1
|
Karale RR, Kamble S, Alwaleedy S, Kabara KB, Narwade P, Al-Hamdani SM, Kumbharkhane AC, Sarode AV. Hydration behavior of asparagine: an approach using time domain reflectometry at low temperatures. J Biomol Struct Dyn 2024:1-14. [PMID: 39731534 DOI: 10.1080/07391102.2024.2445153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/10/2024] [Indexed: 12/30/2024]
Abstract
The dielectric behavior of Asparagine (C4H8N2O3) in water over the frequency range of 10 MHz to 30 GHz in the temperature region of 278.15-303.15 K in a step of 5 K has been carried out using time domain reflectometry (TDR) at various concentrations of asparagine. The obtained dielectric spectra reveal two relaxation peaks. The low frequency relaxation is attributed to the interaction between solute-solute molecules, while the high frequency relaxation is due to the reorientation of solvent molecules. The various dielectric and thermodynamic parameters were calculated such as the dielectric constant (εj), relaxation time (τj), effective dipole moment (μeff), Kirkwood correlation factor (g1), hydration number or the number of solvent molecules effectively bounded to solute molecule (Zib), effective volume of rotation (Veff), free energy of activation (ΔFj), entropy of activation (ΔSj) and enthalpy of activation (ΔHj). The static dielectric constant (ε1) shows increasing trend towards the higher concentration of asparagine, where as the high frequency dielectric constant (ε2) decreases with the concentration of asparagine. The relaxation time of low frequency (τ1) and high frequency (τ2) processes increases towards higher concentration of solute molecule and also towards lower temperature. As the concentration of asparagine increases, the value of effective dipole moment (μeff) decreases. With increasing amino acid concentrations hydration dynamics get affected and indicated by decreasing the hydration number (Zib) but the hydration dynamics of aqueous asparagine was found least temperature dependent.
Collapse
Affiliation(s)
- Ravikant R Karale
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Savita Kamble
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Suad Alwaleedy
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
- Department of Physics, Taiz University, Taiz, Yemen
| | - Komal B Kabara
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Pallavi Narwade
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
- Department of Physics, Shri Vitthal Rukmini Arts, Commerce and Science College, Yavatmal, Maharashtra, India
| | - Saeed Mohammed Al-Hamdani
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
- Department of Physics, Abyn University, Yemen
| | - Ashok C Kumbharkhane
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Arvind V Sarode
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| |
Collapse
|
2
|
Rajeev A, Yin L, Kalambate PK, Khabbaz MB, Trinh B, Kamkar M, Mekonnen TH, Tang S, Zhao B. Nano-enabled smart and functional materials toward human well-being and sustainable developments. NANOTECHNOLOGY 2024; 35:352003. [PMID: 38768585 DOI: 10.1088/1361-6528/ad4dac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Fabrication and operation on increasingly smaller dimensions have been highly integrated with the development of smart and functional materials, which are key to many technological innovations to meet economic and societal needs. Along with researchers worldwide, the Waterloo Institute for Nanotechnology (WIN) has long realized the synergetic interplays between nanotechnology and functional materials and designated 'Smart & Functional Materials' as one of its four major research themes. Thus far, WIN researchers have utilized the properties of smart polymers, nanoparticles, and nanocomposites to develop active materials, membranes, films, adhesives, coatings, and devices with novel and improved properties and capabilities. In this review article, we aim to highlight some of the recent developments on the subject, including our own research and key research literature, in the context of the UN Sustainability development goals.
Collapse
Affiliation(s)
- Ashna Rajeev
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lu Yin
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pramod K Kalambate
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mahsa Barjini Khabbaz
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Binh Trinh
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Milad Kamkar
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tizazu H Mekonnen
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Shirley Tang
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Boxin Zhao
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Levin M. Self-Improvising Memory: A Perspective on Memories as Agential, Dynamically Reinterpreting Cognitive Glue. ENTROPY (BASEL, SWITZERLAND) 2024; 26:481. [PMID: 38920491 PMCID: PMC11203334 DOI: 10.3390/e26060481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Many studies on memory emphasize the material substrate and mechanisms by which data can be stored and reliably read out. Here, I focus on complementary aspects: the need for agents to dynamically reinterpret and modify memories to suit their ever-changing selves and environment. Using examples from developmental biology, evolution, and synthetic bioengineering, in addition to neuroscience, I propose that a perspective on memory as preserving salience, not fidelity, is applicable to many phenomena on scales from cells to societies. Continuous commitment to creative, adaptive confabulation, from the molecular to the behavioral levels, is the answer to the persistence paradox as it applies to individuals and whole lineages. I also speculate that a substrate-independent, processual view of life and mind suggests that memories, as patterns in the excitable medium of cognitive systems, could be seen as active agents in the sense-making process. I explore a view of life as a diverse set of embodied perspectives-nested agents who interpret each other's and their own past messages and actions as best as they can (polycomputation). This synthesis suggests unifying symmetries across scales and disciplines, which is of relevance to research programs in Diverse Intelligence and the engineering of novel embodied minds.
Collapse
Affiliation(s)
- Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
4
|
Chuang SH, Feria DN, Lo YS, Hsieh TH, Lin TY. The effects of nontoxic bio-based substances (egg white) on the performance and passivation of ZnO nanorods arrays-based light emitting devices. NANOTECHNOLOGY 2024; 35:255201. [PMID: 38471141 DOI: 10.1088/1361-6528/ad32d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
An innovative approach is proposed to passivate the existing defects from metal oxide semiconductors by functionalizing nontoxic bio-based substances. As a demonstration, we synthesized zinc oxide nanorods (ZnO NRs) using a hydrothermal method and incorporated chicken egg white (albumen) as a passivator to the defects. X-ray diffraction analysis of ZnO NRs shows enhanced quality and crystallinity features after incorporating albumen. XPS measurements were performed not only to introduce the chemical bonding between the albumen and the bare ZnO NRs but also specifically provide evidence of successful capping and defect passivation to the surface layer of ZnO NRs. It was observed that when the albumen was annealed, it formed sulfhydryl groups and disulfide bonds (which created disulfide bridges) from the chemical reaction in irreversible thermal denaturation. Steady-state photoluminescence of ZnO NRs showed two emission bands, i.e. near band-edge emission (NBE) and deep-level emission (DL). The NBE is significantly improved as compared to DL emission after capping and annealing the albumen, while the quenching of DL emission confirmed the reduced defects arising from the surface of ZnO NRs. The advantages and enhanced characteristics of the albumen-capped ZnO NRs led to fabricating a stable and highly efficient light-emitting device. This work opens the great potential of utilizing nontoxic and low-cost biomaterials in passivating the defects of metal oxide nanomaterials for the development of bio-inspired and stable optoelectronic devices.
Collapse
Affiliation(s)
- Sung-Hao Chuang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Denice Navat Feria
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Yan-Shawn Lo
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Tung-Han Hsieh
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Tai-Yuan Lin
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| |
Collapse
|
5
|
KIM S, YUMUŞAK Ç, IRIMIA CV, BEDNORZ M, YENEL E, KUŞ M, SARIÇİFTÇİ NS, SHIM BS, IRIMIA-VLADU M. Amplifying the dielectric constant of shellac by incorporating natural clays for organic field effect transistors (OFETs). Turk J Chem 2023; 47:1169-1182. [PMID: 38173751 PMCID: PMC10762868 DOI: 10.55730/1300-0527.3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/31/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
We demonstrate in this work the practical use of uniform mixtures of a bioresin shellac and four natural clays, i.e. montmorillonite, sepiolite, halloysite and vermiculate as dielectrics in organic field effect transistors (OFETs). We present a thorough characterization of their processability and film forming characteristic, surface characterization, elaborate dielectric investigation and the fabrication of field effect transistors with two classic organic semiconductors, i.e. pentacene and fullerene C60. We show that low operating voltage of approximately 4 V is possible for all the OFETs using several combinations of clays and shellac. The capacitance measurements show an improvement of the dielectric constant of shellac by a factor of 2, to values in excess of 7 in the uniform mixtures of sepiolite and montmorillonite with this bioresin.
Collapse
Affiliation(s)
- Sunwoo KIM
- Department of Chemical Engineering, Inha University,
South Korea
- Program in Biomedical Science & Engineering, Inha University,
South Korea
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Linz,
Austria
| | - Çiğdem YUMUŞAK
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Linz,
Austria
| | - Cristian Vlad IRIMIA
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Linz,
Austria
| | - Mateusz BEDNORZ
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Linz,
Austria
| | - Esma YENEL
- Department of Chemical Engineering, Konya Technical University, Konya,
Turkiye
| | - Mahmut KUŞ
- Department of Chemical Engineering, Konya Technical University, Konya,
Turkiye
| | - Niyazi Serdar SARIÇİFTÇİ
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Linz,
Austria
| | - Bong Sup SHIM
- Department of Chemical Engineering, Inha University,
South Korea
- Program in Biomedical Science & Engineering, Inha University,
South Korea
| | - Mihai IRIMIA-VLADU
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Linz,
Austria
| |
Collapse
|
6
|
Gerardo‐Nava JL, Jansen J, Günther D, Klasen L, Thiebes AL, Niessing B, Bergerbit C, Meyer AA, Linkhorst J, Barth M, Akhyari P, Stingl J, Nagel S, Stiehl T, Lampert A, Leube R, Wessling M, Santoro F, Ingebrandt S, Jockenhoevel S, Herrmann A, Fischer H, Wagner W, Schmitt RH, Kiessling F, Kramann R, De Laporte L. Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner. Adv Healthc Mater 2023; 12:e2301030. [PMID: 37311209 PMCID: PMC11468549 DOI: 10.1002/adhm.202301030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/21/2023] [Indexed: 06/15/2023]
Abstract
Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.
Collapse
|
7
|
Islam A, Shah SHU, Haider Z, Imran M, Amin A, Haider SK, Li MD. Biological Interfacial Materials for Organic Light-Emitting Diodes. MICROMACHINES 2023; 14:1171. [PMID: 37374756 PMCID: PMC10301977 DOI: 10.3390/mi14061171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Organic optoelectronic devices have received appreciable attention due to their low cost, mechanical flexibility, band-gap engineering, lightness, and solution processability over a broad area. Specifically, realizing sustainability in organic optoelectronics, especially in solar cells and light-emitting devices, is a crucial milestone in the evolution of green electronics. Recently, the utilization of biological materials has appeared as an efficient means to alter the interfacial properties, and hence improve the performance, lifetime and stability of organic light-emitting diodes (OLEDs). Biological materials can be known as essential renewable bio-resources obtained from plants, animals and microorganisms. The application of biological interfacial materials (BIMs) in OLEDs is still in its early phase compared to the conventional synthetic interfacial materials; however, their fascinating features (such as their eco-friendly nature, biodegradability, easy modification, sustainability, biocompatibility, versatile structures, proton conductivity and rich functional groups) are compelling researchers around the world to construct innovative devices with enhanced efficiency. In this regard, we provide an extensive review of BIMs and their significance in the evolution of next-generation OLED devices. We highlight the electrical and physical properties of different BIMs, and address how such characteristics have been recently exploited to make efficient OLED devices. Biological materials such as ampicillin, deoxyribonucleic acid (DNA), nucleobases (NBs) and lignin derivatives have demonstrated significant potential as hole/electron transport layers as well as hole/electron blocking layers for OLED devices. Biological materials capable of generating a strong interfacial dipole can be considered as a promising prospect for alternative interlayer materials for OLED applications.
Collapse
Affiliation(s)
- Amjad Islam
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Department of Applied Physics, E-ICT-Culture-Sports Convergence Track, College of Science and Technology, Korea University-Sejong Campus, Sejong City 30019, Republic of Korea;
| | - Syed Hamad Ullah Shah
- Department of Applied Physics, E-ICT-Culture-Sports Convergence Track, College of Science and Technology, Korea University-Sejong Campus, Sejong City 30019, Republic of Korea;
| | - Zeeshan Haider
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea;
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Al Amin
- Department of Electrical Engineering, College of Engineering, Gyeongsang National University, Jinju-si 52828, Republic of Korea;
| | - Syed Kamran Haider
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea;
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, China
| |
Collapse
|
8
|
Szmuc E, Walker DJF, Kireev D, Akinwande D, Lovley DR, Keitz B, Ellington A. Engineering Geobacter pili to produce metal:organic filaments. Biosens Bioelectron 2023; 222:114993. [PMID: 36525710 DOI: 10.1016/j.bios.2022.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
The organized self-assembly of conductive biological structures holds promise for creating new bioelectronic devices. In particular, Geobacter sulfurreducens type IVa pili have proven to be a versatile material for fabricating protein nanowire-based devices. To scale the production of conductive pili, we designed a strain of Shewanella oneidensis that heterologously expressed abundant, conductive Geobacter pili when grown aerobically in liquid culture. S. oneidensis expressing a cysteine-modified pilin, designed to enhance the capability to bind to gold, generated conductive pili that self-assembled into biohybrid filaments in the presence of gold nanoparticles. Elemental composition analysis confirmed the filament-metal interactions within the structures, which were several orders of magnitude larger than previously described metal:organic filaments. The results demonstrate that the S. oneidensis chassis significantly advances the possibilities for facile conductive protein nanowire design and fabrication.
Collapse
Affiliation(s)
- Eric Szmuc
- College of Natural Sciences, University of Texas at Austin, Austin, TX, 78712, United States
| | - David J F Walker
- College of Natural Sciences, University of Texas at Austin, Austin, TX, 78712, United States; U.S. Army Engineer Research and Development Center, Environmental Laboratory, University of Texas at Austin, Austin, TX, 78712, United States; Bioconscientia LLC, Austin, TX 78712, United States
| | - Dmitry Kireev
- Cockrell School of Engineering, University of Texas at Austin, Austin, TX, 78712, United States
| | - Deji Akinwande
- Cockrell School of Engineering, University of Texas at Austin, Austin, TX, 78712, United States
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA, 01003, United States
| | - Benjamin Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, United States
| | - Andrew Ellington
- College of Natural Sciences, University of Texas at Austin, Austin, TX, 78712, United States.
| |
Collapse
|
9
|
Janeena A, Jayaraman N, Shanmugam G, Easwaramoorthi S, Ayyadurai N. Electrochemical Response of Redox Amino Acid Encoded Fluorescence Protein for Hydroxychloroquine Sensing. Appl Biochem Biotechnol 2023; 195:992-1013. [PMID: 36260248 PMCID: PMC9581447 DOI: 10.1007/s12010-022-04142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
The sudden rise in the demand has led to large-scale production of hydroxychloroquine (HCQ) in the global market for various diseases such as malaria, rheumatic arthritis, and systemic lupus erythematous and prophylactic treatment of early SARS-CoV-2 outbreak. Thorough monitoring of HCQ intake patients is in high demand; hence, we have developed a redox amino acid encoded fluorescent protein-based electrochemical biosensor for sensitive and selective detection of HCQ. This electrochemical biosensor is generated based on the two-electron transfer process between redox amino acid (3,4-dihydroxy-L-phenylalanine, DOPA) encoded bio-redox protein and the HCQ forms the conjugate. The DOPA residue in the bio-redox protein specifically binds with HCQ, thereby producing a remarkable electrochemical response on the glassy carbon electrode. Experimental results show that the developed biosensor selectively and sensitively detects the HCQ in spiked urine samples. The reagent-free bio-redox capacitor detects HCQ in the range of 90 nM to 4.4 µM in a solution with a detection limit of 58 nM, signal to noise ratio of 3:1, and strong anti-interference ability. Real-time screening, quantification, and relative mean recoveries of HCQ on spiked urine samples were monitored through electron shuttling using bio-redox protein and were found to be 97 to 101%. Overall, the developed bio-redox protein-based sensor has specificity, selectivity, reproducibility, and sensitivity making it potentially attractive for the sensing of HCQ and also applicable to clinical research.
Collapse
Affiliation(s)
- Asuma Janeena
- Biotechnology and Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Industrial Research (AcSIR), 201002, Ghaziabad, India
| | - Narayanan Jayaraman
- Inorganic and Physical Chemistry, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute, Chennai, India
| | - Ganesh Shanmugam
- Academy of Scientific and Industrial Research (AcSIR), 201002, Ghaziabad, India
- Organic and Bio-Organic Chemistry, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute, Chennai, India
| | - Shanmugam Easwaramoorthi
- Academy of Scientific and Industrial Research (AcSIR), 201002, Ghaziabad, India.
- Inorganic and Physical Chemistry, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute, Chennai, India.
| | - Niraikulam Ayyadurai
- Biotechnology and Biochemistry, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute, Chennai, India.
- Academy of Scientific and Industrial Research (AcSIR), 201002, Ghaziabad, India.
| |
Collapse
|
10
|
Zhang S, Jiang J, Zou X, Liu N, Wang H, Yang L, Zhou H, Liang C. Progress of laser surface treatment on magnesium alloy. Front Chem 2022; 10:999630. [PMID: 36212058 PMCID: PMC9538561 DOI: 10.3389/fchem.2022.999630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Magnesium (Mg) metals have been widely used in various fields as one of the most promising lightweight structural materials. However, the low corrosion resistance and poor mechanical properties restrict its applications. Surface treatments are common approach to enhance the mechanical strength and corrosion resistance of Mg metals. Among them, laser surface treatment generates novel tissues and structures in situ on the sample surface, thereby improving properties of mechanical strength and corrosion resistance. We briefly describe the changes in surface organization that arise after laser treatment of Mg surfaces, as well as the creation of structures such as streaks, particles, holes, craters, etc., and provide an overview of the reasons for the alterations. The effect of laser processing on wettability, hardness, friction wear, degradation, biocompatibility and mechanical properties were reviewed. At last, the limitations and development trend of laser treatment on Mg metals research were further pointed out.
Collapse
Affiliation(s)
- Shiliang Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China
| | - Jing Jiang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | - Xianrui Zou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China
| | - Ning Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China
| | - Hongshui Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China
| | - Lei Yang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | - Huan Zhou
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | - Chunyong Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China
- Changzhou Blon Minimally Invasive Medical Devices Technology Co., Ltd., Jiangsu, China
| |
Collapse
|
11
|
Lan L, Ping J, Xiong J, Ying Y. Sustainable Natural Bio-Origin Materials for Future Flexible Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200560. [PMID: 35322600 PMCID: PMC9130888 DOI: 10.1002/advs.202200560] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/27/2022] [Indexed: 05/12/2023]
Abstract
Flexible devices serve as important intelligent interfaces in various applications involving health monitoring, biomedical therapies, and human-machine interfacing. To address the concern of electronic waste caused by the increasing usage of electronic devices based on synthetic polymers, bio-origin materials that possess environmental benignity as well as sustainability offer new opportunities for constructing flexible electronic devices with higher safety and environmental adaptivity. Herein, the bio-source and unique molecular structures of various types of natural bio-origin materials are briefly introduced. Their properties and processing technologies are systematically summarized. Then, the recent progress of these materials for constructing emerging intelligent flexible electronic devices including energy harvesters, energy storage devices, and sensors are introduced. Furthermore, the applications of these flexible electronic devices including biomedical implants, artificial e-skin, and environmental monitoring are summarized. Finally, future challenges and prospects for developing high-performance bio-origin material-based flexible devices are discussed. This review aims to provide a comprehensive and systematic summary of the latest advances in the natural bio-origin material-based flexible devices, which is expected to offer inspirations for exploitation of green flexible electronics, bridging the gap in future human-machine-environment interactions.
Collapse
Affiliation(s)
- Lingyi Lan
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua University2999 North Renmin RoadShanghai201620China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| |
Collapse
|
12
|
A comprehensive review on polymer matrix composites: material selection, fabrication, and application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04087-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Martinez-Gonzalez JA, Cavaye H, McGettrick JD, Meredith P, Motovilov KA, Mostert AB. Interfacial water morphology in hydrated melanin. SOFT MATTER 2021; 17:7940-7952. [PMID: 34378618 DOI: 10.1039/d1sm00777g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The importance of electrically functional biomaterials is increasing as researchers explore ways to utilise them in novel sensing capacities. It has been recognised that for many of these materials the state of hydration is a key parameter that can heavily affect the conductivity, particularly those that rely upon ionic or proton transport as a key mechanism. However, thus far little attention has been paid to the nature of the water morphology in the hydrated state and the concomitant ionic conductivity. Presented here is an inelastic neutron scattering (INS) experiment on hydrated eumelanin, a model bioelectronic material, in order to investigate its 'water morphology'. We develop a rigorous new methodology for performing hydration dependent INS experiments. We also model the eumelanin dry spectra with a minimalist approach whereas for higher hydration levels we are able to obtain difference spectra to extract out the water scattering signal. A key result is that the physi-sorbed water structure within eumelanin is dominated by interfacial water with the number of water layers between 3-5, and no bulk water. We also detect for the first time, the potential signatures for proton cations, most likely the Zundel ion, within a biopolymer/water system. These new signatures may be general for soft proton ionomer systems, if the systems are comprised of only interfacial water within their structure. The nature of the water morphology opens up new questions about the potential ionic charge transport mechanisms within hydrated bioelectronics materials.
Collapse
Affiliation(s)
- J A Martinez-Gonzalez
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot, OX11 0QX, UK
| | | | | | | | | | | |
Collapse
|
14
|
Understanding the way eumelanin works: A unique example of properties and skills driven by molecular heterogeneity. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Hu X, Ricci S, Naranjo S, Hill Z, Gawason P. Protein and Polysaccharide-Based Electroactive and Conductive Materials for Biomedical Applications. Molecules 2021; 26:4499. [PMID: 34361653 PMCID: PMC8348981 DOI: 10.3390/molecules26154499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
Electrically responsive biomaterials are an important and emerging technology in the fields of biomedical and material sciences. A great deal of research explores the integral role of electrical conduction in normal and diseased cell biology, and material scientists are focusing an even greater amount of attention on natural and hybrid materials as sources of biomaterials which can mimic the properties of cells. This review establishes a summary of those efforts for the latter group, detailing the current materials, theories, methods, and applications of electrically conductive biomaterials fabricated from protein polymers and polysaccharides. These materials can be used to improve human life through novel drug delivery, tissue regeneration, and biosensing technologies. The immediate goal of this review is to establish fabrication methods for protein and polysaccharide-based materials that are biocompatible and feature modular electrical properties. Ideally, these materials will be inexpensive to make with salable production strategies, in addition to being both renewable and biocompatible.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (S.R.); (Z.H.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.N.); (P.G.)
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Samuel Ricci
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (S.R.); (Z.H.)
| | - Sebastian Naranjo
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.N.); (P.G.)
| | - Zachary Hill
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (S.R.); (Z.H.)
| | - Peter Gawason
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.N.); (P.G.)
| |
Collapse
|
16
|
Redolfi Riva E, Micera S. Progress and challenges of implantable neural interfaces based on nature-derived materials. Bioelectron Med 2021; 7:6. [PMID: 33902750 PMCID: PMC8077843 DOI: 10.1186/s42234-021-00067-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022] Open
Abstract
Neural interfaces are bioelectronic devices capable of stimulating a population of neurons or nerve fascicles and recording electrical signals in a specific area. Despite their success in restoring sensory-motor functions in people with disabilities, their long-term exploitation is still limited by poor biocompatibility, mechanical mismatch between the device and neural tissue and the risk of a chronic inflammatory response upon implantation.In this context, the use of nature-derived materials can help address these issues. Examples of these materials, such as extracellular matrix proteins, peptides, lipids and polysaccharides, have been employed for decades in biomedical science. Their excellent biocompatibility, biodegradability in the absence of toxic compound release, physiochemical properties that are similar to those of human tissues and reduced immunogenicity make them outstanding candidates to improve neural interface biocompatibility and long-term implantation safety. The objective of this review is to highlight progress and challenges concerning the impact of nature-derived materials on neural interface design. The use of these materials as biocompatible coatings and as building blocks of insulation materials for use in implantable neural interfaces is discussed. Moreover, future perspectives are presented to show the increasingly important uses of these materials for neural interface fabrication and their possible use for other applications in the framework of neural engineering.
Collapse
Affiliation(s)
- Eugenio Redolfi Riva
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
17
|
Youn YH, Pradhan S, da Silva LP, Kwon IK, Kundu SC, Reis RL, Yadavalli VK, Correlo VM. Micropatterned Silk-Fibroin/Eumelanin Composite Films for Bioelectronic Applications. ACS Biomater Sci Eng 2021; 7:2466-2474. [PMID: 33851822 DOI: 10.1021/acsbiomaterials.1c00216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There has been growing interest in the use of natural bionanomaterials and nanostructured systems for diverse biomedical applications. Such materials can confer unique functional properties as well as address concerns pertaining to sustainability in production. In this work, we propose the biofabrication of micropatterned silk fibroin/eumelanin composite thin films to be used in electroactive and bioactive applications in bioelectronics and biomedical engineering. Eumelanin is the most common form of melanin, naturally derived from the ink of cuttlefish, having antioxidant and electroactive properties. Another natural biomaterial, the protein silk fibroin, is modified with photoreactive chemical groups, which allows the formation of electroactive eumelanin thin films with different microstructures. The silk fibroin/eumelanin composites are fabricated to obtain thin films as well as electroactive microstructures using UV curing. Here, we report for the first time the preparation, characterization, and physical, electrochemical, and biological properties of these natural silk fibroin/eumelanin composite films. Higher concentrations of eumelanin incorporated into the films exhibit a higher charge storage capacity and good electroactivity even after 100 redox cycles. In addition, the microscale structure and the cellular activity of the fibroin/eumelanin films are assessed for understanding of the biological properties of the composite. The developed micropatterned fibroin/eumelanin films can be applied as natural electroactive substrates for bioapplications (e.g., bioelectronics, sensing, and theranostics) because of their biocompatible properties.
Collapse
Affiliation(s)
- Yun Hee Youn
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimar̃es 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4806-909, Portugal.,Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sayantan Pradhan
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-3028, United States
| | - Lucília P da Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimar̃es 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4806-909, Portugal
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimar̃es 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4806-909, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimar̃es 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4806-909, Portugal.,Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Vamsi K Yadavalli
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-3028, United States
| | - Vitor M Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimar̃es 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães 4806-909, Portugal
| |
Collapse
|
18
|
Yang W, Gong Y, Li W. A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants. Front Bioeng Biotechnol 2021; 8:622923. [PMID: 33585422 PMCID: PMC7873964 DOI: 10.3389/fbioe.2020.622923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/10/2020] [Indexed: 01/28/2023] Open
Abstract
To date, a wide variety of neural tissue implants have been developed for neurophysiology recording from living tissues. An ideal neural implant should minimize the damage to the tissue and perform reliably and accurately for long periods of time. Therefore, the materials utilized to fabricate the neural recording implants become a critical factor. The materials of these devices could be classified into two broad categories: electrode materials as well as packaging and substrate materials. In this review, inorganic (metals and semiconductors), organic (conducting polymers), and carbon-based (graphene and carbon nanostructures) electrode materials are reviewed individually in terms of various neural recording devices that are reported in recent years. Properties of these materials, including electrical properties, mechanical properties, stability, biodegradability/bioresorbability, biocompatibility, and optical properties, and their critical importance to neural recording quality and device capabilities, are discussed. For the packaging and substrate materials, different material properties are desired for the chronic implantation of devices in the complex environment of the body, such as biocompatibility and moisture and gas hermeticity. This review summarizes common solid and soft packaging materials used in a variety of neural interface electrode designs, as well as their packaging performances. Besides, several biopolymers typically applied over the electrode package to reinforce the mechanical rigidity of devices during insertion, or to reduce the immune response and inflammation at the device-tissue interfaces are highlighted. Finally, a benchmark analysis of the discussed materials and an outlook of the future research trends are concluded.
Collapse
Affiliation(s)
| | | | - Wen Li
- Microtechnology Lab, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
19
|
Recent advances in neurotechnologies with broad potential for neuroscience research. Nat Neurosci 2020; 23:1522-1536. [PMID: 33199897 DOI: 10.1038/s41593-020-00739-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Interest in deciphering the fundamental mechanisms and processes of the human mind represents a central driving force in modern neuroscience research. Activities in support of this goal rely on advanced methodologies and engineering systems that are capable of interrogating and stimulating neural pathways, from single cells in small networks to interconnections that span the entire brain. Recent research establishes the foundations for a broad range of creative neurotechnologies that enable unique modes of operation in this context. This review focuses on those systems with proven utility in animal model studies and with levels of technical maturity that suggest a potential for broad deployment to the neuroscience community in the relatively near future. We include a brief summary of existing and emerging neuroscience techniques, as background for a primary focus on device technologies that address associated opportunities in electrical, optical and microfluidic neural interfaces, some with multimodal capabilities. Examples of the use of these technologies in recent neuroscience studies illustrate their practical value. The vibrancy of the engineering science associated with these platforms, the interdisciplinary nature of this field of research and its relevance to grand challenges in the treatment of neurological disorders motivate continued growth of this area of study.
Collapse
|
20
|
Lin H, Lee J, Han J, Lee C, Seo S, Tan S, Lee HM, Choi EJ, Strano MS, Yang Y, Maruyama S, Jeon I, Matsuo Y, Oh J. Denatured M13 Bacteriophage-Templated Perovskite Solar Cells Exhibiting High Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000782. [PMID: 33101847 PMCID: PMC7578877 DOI: 10.1002/advs.202000782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/28/2020] [Indexed: 06/01/2023]
Abstract
The M13 bacteriophage, a nature-inspired environmentally friendly biomaterial, is used as a perovskite crystal growth template and a grain boundary passivator in perovskite solar cells. The amino groups and carboxyl groups of amino acids on the M13 bacteriophage surface function as Lewis bases, interacting with the perovskite materials. The M13 bacteriophage-added perovskite films show a larger grain size and reduced trap-sites compared with the reference perovskite films. In addition, the existence of the M13 bacteriophage induces light scattering effect, which enhances the light absorption particularly in the long-wavelength region around 825 nm. Both the passivation effect of the M13 bacteriophage coordinating to the perovskite defect sites and the light scattering effect intensify when the M13 virus-added perovskite precursor solution is heated at 90 °C prior to the film formation. Heating the solution denatures the M13 bacteriophage by breaking their inter- and intra-molecular bondings. The denatured M13 bacteriophage-added perovskite solar cells exhibit an efficiency of 20.1% while the reference devices give an efficiency of 17.8%. The great improvement in efficiency comes from all of the three photovoltaic parameters, namely short-circuit current, open-circuit voltage, and fill factor, which correspond to the perovskite grain size, trap-site passivation, and charge transport, respectively.
Collapse
Affiliation(s)
- Hao‐Sheng Lin
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Department of Chemical EngineeringMassachusetts Insititute of TechonologyCambridgeMA02139USA
| | - Jong‐Min Lee
- Research Center for Energy Convergence and TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Jiye Han
- Department of Nano Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Changsoo Lee
- Department of Materials Science and EngineeringKAIST291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Seungju Seo
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
| | - Shaun Tan
- Department of Materials Science and Engineering and California Nano Systems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Hyuck Mo Lee
- Department of Materials Science and EngineeringKAIST291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Eun Jung Choi
- Research Center for BIT Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Michael S. Strano
- Department of Chemical EngineeringMassachusetts Insititute of TechonologyCambridgeMA02139USA
| | - Yang Yang
- Department of Materials Science and Engineering and California Nano Systems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Shigeo Maruyama
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Energy NanoEngineering LaboratoryNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba305‐8564Japan
| | - Il Jeon
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Department of Materials Science and Engineering and California Nano Systems InstituteUniversity of CaliforniaLos AngelesCA90095USA
- Department of Chemistry EducationGraduate School of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsPusan National University63‐2 Busandaehak‐roBusan46241Republic of Korea
| | - Yutaka Matsuo
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Institutes of Innovation for Future SocietyNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Jin‐Woo Oh
- Research Center for Energy Convergence and TechnologyPusan National UniversityBusan46241Republic of Korea
- Department of Nano Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
- Research Center for BIT Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| |
Collapse
|
21
|
Camposeo A, D'Elia F, Portone A, Matino F, Archimi M, Conti S, Fiori G, Pisignano D, Persano L. Naturally Degradable Photonic Devices with Transient Function by Heterostructured Waxy-Sublimating and Water-Soluble Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001594. [PMID: 33101861 PMCID: PMC7578881 DOI: 10.1002/advs.202001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Combined dry-wet transient materials and devices are introduced, which are based on water-dissolvable dye-doped polymers layered onto nonpolar cyclic hydrocarbon sublimating substrates. Light-emitting heterostructures showing amplified spontaneous emission are obtained on transient elements and used as illumination sources for speckle-free, full-field imaging, and transient optical labels are realized that incorporate QR-codes with stably encoded information. The transient behavior is also studied at the microscopic scale, highlighting the real-time evolution of material domains in the sublimating compound. Finally, the exhausted components are fully soluble in water thus being naturally degradable. This technology opens new and versatile routes for environmental sensing, storage conditions monitoring, and organic photonics.
Collapse
Affiliation(s)
- Andrea Camposeo
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
- NESTScuola Normale SuperiorePiazza S. Silvestro 12PisaI‐56127Italy
| | - Francesca D'Elia
- NESTScuola Normale SuperiorePiazza S. Silvestro 12PisaI‐56127Italy
| | - Alberto Portone
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
- NESTScuola Normale SuperiorePiazza S. Silvestro 12PisaI‐56127Italy
| | - Francesca Matino
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
- NESTScuola Normale SuperiorePiazza S. Silvestro 12PisaI‐56127Italy
| | - Matteo Archimi
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
- Dipartimento di FisicaUniversità di PisaLargo B. Pontecorvo 3PisaI‐56127Italy
| | - Silvia Conti
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia Caruso 16PisaI‐ 56122Italy
| | - Gianluca Fiori
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia Caruso 16PisaI‐ 56122Italy
| | - Dario Pisignano
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
- Dipartimento di FisicaUniversità di PisaLargo B. Pontecorvo 3PisaI‐56127Italy
| | - Luana Persano
- NESTIstituto Nanoscienze‐CNRPiazza S. Silvestro 12PisaI‐56127Italy
- NESTScuola Normale SuperiorePiazza S. Silvestro 12PisaI‐56127Italy
| |
Collapse
|
22
|
Pradhan S, Moore KM, Ainslie KM, Yadavalli VK. Flexible, microstructured surfaces using chitin-derived biopolymers. J Mater Chem B 2020; 7:5328-5335. [PMID: 31389964 DOI: 10.1039/c9tb00965e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitin, one of the most abundant natural amino polysaccharides, is obtained primarily from the exoskeletons of crustaceans, crabs and shrimp. Chitin and its derivative chitosan have gained much attention in the field of biomedical research due to attractive properties such as biocompatibility, non-toxicity, biodegradability, low immunogenicity, and ease of availability. While work has been done on the use of chitin and chitosan as functional biomaterials by imparting specific properties, the potential of chitin as a biomaterial is somewhat limited owing to its intractable processing. In this work, we propose a facile reaction to modify the chitin chain with photoactive moieties for the realization of photocrosslinkable chitin. This chitin derivative is easily usable with a benign solvent formic acid to be able to form mechanically robust, optically transparent sheets. These films exhibit comparable tensile properties to that of native chitin and chitosan and better surface wettability. Most importantly, this material can be used to form precise, high resolution microarchitectures on both rigid and flexible substrates using a facile bench top photolithography technique. These flexible micropatterned 2D sheets of chitin were demonstrated as a dynamic cell culture substrate for the adhesion and proliferation of fibroblasts, wherein the chitin micropatterns act as a template for spatial guidance of cells. This chitin-based biopolymer can find diverse uses in tissue engineering as well as to form components for degradable bioelectronics.
Collapse
Affiliation(s)
- Sayantan Pradhan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Kathryn M Moore
- Pharmacoengineering & Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Kristy M Ainslie
- Pharmacoengineering & Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
23
|
Natural Melanin Nanoparticle‐decorated Screen‐printed Carbon Electrode: Performance Test for Amperometric Determination of Hexavalent Chromium as Model Trace. ELECTROANAL 2020. [DOI: 10.1002/elan.202000038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Lin T, Guo W, Guo R, Chen Z. Probing Biological Molecule Orientation and Polymer Surface Structure at the Polymer/Solution Interface In Situ. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7681-7690. [PMID: 32525691 DOI: 10.1021/acs.langmuir.0c01319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymers are widely used for many applications ranging from biomedical materials, marine antifouling coatings, membranes for biomolecule separation, to substrates for enzyme molecules for biosensing. For such applications, it is important to understand molecular interactions between biological molecules and polymer materials in situ in real time. Such understanding provides vital knowledge to manipulate biological molecule-polymer interactions and to optimize polymer surface structures to improve polymer performance. In this research, sum frequency generation (SFG) vibrational spectroscopy was applied to study interactions between peptides (serving as models for biological molecules) and deuterated polystyrene (d8-PS, serving as a model for polymer materials). The peptide conformations/orientations and polymer surface phenyl orientation during the peptide-d8-PS interactions were determined using SFG. It was found that the π-π interaction between the aromatic amino acids on peptides and phenyl groups on d8-PS surface does not play a significant role. Instead, the peptide-d8-PS interactions are mediated by general hydrophobic interactions between the peptides and the polymer surface.
Collapse
|
25
|
Pradhan S, Brooks A, Yadavalli V. Nature-derived materials for the fabrication of functional biodevices. Mater Today Bio 2020; 7:100065. [PMID: 32613186 PMCID: PMC7317235 DOI: 10.1016/j.mtbio.2020.100065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Nature provides an incredible source of inspiration, structural concepts, and materials toward applications to improve the lives of people around the world, while preserving ecosystems, and addressing environmental sustainability. In particular, materials derived from animal and plant sources can provide low-cost, renewable building blocks for such applications. Nature-derived materials are of interest for their properties of biodegradability, bioconformability, biorecognition, self-repair, and stimuli response. While long used in tissue engineering and regenerative medicine, their use in functional devices such as (bio)electronics, sensors, and optical systems for healthcare and biomonitoring is finding increasing attention. The objective of this review is to cover the varied nature derived and sourced materials currently used in active biodevices and components that possess electrical or electronic behavior. We discuss materials ranging from proteins and polypeptides such as silk and collagen, polysaccharides including chitin and cellulose, to seaweed derived biomaterials, and DNA. These materials may be used as passive substrates or support architectures and often, as the functional elements either by themselves or as biocomposites. We further discuss natural pigments such as melanin and indigo that serve as active elements in devices. Increasingly, combinations of different biomaterials are being used to address the challenges of fabrication and performance in human monitoring or medicine. Finally, this review gives perspectives on the sourcing, processing, degradation, and biocompatibility of these materials. This rapidly growing multidisciplinary area of research will be advanced by a systematic understanding of nature-inspired materials and design concepts in (bio)electronic devices.
Collapse
Affiliation(s)
- S. Pradhan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - A.K. Brooks
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - V.K. Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
26
|
Pradhan S, Ventura L, Agostinacchio F, Xu M, Barbieri E, Motta A, Pugno NM, Yadavalli VK. Biofunctional Silk Kirigami With Engineered Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12436-12444. [PMID: 32096397 DOI: 10.1021/acsami.9b20691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fabrication of multifunctional materials that interface with living environments is a problem of great interest. A variety of structural design concepts have been integrated with functional materials to form biodevices and surfaces for health monitoring. In particular, approaches based on kirigami-inspired cuts can engineer flexibility in materials through the creation of patterned defects. Here, the fabrication of a biodegradable and biofunctional "silk kirigami" material is demonstrated. Mechanically flexible, free-standing, optically transparent, large-area biomaterial sheets with precisely defined and computationally designed microscale cuts can be formed using a single-step photolithographic process. Using modeling techniques, it is shown how cuts can generate remarkable "self-shielding" leading to engineered elastic behavior and deformation. As composites with conducting polymers, flexible, intrinsically electroactive sheets can be formed. Importantly, the silk kirigami sheets are biocompatible, can serve as substrates for cell culture, and be proteolytically resorbed. The unique properties of silk kirigami suggest a host of applications as transient, "green", functional biointerfaces, and flexible bioelectronics.
Collapse
Affiliation(s)
- Sayantan Pradhan
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Leonardo Ventura
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Francesca Agostinacchio
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, 38122 Trento, Italy
| | - Meng Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| | - Ettore Barbieri
- Japan Agency for Marine-Earth Science and Technology, Center for Mathematical Science and Advanced Technology, Computational Science and Engineering Group, 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
| | - Antonella Motta
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, 38122 Trento, Italy
| | - Nicola M Pugno
- Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38122 Trento, Italy
- Fondazione Edoardo Amaldi, Via del Politecnico snc, 00133 Rome, Italy
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
27
|
Love SA, Popov E, Rybacki K, Hu X, Salas-de la Cruz D. Facile treatment to fine-tune cellulose crystals in cellulose-silk biocomposites through hydrogen peroxide. Int J Biol Macromol 2020; 147:569-575. [PMID: 31931064 DOI: 10.1016/j.ijbiomac.2020.01.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
The modulation of structural fibrous protein and polysaccharide biopolymers for the design of biomaterials is still relatively challenging due to the non-trivial nature of the transformation from a biopolymer's native state to a more usable form. To gain insight into the nature of the molecular interaction between silk and cellulose chains, we characterized the structural, thermal and morphological properties of silk-cellulose biocomposites regenerated from the ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc), as a function of increasing coagulation agent concentrations. We found that the cellulose crystallinity and crystal size are dependent on the coagulation agent, hydrogen peroxide solution. The interpretation of our results suggests that the selection of a proper coagulator is a critical step for controlling the physicochemical properties of protein-polysaccharide biocomposite materials.
Collapse
Affiliation(s)
- Stacy A Love
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America.
| | - Elizabeth Popov
- Department of Health Sciences, Rutgers University, Camden, NJ, United States of America.
| | - Karleena Rybacki
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America.
| | - Xiao Hu
- Department of Physics & Astronomy, Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States of America.
| | - David Salas-de la Cruz
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America; Department of Chemistry, Rutgers University, Camden, NJ, United States of America.
| |
Collapse
|
28
|
Mostert AB, Rienecker SB, Sheliakina M, Zierep P, Hanson GR, Harmer JR, Schenk G, Meredith P. Engineering proton conductivity in melanin using metal doping. J Mater Chem B 2020; 8:8050-8060. [DOI: 10.1039/d0tb01390k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The proton conductivity in the model bioelectronic material melanin, is increased via a unique doping strategy utilising the chelation of the transition metal ion copper II. We also propose a potential mechanism for future such ionic studies.
Collapse
Affiliation(s)
| | | | | | - Paul Zierep
- Institut für Physikalische Chemie
- Albert-Ludwigs-Universität
- Freiburg
- Germany
| | - Graeme R. Hanson
- Centre of Advanced Imaging
- University of Queensland
- St. Lucia
- Australia
| | - Jeffrey R. Harmer
- Centre of Advanced Imaging
- University of Queensland
- St. Lucia
- Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences
- University of Queensland
- St. Lucia
- Australia
| | - Paul Meredith
- School of Mathematics and Physics
- University of Queensland
- St. Lucia
- Australia
- Department of Physics
| |
Collapse
|
29
|
Silberbush O, Engel M, Sivron I, Roy S, Ashkenasy N. Self-Assembled Peptide Nanotube Films with High Proton Conductivity. J Phys Chem B 2019; 123:9882-9888. [DOI: 10.1021/acs.jpcb.9b07555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ohad Silberbush
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Maor Engel
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Ido Sivron
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Subhasish Roy
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Nurit Ashkenasy
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| |
Collapse
|
30
|
Irimia-Vladu M, Kanbur Y, Camaioni F, Coppola ME, Yumusak C, Irimia CV, Vlad A, Operamolla A, Farinola GM, Suranna GP, González-Benitez N, Molina MC, Bautista LF, Langhals H, Stadlober B, Głowacki ED, Sariciftci NS. Stability of Selected Hydrogen Bonded Semiconductors in Organic Electronic Devices. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:6315-6346. [PMID: 32565617 PMCID: PMC7297463 DOI: 10.1021/acs.chemmater.9b01405] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/11/2019] [Indexed: 05/02/2023]
Abstract
The electronics era is flourishing and morphing itself into Internet of Everything, IoE. At the same time, questions arise on the issue of electronic materials employed: especially their natural availability and low-cost fabrication, their functional stability in devices, and finally their desired biodegradation at the end of their life cycle. Hydrogen bonded pigments and natural dyes like indigo, anthraquinone and acridone are not only biodegradable and of bio-origin but also have functionality robustness and offer versatility in designing electronics and sensors components. With this Perspective, we intend to coalesce all the scattered reports on the above-mentioned classes of hydrogen bonded semiconductors, spanning across several disciplines and many active research groups. The article will comprise both published and unpublished results, on stability during aging, upon electrical, chemical and thermal stress, and will finish with an outlook section related to biological degradation and biological stability of selected hydrogen bonded molecules employed as semiconductors in organic electronic devices. We demonstrate that when the purity, the long-range order and the strength of chemical bonds, are considered, then the Hydrogen bonded organic semiconductors are the privileged class of materials having the potential to compete with inorganic semiconductors. As an experimental historical study of stability, we fabricated and characterized organic transistors from a material batch synthesized in 1932 and compared the results to a fresh material batch.
Collapse
Affiliation(s)
- Mihai Irimia-Vladu
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
- Mihai
Irimia-Vladu. E-mail:
| | - Yasin Kanbur
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
- Department
of Metallurgical and Materials Engineering, Karabuk University, BaliklarkayasiMevkii, 78050 Karabük, Turkey
| | - Fausta Camaioni
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
- School
of Industrial and Information Engineering, Politecnico di Milano, Via Raffaele Lambruschini, 15, 20156 Milano, Milan, Italy
| | - Maria Elisabetta Coppola
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
- School
of Industrial and Information Engineering, Politecnico di Milano, Via Raffaele Lambruschini, 15, 20156 Milano, Milan, Italy
| | - Cigdem Yumusak
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
| | - Cristian Vlad Irimia
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
- Bundesrealgymnasium
Seebacher, Seebachergasse 11, 8010 Graz, Austria
| | - Angela Vlad
- National
Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomistilor Street, No. 409, Magurele, Bucharest, 077125 Ilfov, Romania
| | - Alessandra Operamolla
- Dipartimento
di Chimica, Università degli Studi
di Bari Aldo Moro, Via E. Orabona 4, I-70126 Bari, Italy
| | - Gianluca M. Farinola
- Dipartimento
di Chimica, Università degli Studi
di Bari Aldo Moro, Via E. Orabona 4, I-70126 Bari, Italy
| | - Gian Paolo Suranna
- Department
of Civil, Environmental and Chemical Engineering (DICATECh), Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Natalia González-Benitez
- Department
of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain
| | - Maria Carmen Molina
- Department
of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain
| | - Luis Fernando Bautista
- Department
of Chemical and Environmental Technology, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain
| | - Heinz Langhals
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
- Department
Department of Chemistry, Ludwig-Maximilians
University München, Butenandtstr. 13, D-81377 München, Germany
| | - Barbara Stadlober
- Joanneum
Research Forschungsgesellschaft mbH, Franz-Pichler Str. Nr. 30, 8160 Weiz, Austria
| | - Eric Daniel Głowacki
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
- Linköping
University, Department of Science
and Technology, Laboratory of Organic Electronics, Bredgatan 33, Norrköping 60221, Sweden
| | - Niyazi Serdar Sariciftci
- Linz
Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. Nr. 69, 4040 Linz, Austria
| |
Collapse
|
31
|
Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Eco-Friendly Materials for Daily-Life Inexpensive Printed Passive Devices: Towards “Do-It-Yourself” Electronics. ELECTRONICS 2019. [DOI: 10.3390/electronics8060699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The need for the fabrication of a new generation of devices has developed with the next generation of ‘home’ engineers, which is resulting in an ever-increasing population interested in “do-it-yourself” electronics and the Internet of Things. However, this new trend should not be done at the expense of the environment. Almost all previous studies, related to the low-temperature processing of devices, fail to highlight the extent of the impact that the synthesis of these technologies have on both the environment and human health. In addition, the substrates typically used, are also often associated with major drawbacks such as a lack of biodegradability. In this paper, we fabricate a simple RC filter using various domestically available printing techniques, utilising readily available materials such as: carbon soots (carbon black) as an electric conductor, and egg white (albumen) as a dielectric. These devices have been fabricated on both polyethylene terephthalate (PET) and paper, which demonstrated the same performances on both substrates and revealed that recyclable substrates can be used without compromise to the devices’ performance. The filter was found to exhibit a cut-off frequency of 170 kHz, which made it suitable for high-frequency reception applications.
Collapse
|
33
|
Da Pian M, Maggini M, Vancso GJ, Causin V, Benetti EM. Poly(3-hexylthiophene) nanowhiskers filler in poly(ε-caprolactone) based nanoblends as potential bioactive material. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Migliaccio L, Manini P, Altamura D, Giannini C, Tassini P, Maglione MG, Minarini C, Pezzella A. Evidence of Unprecedented High Electronic Conductivity in Mammalian Pigment Based Eumelanin Thin Films After Thermal Annealing in Vacuum. Front Chem 2019; 7:162. [PMID: 30972328 PMCID: PMC6443883 DOI: 10.3389/fchem.2019.00162] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022] Open
Abstract
Melanin denotes a variety of mammalian pigments, including the dark electrically conductive eumelanin and the reddish, sulfur-containing, pheomelanin. Organic (bio)electronics is showing increasing interests in eumelanin exploitation, e.g., for bio-interfaces, but the low conductivity of the material is limiting the development of eumelanin-based devices. Here, for the first time, we report an abrupt increase of the eumelanin electrical conductivity, revealing the highest value presented to date of 318 S/cm. This result, obtained via simple thermal annealing in vacuum of the material, designed on the base of the knowledge of the eumelanin chemical properties, also discloses the actual electronic nature of this material's conduction.
Collapse
Affiliation(s)
- Ludovico Migliaccio
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Paola Manini
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | | | | | - Paolo Tassini
- Laboratory for Nanomaterials and Devices (SSPT-PROMAS-NANO), ENEA C. R. Portici, Piazzale Enrico Fermi 1, Località Granatello, Portici, Italy
| | - Maria Grazia Maglione
- Laboratory for Nanomaterials and Devices (SSPT-PROMAS-NANO), ENEA C. R. Portici, Piazzale Enrico Fermi 1, Località Granatello, Portici, Italy
| | - Carla Minarini
- Laboratory for Nanomaterials and Devices (SSPT-PROMAS-NANO), ENEA C. R. Portici, Piazzale Enrico Fermi 1, Località Granatello, Portici, Italy
| | - Alessandro Pezzella
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR, Pozzuoli, Italy
| |
Collapse
|
35
|
Xu M, Obodo D, Yadavalli VK. The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron 2019; 124-125:96-114. [PMID: 30343162 PMCID: PMC6310145 DOI: 10.1016/j.bios.2018.10.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Flexible biosensors form part of a rapidly growing research field that take advantage of a multidisciplinary approach involving materials, fabrication and design strategies to be able to function at biological interfaces that may be soft, intrinsically curvy, irregular, or elastic. Numerous exciting advancements are being proposed and developed each year towards applications in healthcare, fundamental biomedical research, food safety and environmental monitoring. In order to place these developments in perspective, this review is intended to present an overview on field of flexible biosensor development. We endeavor to show how this subset of the broader field of flexible and wearable devices presents unique characteristics inherent in their design. Initially, a discussion on the structure of flexible biosensors is presented to address the critical issues specific to their design. We then summarize the different materials as substrates that can resist mechanical deformation while retaining their function of the bioreceptors and active elements. Several examples of flexible biosensors are presented based on the different environments in which they may be deployed or on the basis of targeted biological analytes. Challenges and future perspectives pertinent to the current and future stages of development are presented. Through these summaries and discussion, this review is expected to provide insights towards a systematic and fundamental understanding for the fabrication and utilization of flexible biosensors, as well as inspire and improve designs for smart and effective devices in the future.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Dora Obodo
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
36
|
Rebelo R, Barbosa AI, Caballero D, Kwon IK, Oliveira JM, Kundu SC, Reis RL, Correlo VM. 3D biosensors in advanced medical diagnostics of high mortality diseases. Biosens Bioelectron 2019; 130:20-39. [PMID: 30716590 DOI: 10.1016/j.bios.2018.12.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 11/18/2022]
Abstract
Cardiovascular diseases, cancer, and diabetes are high mortality diseases, which account for almost two thirds of all deaths worldwide. Their early detection and continuous evaluation are fundamental for an improved patient prognosis and reduced socioeconomic impact. Current biosensor technologies are typically based on the analysis of whole blood samples from patients for the detection of disease-specific biomarkers. However, these technologies display serious shortcomings, such as reduced sensitivity and dynamic range, limited in vivo applicability, and lack of continuous monitoring. There is the urgent need for new diagnostic and treatment follow-up tools, which allow for the early detection of the pathology as well as for the continuous monitoring of the physiological responses to specific therapies. During the last years, a new generation of biosensor technologies with improved performance has emerged in the biomedical sector. The combination of advanced biomaterial methods, biochemical tools, and micro/nanotechnology approaches has resulted in the development of innovative three-dimensional (3D) biosensor platforms for advanced medical diagnosis. In this review, we report the most recent advances in the field of 3D biosensors for clinical applications, focusing on the diagnosis and monitoring of cardiovascular diseases, cancer, and diabetes. We discuss about their clinical performance compared to standard biosensor technologies, their implantable capability, and their integration into microfluidic devices to develop clinically-relevant models. Overall, we anticipate that 3D biosensors will drive us toward a new paradigm in medical diagnosis, resulting in real-time in vivo biosensors capable to significantly improve patient prognosis.
Collapse
Affiliation(s)
- Rita Rebelo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal.
| | - Ana I Barbosa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal.
| | - David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal.
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02477, Republic of Korea.
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal; Department of Dental Materials, School of Dentistry, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02477, Republic of Korea; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| | - Vitor M Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
37
|
Abstract
Biomaterials play a critical role in regenerative strategies such as stem cell-based therapies and tissue engineering, aiming to replace, remodel, regenerate, or support damaged tissues and organs. The design of appropriate three-dimensional (3D) scaffolds is crucial for generating bio-inspired replacement tissues. These scaffolds are primarily composed of degradable or non-degradable biomaterials and can be employed as cells, growth factors, or drug carriers. Naturally derived and synthetic biomaterials have been widely used for these purposes, but the ideal biomaterial remains to be found. Researchers from diversified fields have attempted to design and fabricate novel biomaterials, aiming to find novel theranostic approaches for tissue engineering and regenerative medicine. Since no single biomaterial has been found to possess all the necessary characteristics for an ideal performance, over the years scientists have tried to develop composite biomaterials that complement and combine the beneficial properties of multiple materials into a superior matrix. Herein, we highlight the structural features and performance of various biomaterials and their application in regenerative medicine and for enhanced tissue engineering approaches.
Collapse
|
38
|
Stadlober B, Zirkl M, Irimia-Vladu M. Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chem Soc Rev 2019; 48:1787-1825. [DOI: 10.1039/c8cs00928g] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Printed ferroelectric devices are ideal candidates for self-powered and multifunctional sensor skins, contributing to a sustainable smart future.
Collapse
Affiliation(s)
| | - Martin Zirkl
- Joanneum Research Forschungsgesellschaft mbH
- 8160 Weiz
- Austria
| | | |
Collapse
|
39
|
Dorval Courchesne NM, DeBenedictis EP, Tresback J, Kim JJ, Duraj-Thatte A, Zanuy D, Keten S, Joshi NS. Biomimetic engineering of conductive curli protein films. NANOTECHNOLOGY 2018; 29:454002. [PMID: 30152795 DOI: 10.1088/1361-6528/aadd3a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bioelectronic systems derived from peptides and proteins are of particular interest for fabricating novel flexible, biocompatible and bioactive devices. These synthetic or recombinant systems designed for mediating electron transport often mimic the proteinaceous appendages of naturally occurring electroactive bacteria. Drawing inspiration from such conductive proteins with a high content of aromatic residues, we have engineered a fibrous protein scaffold, curli fibers produced by Escherichia coli bacteria, to enable long-range electron transport. We report the genetic engineering and characterization of curli fibers containing aromatic residues of different nature, with defined spatial positioning, and with varying content on single self-assembling CsgA curli subunits. Our results demonstrate the impressive versatility of the CsgA protein for genetically engineering protein-based materials with new functions. Through a scalable purification process, we show that macroscopic gels and films can be produced, with engineered thin films exhibiting a greater conductivity compared with wild-type curli films. We anticipate that this engineered conductive scaffold, and our approach that combines computational modeling, protein engineering, and biosynthetic manufacture will contribute to the improvement of a range of useful bio-hybrid technologies.
Collapse
Affiliation(s)
- Noémie-Manuelle Dorval Courchesne
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mauri E, Sacchetti A, Vicario N, Peruzzotti-Jametti L, Rossi F, Pluchino S. Evaluation of RGD functionalization in hybrid hydrogels as 3D neural stem cell culture systems. Biomater Sci 2018; 6:501-510. [PMID: 29368775 DOI: 10.1039/c7bm01056g] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The use of neural stem cells (NSCs) in cell therapy has become a powerful tool used for the treatment of central nervous system diseases, including traumatic brain and spinal cord injuries. However, a significant drawback is related to the limited viability after transplantation in situ. The design of three-dimensional (3D) scaffolds that are capable of resembling the architecture and physico-chemical features of an extracellular environment could be a suitable approach to improve cell survival and preserve their cellular active phase over time. In this study, we investigated NSC adhesion and proliferation in hydrogel systems. In particular, we evaluated the effect of RGD binding domains on cell fate within the polymeric scaffold. The introduction of a tripeptide via hydrogel chemical functionalization improved the percentage of proliferating cells until 8 days after seeding when compared to the unmodified scaffold. The beneficial effects of this 3D culture system was further evident when compared to a NSC monolayer (2D) culture, resulting in an approximately 40% increase in cells in the active phases at 4 and 8 days, and maintained a difference of 25% until 21 days after seeding.
Collapse
Affiliation(s)
- Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Yu X, Shou W, Mahajan BK, Huang X, Pan H. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707624. [PMID: 29736971 DOI: 10.1002/adma.201707624] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/05/2018] [Indexed: 05/21/2023]
Abstract
Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics.
Collapse
Affiliation(s)
- Xiaowei Yu
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| | - Wan Shou
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| | - Bikram K Mahajan
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjing, 300072, China
| | - Heng Pan
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| |
Collapse
|
42
|
Koh LD, Yeo J, Lee YY, Ong Q, Han M, Tee BCK. Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Moroni L, Burdick JA, Highley C, Lee SJ, Morimoto Y, Takeuchi S, Yoo JJ. Biofabrication strategies for 3D in vitro models and regenerative medicine. NATURE REVIEWS. MATERIALS 2018; 3:21-37. [PMID: 31223488 PMCID: PMC6586020 DOI: 10.1038/s41578-018-0006-y] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Organs are complex systems composed of different cells, proteins and signalling molecules that are arranged in a highly ordered structure to orchestrate a myriad of functions in our body. Biofabrication strategies can be applied to engineer 3D tissue models in vitro by mimicking the structure and function of native tissue through the precise deposition and assembly of materials and cells. This approach allows the spatiotemporal control over cell-cell and cell-extracellular matrix communication and thus the recreation of tissue-like structures. In this Review, we examine biofabrication strategies for the construction of functional tissue replacements and organ models, focusing on the development of biomaterials, such as supramolecular and photosensitive materials, that can be processed using biofabrication techniques. We highlight bioprinted and bioassembled tissue models and survey biofabrication techniques for their potential to recreate complex tissue properties, such as shape, vasculature and specific functionalities. Finally, we discuss challenges, such as scalability and the foreign body response, and opportunities in the field and provide an outlook to the future of biofabrication in regenerative medicine.
Collapse
Affiliation(s)
- Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, Netherlands
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Highley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuya Morimoto
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
44
|
Paribok I, Kim YO, Choi SK, Jung BY, Lee J, Nam KT, Agabekov VE, Lee YS. Tailoring a Tyrosine-Rich Peptide into Size- and Thickness-Controllable Nanofilms. ACS OMEGA 2018; 3:3901-3907. [PMID: 31458629 PMCID: PMC6641360 DOI: 10.1021/acsomega.8b00395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/27/2018] [Indexed: 05/06/2023]
Abstract
Self-assembled nanostructures of tyrosine-rich peptides have a number of potential applications such as biocatalysts, organic conducting films, and ion-selective membranes. In modulating a self-assembly process of peptides, the interfacial force is an important factor for kinetic control. Here, we present the formation of large-sized and thickness-controllable nanofilms from the YYACAYY peptide sequence (Tyr-C7mer peptide) using Langmuir-Blodgett and Langmuir-Schaefer deposition methods. The Tyr-C7mer peptide showed typical surfactant-like properties, which were demonstrated via the isotherm test (surface pressure-area) by spreading the Tyr-C7mer peptide solution onto an air/water interface. Uniform and flat peptide nanofilms were successfully fabricated and characterized. The redox activity of densely packed tyrosine moieties on the peptide nanofilm was also evaluated by assembling silver nanoparticles on the nanofilm without requiring any additives.
Collapse
Affiliation(s)
| | - Young-O Kim
- School of Chemical and Biological
Engineering, and Department of Materials Science and
Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seo Keong Choi
- School of Chemical and Biological
Engineering, and Department of Materials Science and
Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Byeong Yeon Jung
- School of Chemical and Biological
Engineering, and Department of Materials Science and
Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jaehun Lee
- School of Chemical and Biological
Engineering, and Department of Materials Science and
Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Ki Tae Nam
- School of Chemical and Biological
Engineering, and Department of Materials Science and
Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | | | - Yoon-Sik Lee
- School of Chemical and Biological
Engineering, and Department of Materials Science and
Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
45
|
Mostert AB, Rienecker SB, Noble C, Hanson GR, Meredith P. The photoreactive free radical in eumelanin. SCIENCE ADVANCES 2018; 4:eaaq1293. [PMID: 29600273 PMCID: PMC5873843 DOI: 10.1126/sciadv.aaq1293] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/13/2018] [Indexed: 05/12/2023]
Abstract
Melanin is the primary photoprotecting pigment in humans as well as being implicated in the development of deadly melanoma. The material also conducts electricity and has thus become a bioelectronic model for proton-to-electron transduction. Central to these phenomena are its spin properties-notably two linked species derived from carbon-centered and semiquinone radicals. Using a novel in situ photoinduced electron paramagnetic resonance technique with simultaneous electrical measurements, we have elucidated for the first time the distinct photoreactivity of the two different radical species. We find that the production of the semiquinone is light- and water-driven, explaining the electrical properties and revealing biologically relevant photoreactivity.
Collapse
Affiliation(s)
- Albertus B. Mostert
- Department of Chemistry, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, UK
| | - Shermiyah B. Rienecker
- Centre for Advanced Imaging, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Christopher Noble
- Centre for Advanced Imaging, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Graeme R. Hanson
- Centre for Advanced Imaging, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Paul Meredith
- Department of Physics, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, UK
| |
Collapse
|
46
|
Wearable Intrinsically Soft, Stretchable, Flexible Devices for Memories and Computing. SENSORS 2018; 18:s18020367. [PMID: 29382050 PMCID: PMC5855892 DOI: 10.3390/s18020367] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/28/2022]
Abstract
A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC.
Collapse
|
47
|
Solano F. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications-Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules. Int J Mol Sci 2017; 18:E1561. [PMID: 28718807 PMCID: PMC5536049 DOI: 10.3390/ijms18071561] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis) ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA) can easily polymerize to get polydopamine melanin (PDAM), that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Francisco Solano
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine and LAIB-IMIB, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
48
|
Materials and processing approaches for foundry-compatible transient electronics. Proc Natl Acad Sci U S A 2017; 114:E5522-E5529. [PMID: 28652373 DOI: 10.1073/pnas.1707849114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.
Collapse
|
49
|
Memic A, Aldhahri M, Tamayol A, Mostafalu P, Abdel-Wahab MS, Samandari M, Moghaddam KM, Annabi N, Bencherif SA, Khademhosseini A. Nanofibrous Silver-Coated Polymeric Scaffolds with Tunable Electrical Properties. NANOMATERIALS 2017; 7:nano7030063. [PMID: 28336896 PMCID: PMC5388165 DOI: 10.3390/nano7030063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 01/06/2023]
Abstract
Electrospun micro- and nanofibrous poly(glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) substrates have been extensively used as scaffolds for engineered tissues due to their desirable mechanical properties and their tunable degradability. In this study, we fabricated micro/nanofibrous scaffolds from a PGS-PCL composite using a standard electrospinning approach and then coated them with silver (Ag) using a custom radio frequency (RF) sputtering method. The Ag coating formed an electrically conductive layer around the fibers and decreased the pore size. The thickness of the Ag coating could be controlled, thereby tailoring the conductivity of the substrate. The flexible, stretchable patches formed excellent conformal contact with surrounding tissues and possessed excellent pattern-substrate fidelity. In vitro studies confirmed the platform’s biocompatibility and biodegradability. Finally, the potential controlled release of the Ag coating from the composite fibrous scaffolds could be beneficial for many clinical applications.
Collapse
Affiliation(s)
- Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| | - Musab Aldhahri
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
- Department of Biochemistry, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| | - Ali Tamayol
- Biomaterials Innovation Research Center (BIRC), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - Pooria Mostafalu
- Biomaterials Innovation Research Center (BIRC), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | | | - Mohamadmahdi Samandari
- Biomaterials Innovation Research Center (BIRC), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Kamyar Mollazadeh Moghaddam
- Biomaterials Innovation Research Center (BIRC), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nasim Annabi
- Biomaterials Innovation Research Center (BIRC), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115-5000, USA.
| | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115-5000, USA.
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, BP 20529, Rue Personne de Roberval, 60205 Compiègne, France.
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Ali Khademhosseini
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
- Biomaterials Innovation Research Center (BIRC), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
50
|
Min K, Umar M, Seo H, Yim JH, Kam DG, Jeon H, Lee S, Kim S. Biocompatible, optically transparent, patterned, and flexible electrodes and radio-frequency antennas prepared from silk protein and silver nanowire networks. RSC Adv 2017. [DOI: 10.1039/c6ra25580a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrated biocompatible, optically transparent and flexible electrodes by embedding AgNWs just below the surface of the silk fibroin film.
Collapse
Affiliation(s)
- Kyungtaek Min
- Department of Energy Systems Research
- Ajou University
- Suwon 16499
- Republic of Korea
| | - Muhammad Umar
- Department of Energy Systems Research
- Ajou University
- Suwon 16499
- Republic of Korea
| | - Haekyo Seo
- Department of Electrical and Computer Engineering
- Ajou University
- Suwon 16499
- Republic of Korea
| | - Jong Hyuk Yim
- Department of Energy Systems Research
- Ajou University
- Suwon 16499
- Republic of Korea
| | - Dong Gun Kam
- Department of Electrical and Computer Engineering
- Ajou University
- Suwon 16499
- Republic of Korea
| | - Heonsu Jeon
- Department of Physics and Astronomy
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Soonil Lee
- Department of Energy Systems Research
- Ajou University
- Suwon 16499
- Republic of Korea
- Department of Physics
| | - Sunghwan Kim
- Department of Energy Systems Research
- Ajou University
- Suwon 16499
- Republic of Korea
- Department of Physics
| |
Collapse
|