of up to 99.259%. Our hydrogel sensors have also been successfully employed in the diagnosis of obstructive sleep apnea syndrome. The flexible electronic device derived from this study exhibit a plethora of functionalities, thereby affording a novel perspective for the design and fabrication of advanced flexible electronic contrivances that find applications across diverse domains such as medicine and virtual reality.
Collapse
Affiliation(s)
- Jize Liu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Wei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Jiakai Li
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Chaofan Li
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Shuting Xu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Yang Sun
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Zhichao Ma
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China; Key Laboratory of CNC Equipment Reliability Ministry of Education, Jilin University, Changchun, 130025, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China.
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China; Key Laboratory of CNC Equipment Reliability Ministry of Education, Jilin University, Changchun, 130025, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China; Weihai Institute for Bionics-Jilin University, Weihai, 264400, China
| | - Luquan Ren
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China; Weihai Institute for Bionics-Jilin University, Weihai, 264400, China
| |
Collapse
|
7
|
Fang K, Wan Y, Wei J, Chen T. Hydrogel-Based Sensors for Human-Machine Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16975-16985. [PMID: 37994525 DOI: 10.1021/acs.langmuir.3c02444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
In the past decades, remarkable progress has been made in the field of human-machine interaction. The need for accurate sensing devices with satisfactory user experiences has propelled the development of flexible, stretchable, biocompatible, and imperceptible hydrogel-based interfaces. These innovative interfaces facilitate direct interactions between humans and machines while receiving detected input signals from sensors and giving output commands to controllers, thus motivating accurate real-time responsiveness. This Perspective discusses the sensing mechanisms for the two categories of hydrogel-based sensors and summarizes the recent progress in the development of different representations of human-machine interactions, including intelligent identification, information secrecy, interactive control, and virtual reality and augmented reality technologies. The advantages of hydrogel-based systems over conventionally used rigid electrical components are explicitly discussed. The conclusion provides a perspective on current challenges and outlines a future roadmap for the realization of state-of-the-art hydrogel-based smart systems.
Collapse
Affiliation(s)
- Kecheng Fang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yan Wan
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junjie Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
8
|
Sonkaya Ö, Ocakçı Ş, Toksoy A, Pamuk Algi M, Algi F. N-doped carbon nanomaterials as fluorescent pH and metal ion sensors for imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122412. [PMID: 36720189 DOI: 10.1016/j.saa.2023.122412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Herein we describe the facile synthesis of new N-doped carbon nanoparticles (CNPs) obtained from 1,10-phenanthroline by the solvothermal method. Characterization of CNPs were carried out with transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FTIR), UV-vis absorption spectra, and luminescence spectra. CNPs were pH sensitive and exploited as fluorescent chemosensors and imaging agents for Al(III) and Zn(II) ions in real-life samples. Remarkably, we show that CNPs can be used for the detection of Al(III) and Zn(II) ions in water samples. Accordingly, the results indicate that CNPs are highly effective in detecting Zn(II) content of cosmetic creams. We also demonstrated that the CNPs could be used for in vitro imaging of Al(III) and Zn(II) in Human Larynx Squamous Cell Carcinoma (Hep-2). Finally, Al(III) imaging in Angelica Officinalis root tissue was also achieved successfully. The CNPs are promising as luminescent multianalyte (pH, Al(III) and Zn(II)) sensors.
Collapse
Affiliation(s)
- Ömer Sonkaya
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Şeyma Ocakçı
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Alihan Toksoy
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Melek Pamuk Algi
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey.
| | - Fatih Algi
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey.
| |
Collapse
|
9
|
Xie H, Liu Y, An H, Yi J, Li C, Wang X, Chai W. Recent advances in prevention, detection and treatment in prosthetic joint infections of bioactive materials. Front Bioeng Biotechnol 2022; 10:1053399. [PMID: 36440438 PMCID: PMC9685530 DOI: 10.3389/fbioe.2022.1053399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2023] Open
Abstract
Prosthetic joint infection (PJI) is often considered as one of the most common but catastrophic complications after artificial joint replacement, which can lead to surgical failure, revision, amputation and even death. It has become a worldwide problem and brings great challenges to public health systems. A small amount of microbe attaches to the graft and forms a biofilm on its surface, which lead to the PJI. The current standard methods of treating PJI have limitations, but according to recent reports, bioactive materials have potential research value as a bioactive substance that can have a wide range of applications in the field of PJI. These include the addition of bioactive materials to bone cement, the use of antibacterial and anti-fouling materials for prosthetic coatings, the use of active materials such as bioactive glasses, protamine, hydrogels for prophylaxis and detection with PH sensors and fluorescent-labelled nanoparticles, and the use of antibiotic hydrogels and targeting delivery vehicles for therapeutic purposes. This review focus on prevention, detection and treatment in joint infections with bioactive materials and provide thoughts and ideas for their future applications.
Collapse
Affiliation(s)
- Hongbin Xie
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yubo Liu
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Haoming An
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Jiafeng Yi
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Chao Li
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chai
- Senior Department of Orthopedics, Fourth Medical Center of People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Orthopaedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|
10
|
Behbahani SB, Kiridena SD, Wijayaratna UN, Taylor C, Anker JN, Tzeng TRJ. pH variation in medical implant biofilms: Causes, measurements, and its implications for antibiotic resistance. Front Microbiol 2022; 13:1028560. [PMID: 36386694 PMCID: PMC9659913 DOI: 10.3389/fmicb.2022.1028560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
The advent of implanted medical devices has greatly improved the quality of life and increased longevity. However, infection remains a significant risk because bacteria can colonize device surfaces and form biofilms that are resistant to antibiotics and the host's immune system. Several factors contribute to this resistance, including heterogeneous biochemical and pH microenvironments that can affect bacterial growth and interfere with antibiotic biochemistry; dormant regions in the biofilm with low oxygen, pH, and metabolites; slow bacterial growth and division; and poor antibody penetration through the biofilm, which may also be regions with poor acid product clearance. Measuring pH in biofilms is thus key to understanding their biochemistry and offers potential routes to detect and treat latent infections. This review covers the causes of biofilm pH changes and simulations, general findings of metabolite-dependent pH gradients, methods for measuring pH in biofilms, effects of pH on biofilms, and pH-targeted antimicrobial-based approaches.
Collapse
Affiliation(s)
| | | | | | - Cedric Taylor
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | | |
Collapse
|
11
|
Cholesteric Liquid Crystal Photonic Hydrogel Films Immobilized with Urease Used for the Detection of Hg2+. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mercury ion is one of the most widespread heavy metal contaminants which can accumulate in the body through multiple channels, posing a detrimental impact on human health. We demonstrate a simple and low-cost method for the detection of Hg2+ assisted by a cholesteric liquid crystal photonic hydrogel (polyacrylic acid (PAA)) film with immobilized urease (CLC-PAAurease film). In the absence of Hg2+, a significant change in color and an obvious red shift in the reflected light wavelength of the prepared film were observed, since urease can hydrolyze urea to produce NH3, resulting in an increasing pH value of the microenvironment of CLC-PAAurease film. Hg2+ can inhibit the activity of urease so that the color change of the film is not obvious, corresponding to a relatively small variation of the reflected light wavelength. Therefore, Hg2+ can be quantitatively detected by measuring the displacement of the reflected light wavelength of the film. The detection limit of Hg2+ is about 10 nM. This approach has a good application prospect in the monitoring of heavy metal ions in environmental water resources.
Collapse
|
12
|
Zhang J, Zhang Q, Liu X, Xia S, Gao Y, Gao G. Flexible and wearable strain sensors based on conductive hydrogels. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiawei Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Qin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Xin Liu
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Shan Xia
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Yang Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science Changchun University of Technology Changchun China
| |
Collapse
|
13
|
Qin T, Liao W, Yu L, Zhu J, Wu M, Peng Q, Han L, Zeng H. Recent progress in conductive self‐healing hydrogels for flexible sensors. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tao Qin
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Wenchao Liao
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Li Yu
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Junhui Zhu
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
| | - Meng Wu
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Qiongyao Peng
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Linbo Han
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen China
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| | - Hongbo Zeng
- Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada
| |
Collapse
|