1
|
Xu J, Li R, Yan D, Zhu L. Biomimetic Modification of siRNA/Chemo Drug Nanoassemblies for Targeted Combination Therapy in Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39447113 DOI: 10.1021/acsami.4c11064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The development and progression of tumors are characterized by intricate biological processes. Monotherapy not only struggles to achieve effective treatment but also tends to precipitate a series of issues, including multidrug resistance and limited antitumor effect. Consequently, it is imperative to adopt a synergistic multitherapy approach to enhance the efficacy of tumor treatment. The integration of chemotherapy drug with oligonucleotide drug for combinational treatment has shown significant promise in improving tumor therapeutic efficiency. However, the effective in vivo codelivery of oligonucleotide drugs and chemotherapy drugs faces substantial challenges such as poor stability of oligonucleotide drugs during the circulation time, limited tumor accumulation, and uncertain delivery ratios of different payloads. To overcome these obstacles, we have engineered cyclic Arg-Gly-Asp (cRGD)-modified red blood cell membrane (RBCm)-coated multidrug nanocomplexes, which were self-assembled from the Polo-like kinase 1 siRNA (siPlk1) and an irreversible tyrosine kinase inhibitor neratinib targeted to human epidermal growth factor receptor 2 (HER2) overexpressed in breast cancer. Through electrostatic and amphiphilic interactions between the positively charged neratinib and negatively charged siPlk1, we have successfully fabricated uniform multidrug nanoparticles. The cRGD-modified red blood cell membranes coated on the surface of the multidrug nanoparticles could enhance drug stability in circulation and tumor accumulation. This targeted combinational therapy significantly enhanced the antitumor efficiency in HER2-positive breast cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Jie Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruichao Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Lijuan Zhu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| |
Collapse
|
2
|
Heidarnejad K, Nooreddin Faraji S, Mahfoozi S, Ghasemi Z, Sadat Dashti F, Asadi M, Ramezani A. Breast cancer immunotherapy using scFv antibody-based approaches, a systematic review. Hum Immunol 2024; 85:111090. [PMID: 39214066 DOI: 10.1016/j.humimm.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer is considered as the most common malignancy in women and the second leading cause of death related to cancer. Recombinant DNA technologies accelerated the development of antibody-based cancer therapy, which is effective in a broad range of cancers. The objective of the present study was to perform a systematic review on breast cancer immunotherapy using single-chain fragment variable (scFv) antibody formats. Searches were performed up to March 2023 using PubMed, Scopus, and Web of Science (ISI) databases. Three reviewers independently assessed study eligibility, data extraction, and evaluated the methodological quality of included primary studies. Different immunotherapy approaches have been identified and the most common approaches were scFv-conjugates, followed by simple scFvs and chimeric antigen receptor (CAR) therapy, respectively. Among breast cancer antigens, HER superfamily, CD family, and EpCAM were applied as the most important breast cancer immunotherapy targets. The present study shed more lights on scFv-based breast cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Kamran Heidarnejad
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shirin Mahfoozi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghasemi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Sadat Dashti
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Asadi
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Milewska S, Sadowska A, Stefaniuk N, Misztalewska-Turkowicz I, Wilczewska AZ, Car H, Niemirowicz-Laskowska K. Tumor-Homing Peptides as Crucial Component of Magnetic-Based Delivery Systems: Recent Developments and Pharmacoeconomical Perspective. Int J Mol Sci 2024; 25:6219. [PMID: 38892406 PMCID: PMC11172452 DOI: 10.3390/ijms25116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
According to data from the World Health Organization (WHO), cancer is considered to be one of the leading causes of death worldwide, and new therapeutic approaches, especially improved novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles improves their penetration properties and ensures tumor-specific binding, which results in an increased clinical response. This review aims to highlight the potential applications of THPs in combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Natalia Stefaniuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (I.M.-T.); (A.Z.W.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| |
Collapse
|
4
|
Liu X, Sun M, Pu F, Ren J, Qu X. Transforming Intratumor Bacteria into Immunopotentiators to Reverse Cold Tumors for Enhanced Immuno-chemodynamic Therapy of Triple-Negative Breast Cancer. J Am Chem Soc 2023; 145:26296-26307. [PMID: 37987621 DOI: 10.1021/jacs.3c09472] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Immunotherapy of triple-negative breast cancer (TNBC) has an unsatisfactory therapeutic outcome due to an immunologically "cold" microenvironment. Fusobacterium nucleatum (F. nucleatum) was found to be colonized in triple-negative breast tumors and was responsible for the immunosuppressive tumor microenvironment and tumor metastasis. Herein, we constructed a bacteria-derived outer membrane vesicle (OMV)-coated nanoplatform that precisely targeted tumor tissues for dual killing of F. nucleatum and cancer cells, thus transforming intratumor bacteria into immunopotentiators in immunotherapy of TNBC. The as-prepared nanoparticles efficiently induced immunogenic cell death through a Fenton-like reaction, resulting in enhanced immunogenicity. Meanwhile, intratumoral F. nucleatum was killed by metronidazole, resulting in the release of pathogen-associated molecular patterns (PAMPs). PAMPs cooperated with OMVs further facilitated the maturation of dendritic cells and subsequent T-cell infiltration. As a result, the "kill two birds with one stone" strategy warmed up the cold tumor environment, maximized the antitumor immune response, and achieved efficient therapy of TNBC as well as metastasis prevention. Overall, this strategy based on a microecology distinction in tumor and normal tissue as well as microbiome-induced reversal of cold tumors provides new insight into the precise and efficient immune therapy of TNBC.
Collapse
Affiliation(s)
- Xuemeng Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Anhui, Hefei 230026, P.R. China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Anhui, Hefei 230026, P.R. China
| | - Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Anhui, Hefei 230026, P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Anhui, Hefei 230026, P.R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Anhui, Hefei 230026, P.R. China
| |
Collapse
|
5
|
Xu Y, Liang M, Huang J, Fan Y, Long H, Chen Q, Ren Z, Wu C, Wang Y. Single-helical formyl β-glucan effectively deliver CpG DNA with poly(dA) to macrophages for enhanced vaccine effects. Int J Biol Macromol 2022; 223:67-76. [PMID: 36336158 DOI: 10.1016/j.ijbiomac.2022.10.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
Single helical β-glucan is a one-dimensional host that can form a hybrid helix with DNAs/RNAs as delivery systems. However, unmodified β-glucan has a gelling tendency and a single helical conformation is challenging to obtain. Therefore, in this study, we developed a β-glucan formyl derivative with stable single helical conformation and no gelling tendency. Circular dichroism studies found that the formyl-β-glucan could form a hybrid helix with DNA CpG-poly(dA). The hybrid helix delivery system showed improved activation on antigen-presenting cells, thereby upregulating the mRNA and protein levels of inflammatory factors, and had an immune-enhancing effect on ovalbumin (OVA) immunized mice. These results indicate that formyl-β-glucan can be developed as a non-cationic supramolecular DNA delivery platform with low toxicity and high efficiency.
Collapse
Affiliation(s)
- Yuying Xu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Minting Liang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jintao Huang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yapei Fan
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Haiyue Long
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qunjie Chen
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chaoxi Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Dhanya CR, Mary AS, Madhavan M. Aptamer-siRNA chimeras: Promising tools for targeting HER2 signaling in cancer. Chem Biol Drug Des 2022; 101:1162-1180. [PMID: 36099164 DOI: 10.1111/cbdd.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022]
Abstract
RNA interference is a transformative approach and has great potential in the development of novel and more efficient cancer therapeutics. Immense prospects exist in the silencing of HER2 and its downstream genes which are overexpressed in many cancers, through exogenously delivered siRNA. However, there is still a long way to exploit the full potential and versatility of siRNA therapeutics due to the challenges associated with the stability and delivery of siRNA targeted to specific sites. Aptamers offer several advantages as a vehicle for siRNA delivery, over other carriers such as antibodies. In this review, we discuss the progress made in the development and applications of aptamer-siRNA chimeras in HER2 targeting and gene silencing. A schematic workflow is also provided which will provide ample insight for all those researchers who are new to this field. Also, we think that a mechanistic understanding of the HER2 signaling pathway is crucial in designing extensive investigations aimed at the silencing of a wider array of genes. This review is expected to stimulate more research on aptamer-siRNA chimeras targeted against HER2 which might arm us with potential effective therapeutic interventions for the management of cancer.
Collapse
Affiliation(s)
- C R Dhanya
- Department of Biochemistry, Government College Kariavattom, Thiruvananthapuram, Kerala, India
| | - Aarcha Shanmugha Mary
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, India
| |
Collapse
|
7
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Wei Y, Sun Y, Wei J, Qiu X, Meng F, Storm G, Zhong Z. Selective transferrin coating as a facile strategy to fabricate BBB-permeable and targeted vesicles for potent RNAi therapy of brain metastatic breast cancer in vivo. J Control Release 2021; 337:521-529. [PMID: 34352315 DOI: 10.1016/j.jconrel.2021.07.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/31/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
Brain metastases are a most disturbing situation for breast cancer patients as there is basically no adequate treatment available. Any potential drug formulation has to be able to cross the blood-brain barrier (BBB) and specific to metastatic brain tumors without causing unacceptable adverse effects. Here, we developed transferrin-functionalized chimeric polymersomes carrying siRNA against polo-like kinase 1 (Tf@TBP-CPs-siPLK1) for treating brain metastatic MDA-MB 231 triple negative breast cancer (TNBC) xenografts in mice. To facilitate the loading of siPLK1, chimaeric polymersomes (CPs) were designed with spermine in the watery core and transferrin-binding peptide (TBP) at the surface, enabling attachment of transferrin after the siRNA loading step and thereby circumventing interference of transferrin with siRNA loading. Tf@TBP-CPs-siPLK1 encapsulating 3.8 wt% siRNA had a mean size of about 50 nm and a neutral zeta potential in phosphate buffer (PB). By virtue of the presence of transferrin, Tf@TBP-CPs demonstrated greatly (ca. 5-fold) enhanced internalization in MDA-MB 231 cells and transcytosis in the endothelial (bEnd.3) monolayer model in vitro as well as markedly improved accumulation in the orthotopically xenografted MDA-MB 231 tumor in the brain in vivo compared with control CPs lacking transferrin, supporting that transferrin mediates efficient BBB penetration and high specificity towards MDA-MB 231 cells. As a result, Tf@TBP-CPs-siPLK1 effectively inhibited tumor progression and prolonged the lifespan of the mice significantly. Selective transferrin coating appears to be a particularly facile strategy to fabricate BBB-permeable and targeted vesicles for potent RNAi therapy of brain metastatic breast cancer.
Collapse
Affiliation(s)
- Yaohua Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Department of Biomaterials Science and Technology, MIRA Institute for Biological Technology and Technical Medicine, University of Twente, PO Box 217, 7500AE Enschede, the Netherlands
| | - Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Xinyun Qiu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Gert Storm
- Department of Biomaterials Science and Technology, MIRA Institute for Biological Technology and Technical Medicine, University of Twente, PO Box 217, 7500AE Enschede, the Netherlands; Department of Pharmaceutics, Utrecht University, the Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
9
|
Liang X, Wang Y, Shi H, Dong M, Han H, Li Q. Nucleolin-Targeting AS1411 Aptamer-Modified Micelle for the Co-Delivery of Doxorubicin and miR-519c to Improve the Therapeutic Efficacy in Hepatocellular Carcinoma Treatment. Int J Nanomedicine 2021; 16:2569-2584. [PMID: 33833512 PMCID: PMC8019667 DOI: 10.2147/ijn.s304526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Multidrug resistance (MDR) has emerged to be a major hindrance in cancer therapy, which contributes to the reduced sensitivity of cancer cells toward chemotherapeutic drugs mainly owing to the over-expression of drug efflux transporters. The combination of gene therapy and chemotherapy has been considered as a potential approach to improve the anti-cancer efficacy by reversing the MDR effect. MATERIALS AND METHODS The AS1411 aptamer-functionalized micelles were constructed through an emulsion/solvent evaporation strategy for the simultaneous co-delivery of doxorubicin and miR-519c. The therapeutic efficacy and related mechanism of micelles were explored based on the in vitro and in vivo active targeting ability and the suppression of MDR, using hepatocellular carcinoma cell line HepG2 as a model. RESULTS The micelle was demonstrated to possess favorable cellular uptake and tumor penetration ability by specifically recognizing the nucleolin in an AS1411 aptamer-dependent manner. Further, the intracellular accumulation of doxorubicin was significantly improved due to the suppression of ABCG2-mediated drug efflux by miR-519c, resulting in the efficient inhibition of tumor growth. CONCLUSION The micelle-mediated co-delivery of doxorubicin and miR-519c provided a promising strategy to obtain ideal anti-cancer efficacy through the active targeting function and the reversion of MDR.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Aptamers, Nucleotide/administration & dosage
- Aptamers, Nucleotide/chemistry
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacology
- Drug Delivery Systems/methods
- Drug Resistance, Multiple
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Micelles
- MicroRNAs/administration & dosage
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/chemistry
- Phosphoproteins/antagonists & inhibitors
- RNA-Binding Proteins/antagonists & inhibitors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Nucleolin
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Yudi Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Hui Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Mengmeng Dong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| |
Collapse
|
10
|
Kumar G, Nandakumar K, Mutalik S, Rao CM. Biologicals to direct nanotherapeutics towards HER2-positive breast cancers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 27:102197. [PMID: 32275958 DOI: 10.1016/j.nano.2020.102197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022]
Abstract
HER2-positive breast cancer, an aggressive cancer, is treated with combinations of conventional anticancer drugs viz., cytotoxic drugs, nibs, and mAbs. Major limitations associated with this therapy are patient non-compliance due to the adverse drug reactions and rapid development of resistance by the HER2-positive malignant cells. While the former is addressed by the nano-formulations of the anticancer-drugs to some extent, the latter is still at large. This is because the nanocarriers of the anticancer drugs, by and large, lack the target specificity and selectivity. Thus, nowadays, to overcome these problems, various safe and efficacious biological agents are being used to direct the nanotherapeutics towards the HER2-positive breast cancers. The present review describes the potentials of such biological agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chamallamudi Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
11
|
Zhao X, Ning Q, Mo Z, Tang S. A promising cancer diagnosis and treatment strategy: targeted cancer therapy and imaging based on antibody fragment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3621-3630. [PMID: 31468992 DOI: 10.1080/21691401.2019.1657875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the arrival of the precision medicine and personalized treatment era, targeted therapy that improves efficacy and reduces side effects has become the mainstream approach of cancer treatment. Antibody fragments that further enhance penetration and retain the most critical antigen-specific binding functions are considered the focus of research targeting cancer imaging and therapy. Thanks to the superior penetration and rapid blood clearance of antibody fragments, antibody fragment-based imaging agents enable efficient and sensitive imaging of tumour sites. In tumour-targeted therapy, antibody fragments can directly inhibit tumour proliferation and growth, serve as an ideal carrier for delivery of anti-tumour drugs, or manipulate the immune system to eliminate tumour cells. In this review, the excellent physicochemical properties and the basic structure of antibody fragments are expressly depicted depicted, the progress of antibody fragments in cancer therapy and imaging are thoroughly summarized, and the future development of antibody fragments is predicted.
Collapse
Affiliation(s)
- Xuhong Zhao
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China , Hengyang , China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| | - Zhongcheng Mo
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China , Hengyang , China
| | - Shengsong Tang
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China , Hengyang , China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine , Huaihua , China
| |
Collapse
|
12
|
Xu CF, Iqbal S, Shen S, Luo YL, Yang X, Wang J. Development of "CLAN" Nanomedicine for Nucleic Acid Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900055. [PMID: 30884095 DOI: 10.1002/smll.201900055] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/19/2019] [Indexed: 05/17/2023]
Abstract
Nucleic acid-based macromolecules have paved new avenues for the development of therapeutic interventions against a spectrum of diseases; however, their clinical translation is limited by successful delivery to the target site and cells. Therefore, numerous systems have been developed to overcome delivery challenges to nucleic acids. From the viewpoint of clinical translation, it is highly desirable to develop systems with clinically validated materials and controllability in synthesis. With this in mind, a cationic lipid assisted PEG-b-PLA nanoparticle (CLAN) is designed that is capable of protecting nucleic acids via encapsulation inside the aqueous core, and delivers them to target cells, while maintaining or improving nucleic acid function. The system is formulated from clinically validated components (PEG-b-PLA and its derivatives) and can be scaled-up for large scale manufacturing, offering potential for its future use in clinical applications. Here, the development and working mechanisms of CLANs, the ways to improve its delivery efficacy, and its application in various disease treatments are summarized. Finally, a prospective for the further development of CLAN is also discussed.
Collapse
Affiliation(s)
- Cong-Fei Xu
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, 510006, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shoaib Iqbal
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Song Shen
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangdong, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ying-Li Luo
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, 510006, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, P. R. China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangdong, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jun Wang
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangdong, 510006, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| |
Collapse
|
13
|
Wang J, Li S, Han Y, Guan J, Chung S, Wang C, Li D. Poly(Ethylene Glycol)-Polylactide Micelles for Cancer Therapy. Front Pharmacol 2018; 9:202. [PMID: 29662450 PMCID: PMC5890116 DOI: 10.3389/fphar.2018.00202] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
For the treatment of malignancy, many therapeutic agents, including small molecules, photosensitizers, immunomodulators, proteins and genes, and so forth, have been loaded into nanocarriers for controllable cancer therapy. Among these nanocarriers, polymeric micelles have been considered as one of the most promising nanocarriers, some of which have already been applied in different stages of clinical trials. The successful advantages of polymeric micelles from bench to bedside are due to their special core/shell structures, which can carry specific drugs in certain disease conditions. Particularly, poly(ethylene glycol)–polylactide (PEG–PLA) micelles have been considered as one of the most promising platforms for drug delivery. The PEG shell effectively prevents the adsorption of proteins and phagocytes, thereby evidently extending the blood circulation period. Meanwhile, the hydrophobic PLA core can effectively encapsulate many therapeutic agents. This review summarizes recent advances in PEG–PLA micelles for the treatment of malignancy. In addition, future perspectives for the development of PEG–PLA micelles as drug delivery systems are also presented.
Collapse
Affiliation(s)
- Jixue Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shengxian Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingjing Guan
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shirley Chung
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Di Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
14
|
Alric C, Hervé-Aubert K, Aubrey N, Melouk S, Lajoie L, Même W, Même S, Courbebaisse Y, Ignatova AA, Feofanov AV, Chourpa I, Allard-Vannier E. Targeting HER2-breast tumors with scFv-decorated bimodal nanoprobes. J Nanobiotechnology 2018; 16:18. [PMID: 29466990 PMCID: PMC5820783 DOI: 10.1186/s12951-018-0341-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/09/2018] [Indexed: 01/22/2023] Open
Abstract
Background Recent advances in nanomedicine have shown the great interest of active targeting associated to nanoparticles. Single chain variable fragments (scFv) of disease-specific antibodies are very promising targeting entities because they are small, not immunogenic and able to bind their specific antigens. The present paper is devoted to biological properties in vitro and in vivo of fluorescent and pegylated iron oxide nanoparticles (SPIONs-Cy-PEG-scFv) functionalized with scFv targeting Human Epithelial growth Receptor 2 (HER2). Results Thanks to a site-selective scFv conjugation, the resultant nanoprobes demonstrated high affinity and specific binding to HER2 breast cancer cells. The cellular uptake of SPIONs-Cy-PEG-scFv was threefold higher than that for untargeted PEGylated iron oxide nanoparticles (SPIONs-Cy-PEG) and is correlated to the expression of HER2 on cells. In vivo, the decrease of MR signals in HER2+ xenograft tumor is about 30% at 24 h after the injection. Conclusions These results all indicate that SPIONs-Cy-PEG-scFv are relevant tumor-targeting magnetic resonance imaging agents, suitable for diagnosis of HER2 overexpressing breast tumor. Electronic supplementary material The online version of this article (10.1186/s12951-018-0341-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christophe Alric
- EA6295 'Nanomédicaments et Nanosondes', Université de Tours, 37200, Tours, France
| | - Katel Hervé-Aubert
- EA6295 'Nanomédicaments et Nanosondes', Université de Tours, 37200, Tours, France
| | - Nicolas Aubrey
- ISP, Université de Tours, INRA, UMR 1282, Equipe BIOMédicaments Anti-Parasitaires, 37380, Nouzilly, France
| | - Souad Melouk
- EA6295 'Nanomédicaments et Nanosondes', Université de Tours, 37200, Tours, France
| | - Laurie Lajoie
- GICC 'Groupe Innovation et Ciblage Cellulaire', Université de Tours, Equipe FRAME - Fc Récepteurs, Anticorps et MicroEnvironnement, 37032, Tours, France
| | - William Même
- CBM, CNRS, UPR4301, Equipe Complexes Métalliques et IRM pour applications biomédicales, 45071, Orléans, France
| | - Sandra Même
- CBM, CNRS, UPR4301, Equipe Complexes Métalliques et IRM pour applications biomédicales, 45071, Orléans, France
| | | | - Anastasia A Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia.,Biological Faculty, Lomonosov Moscow State University, Vorobyevi Gori 1, Moscow, 119992, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia.,Biological Faculty, Lomonosov Moscow State University, Vorobyevi Gori 1, Moscow, 119992, Russia
| | - Igor Chourpa
- EA6295 'Nanomédicaments et Nanosondes', Université de Tours, 37200, Tours, France
| | | |
Collapse
|
15
|
Wang L, Yao J, Zhang X, Zhang Y, Xu C, Lee RJ, Yu G, Yu B, Teng L. Delivery of paclitaxel using nanoparticles composed of poly(ethylene oxide)-b-poly(butylene oxide) (PEO-PBO). Colloids Surf B Biointerfaces 2018; 161:464-470. [DOI: 10.1016/j.colsurfb.2017.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 02/05/2023]
|
16
|
Targeted Delivery of siRNA Therapeutics to Malignant Tumors. JOURNAL OF DRUG DELIVERY 2017; 2017:6971297. [PMID: 29218233 PMCID: PMC5700508 DOI: 10.1155/2017/6971297] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/10/2017] [Indexed: 01/11/2023]
Abstract
Over the past 20 years, a diverse group of ligands targeting surface biomarkers or receptors has been identified with several investigated to target siRNA to tumors. Many approaches to developing tumor-homing peptides, RNA and DNA aptamers, and single-chain variable fragment antibodies by using phage display, in vitro evolution, and recombinant antibody methods could not have been imagined by researchers in the 1980s. Despite these many scientific advances, there is no reason to expect that the ligand field will not continue to evolve. From development of ligands based on novel or existing biomarkers to linking ligands to drugs and gene and antisense delivery systems, several fields have coalesced to facilitate ligand-directed siRNA therapeutics. In this review, we discuss the major categories of ligand-targeted siRNA therapeutics for tumors, as well as the different strategies to identify new ligands.
Collapse
|
17
|
Pietersz GA, Wang X, Yap ML, Lim B, Peter K. Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine (Lond) 2017; 12:1873-1889. [PMID: 28703636 DOI: 10.2217/nnm-2017-0043] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The unique chemical and functional properties of nanoparticles can be harnessed for the delivery of large quantities of various therapeutic biomolecules. Active targeting of nanoparticles by conjugating ligands that bind to target cells strongly facilitates accumulation, internalization into target cells and longer retention at the target site, with consequent enhanced therapeutic effects. Recombinant antibodies with high selectivity and availability for a vast range of targets will dominate the future. In this review, we systematically outline the tremendous progress in the conjugation of antibodies to nanoparticles and the clear advantages that recombinant antibodies offer in the therapeutic targeting of nanoparticles. The demonstrated flexibility of recombinant antibody coupling to nanoparticles highlights the bright future of this technology for modern therapeutic nanomedicine.
Collapse
Affiliation(s)
- Geoffrey A Pietersz
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia.,Burnet Institute, Centre for Biomedical Research, Melbourne, Australia.,Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Xiaowei Wang
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Medicine, Monash University, Melbourne, Australia
| | - May Lin Yap
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Bock Lim
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia
| | - Karlheinz Peter
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia.,Department of Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
18
|
Liu Y, Xu CF, Iqbal S, Yang XZ, Wang J. Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Adv Drug Deliv Rev 2017; 115:98-114. [PMID: 28396204 DOI: 10.1016/j.addr.2017.03.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022]
Abstract
Cascades of systemic and intracellular obstacles, including low stability in blood, little tumor accumulation, weak tumor penetration, poor cellular uptake, inefficient endosomal escape and deficient disassembly in the cytoplasm, must be overcome in order to deliver nucleic acid drugs for cancer therapy. Nanocarriers that are sensitive to a variety of physiological stimuli, such as pH, redox status, and cell enzymes, are substantially changing the landscape of nucleic acid drug delivery by helping to overcome cascaded systemic and intracellular barriers. This review discusses nucleic acid-based therapeutics, systemic and intracellular barriers to efficient nucleic acid delivery, and nanocarriers responsive to extracellular and intracellular biological stimuli to overcome individual barriers. In particular, responsive nanocarriers for the cascaded delivery of nucleic acids in vivo are highlighted. Developing novel cascaded nanocarriers that transform their physicochemical properties in response to various stimuli in a timely and spatially controlled manner for nucleic acid drug delivery holds great potential for translating the promise of nucleic acid drugs and achieving clinically successful cancer therapy.
Collapse
|
19
|
Watanabe T, Sakamoto Y, Inooka T, Kimura Y, Ono T. Indocyanine green-laden poly(ethylene glycol)-block-polylactide (PEG-b-PLA) nanocapsules incorporating reverse micelles: Effects of PEG-b-PLA composition on the nanocapsule diameter and encapsulation efficiency. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Gao M, Fan F, Li D, Yu Y, Mao K, Sun T, Qian H, Tao W, Yang X. Tumor acidity-activatable TAT targeted nanomedicine for enlarged fluorescence/magnetic resonance imaging-guided photodynamic therapy. Biomaterials 2017; 133:165-175. [PMID: 28437627 DOI: 10.1016/j.biomaterials.2017.04.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/17/2022]
Abstract
Nanoparticles simultaneously integrated the photosensitizers and diagnostic agents represent an emerging approach for imaging-guided photodynamic therapy (PDT). However, the diagnostic sensitivity and therapeutic efficacy of nanoparticles as well as the heterogeneity of tumors pose tremendous challenges for clinical imaging-guided PDT treatment. Herein, a polymeric nanoparticle with tumor acidity (pHe)-activatable TAT targeting ligand that encapsulates the photosensitizer chlorin e6 (Ce6) and chelates contrast agent Gd3+ is successfully developed for fluorescence/magnetic resonance (MR) dual-model imaging-guided precision PDT. We show clear evidence that the resulting nanoparticle DATAT-NP [its TAT lysine residues' amines was modified by 2,3-dimethylmaleic anhydride (DA)] efficiently avoids the rapid clearance by reticuloendothelial system (RES) by masking of the TAT peptide, resulting in the significantly prolonged circulation time in the blood. Once accumulating in the tumor tissues, DATAT-NP is reactivated by tumor acidity to promote cellular uptake, resulting in enlarged fluorescence/MR imaging signal intensity and elevated in vivo PDT therapeutic effect. This concept provides new avenues to design tumor acidity-activatable targeted nanoparticles for imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Meng Gao
- Division of Gastroenterology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, PR China
| | - Feng Fan
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Dongdong Li
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China; Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guandong 510006, PR China
| | - Yue Yu
- Division of Gastroenterology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, PR China.
| | - Kuirong Mao
- The First Hospital and Institute of Immunology, Jilin University, Changchun 130061, PR China
| | - Tianmeng Sun
- The First Hospital and Institute of Immunology, Jilin University, Changchun 130061, PR China.
| | - Haisheng Qian
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Wei Tao
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xianzhu Yang
- School of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China; Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guandong 510006, PR China.
| |
Collapse
|
21
|
Li J, Ding J, Liu T, Liu JF, Yan L, Chen X. Poly(lactic acid) Controlled Drug Delivery. INDUSTRIAL APPLICATIONS OF POLY(LACTIC ACID) 2017. [DOI: 10.1007/12_2017_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Aji Alex MR, Veeranarayanan S, Poulose AC, Nehate C, Kumar DS, Koul V. Click modified amphiphilic graft copolymeric micelles of poly(styrene-alt-maleic anhydride) for combinatorial delivery of doxorubicin and plk-1 siRNA in cancer therapy. J Mater Chem B 2016; 4:7303-7313. [PMID: 32263732 DOI: 10.1039/c6tb02094a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The anti-apoptotic defense mechanism of cancer cells poses a major hurdle which makes chemotherapy less effective. Combinatorial delivery of drugs and siRNAs targeting anti-apoptotic proteins is a vital means for improving therapeutic effects. The present study aims at designing a suitable carrier which can effectively co-deliver doxorubicin and plk1 siRNA to tumor cells. Low molecular weight poly(styrene-alt-maleic anhydride) was chemically modified via a click reaction to obtain a cationic amphiphilic polymer for the co-delivery of therapeutic agents. Short glycol chains were utilized as linker molecules for grafting which in turn imparted a stealth nature and minimized plasma protein adsorption to the polymeric surface. Isonicotinic acid was grafted to the polymer due to its ability to penetrate the endolysosomal membrane and arginine-lysine conjugates were embedded for complexing siRNA. The polymer was able to self-assemble in to smooth, spherical micellar structures with a CMC of ∼3 μg mL-1. The particle size of the micelles was ∼14-30 nm as depicted using TEM and FESEM. Atomic force microscopic analysis showed an average height of ∼12 nm for the polymeric micelles. An optimum doxorubicin loading of ∼9% w/w was achieved with the micelles using a dialysis method. Effective complexation of siRNA occurred above a polymer/siRNA weight ratio of 10 without any significant change in the particle size. Doxorubicin and fluorescent labeled siRNA loaded micelles exhibited excellent co-localization within the cytoplasm of MCF-7 cells. The synergistic effect of the active agents in inhibiting tumor cell proliferation was depicted using an MTT assay and visualized using calcein/propidium iodide staining of the treated cells. Co-administration of doxorubicin and plk1 siRNA in EAT tumor bearing Swiss albino mice using the cationic micelles significantly enhanced the antitumor efficacy.
Collapse
Affiliation(s)
- M R Aji Alex
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | | | | | | | | | | |
Collapse
|
23
|
Vago R, Collico V, Zuppone S, Prosperi D, Colombo M. Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacol Res 2016; 111:619-641. [PMID: 27436147 DOI: 10.1016/j.phrs.2016.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy.
Collapse
Affiliation(s)
- Riccardo Vago
- Università Vita-Salute San Raffaele, Milano, I-20132, Italy; Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Veronica Collico
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Stefania Zuppone
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy; Istituto di Ricerca Urologica, Divisione di Oncologia Sperimentale, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Davide Prosperi
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Miriam Colombo
- Università degli Studi di Milano-Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Piazza Della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
24
|
Xu CF, Zhang HB, Sun CY, Liu Y, Shen S, Yang XZ, Zhu YH, Wang J. Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery. Biomaterials 2016; 88:48-59. [PMID: 26945455 DOI: 10.1016/j.biomaterials.2016.02.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/14/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
The design of ideal nanoparticle delivery systems should be capable of meeting the requirements of several stages of drug delivery, including prolonged circulation, enhanced accumulation and penetration in the tumor, facilitated cellular internalization and rapid release of the active drug in the tumor cells. However, among the current design strategies, meeting the requirements of one stage often conflicts with the other. Herein, a tumor pH-labile linkage-bridged block copolymer of poly(ethylene glycol) with poly(lacide-co-glycolide) (PEG-Dlinkm-PLGA) was used for siRNA delivery to fulfill all aforementioned requirements of these delivery stages. The obtained siRNA-encapsulating PEG-Dlinkm-PLGA nanoparticle gained efficiently prolonged circulation in the blood and preferential accumulation in tumor sites via the PEGylation. Furthermore, the PEG surface layer was detached in response to the tumor acidic microenvironment to facilitate cellular uptake, and the siRNA was rapidly released within tumor cells due to the hydrophobic PLGA layer. Hence, PEG-Dlinkm-PLGA nanoparticles met the requirements of several stages of drug delivery, and resulted in the enhanced therapeutic effect of the nanoparticular delivery systems.
Collapse
Affiliation(s)
- Cong-Fei Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei Anhui 230027, PR China
| | - Hou-Bing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei Anhui 230027, PR China
| | - Chun-Yang Sun
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei Anhui 230027, PR China
| | - Yang Liu
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei Anhui 230027, PR China
| | - Song Shen
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei Anhui 230027, PR China
| | - Xian-Zhu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei Anhui 230027, PR China.
| | - Yan-Hua Zhu
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei Anhui 230027, PR China
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei Anhui 230027, PR China; CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei Anhui 230027, PR China; Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
| |
Collapse
|
25
|
Safdari Y, Ahmadzadeh V, Khalili M, Jaliani HZ, Zarei V, Erfani-Moghadam V. Use of single chain antibody derivatives for targeted drug delivery. Mol Med 2016; 22:258-270. [PMID: 27249008 DOI: 10.2119/molmed.2016.00043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Single chain antibodies (scFvs), which contain only the variable domains of full-length antibodies, are relatively small molecules that can be used for selective drug delivery. In this review, we display how scFv antibodies help improve the specificity and efficiency of drugs. Small interfering RNA (siRNA) delivery using scFv-drug fusion peptides, siRNA delivery using scFv-conjugated nanoparticles, targeted delivery using scFv-viral peptide- fusion proteins, use of scFv in fusion with cell penetrating peptides for effective targeted drug delivery, scFv-mediated targeted delivery of inorganic nanoparticles, scFv-mediated increase of tumor killing activity of granulocytes, use of scFv for tumor imaging, site-directed conjugation of scFv molecules to drug carrier systems, use of scFv to relieve pain, use of scFv for increasing drug loading efficiency are among the topics that are discussed here.
Collapse
Affiliation(s)
- Yaghoub Safdari
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahideh Ahmadzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Khalili
- Golestan Research Center of Gastroenterology and Hepatology (GRCGH), Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Zarei Jaliani
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vahid Zarei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
26
|
Gu S, Hu Z, Ngamcherdtrakul W, Castro DJ, Morry J, Reda MM, Gray JW, Yantasee W. Therapeutic siRNA for drug-resistant HER2-positive breast cancer. Oncotarget 2016; 7:14727-41. [PMID: 26894975 PMCID: PMC4924747 DOI: 10.18632/oncotarget.7409] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/30/2016] [Indexed: 01/18/2023] Open
Abstract
HER2 is overexpressed in about 20% of breast cancers and contributes to poor prognosis. Unfortunately, a large fraction of patients have primary or acquired resistance to the HER2-targeted therapy trastuzumab, thus a multi-drug combination is utilized in the clinic, putting significant burden on patients. We systematically identified an optimal HER2 siRNA from 76 potential sequences and demonstrated its utility in overcoming intrinsic and acquired resistance to trastuzumab and lapatinib in 18 HER2-positive cancer cell lines. We provided evidence that the drug-resistant cancer maintains dependence on HER2 for survival. Importantly, cell lines did not readily develop resistance following extended treatment with HER2 siRNA. Using our recently developed nanoparticle platform, systemic delivery of HER2 siRNA to trastuzumab-resistant tumors resulted in significant growth inhibition. Moreover, the optimal HER2 siRNA could also silence an exon 16 skipped HER2 splice variant reported to be highly oncogenic and linked to trastuzumab resistance.
Collapse
Affiliation(s)
- Shenda Gu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Zhi Hu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Worapol Ngamcherdtrakul
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239, USA
- PDX Pharmaceuticals, LLC, Portland, Oregon, 97239, USA
| | - David J. Castro
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239, USA
- PDX Pharmaceuticals, LLC, Portland, Oregon, 97239, USA
| | - Jingga Morry
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Moataz M. Reda
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Joe W. Gray
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239, USA
- PDX Pharmaceuticals, LLC, Portland, Oregon, 97239, USA
| |
Collapse
|
27
|
Ngamcherdtrakul W, Castro DJ, Gu S, Morry J, Reda M, Gray JW, Yantasee W. Current development of targeted oligonucleotide-based cancer therapies: Perspective on HER2-positive breast cancer treatment. Cancer Treat Rev 2016; 45:19-29. [PMID: 26930249 DOI: 10.1016/j.ctrv.2016.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 12/24/2022]
Abstract
This Review discusses the various types of non-coding oligonucleotides, which have garnered extensive interest as new alternatives for targeted cancer therapies over small molecule inhibitors and monoclonal antibodies. These oligonucleotides can target any hallmark of cancer, no longer limited to so-called "druggable" targets. Thus, any identified gene that plays a key role in cancer progression or drug resistance can be exploited with oligonucleotides. Among them, small-interfering RNAs (siRNAs) are frequently utilized for gene silencing due to the robust and well established mechanism of RNA interference. Despite promising advantages, clinical translation of siRNAs is hindered by the lack of effective delivery platforms. This Review provides general criteria and consideration of nanoparticle development for systemic siRNA delivery. Different classes of nanoparticle candidates for siRNA delivery are discussed, and the progress in clinical trials for systemic cancer treatment is reviewed. Lastly, this Review presents HER2 (human epidermal growth factor receptor type 2)-positive breast cancer as one example that could benefit significantly from siRNA technology. How siRNA-based therapeutics can overcome cancer resistance to such therapies is discussed.
Collapse
Affiliation(s)
- Worapol Ngamcherdtrakul
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - David J Castro
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Shenda Gu
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Jingga Morry
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Moataz Reda
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA.
| | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA.
| |
Collapse
|
28
|
Preferential tumor accumulation and desirable interstitial penetration of poly(lactic-co-glycolic acid) nanoparticles with dual coating of chitosan oligosaccharide and polyethylene glycol-poly(D,L-lactic acid). Acta Biomater 2016; 29:248-260. [PMID: 26476340 DOI: 10.1016/j.actbio.2015.10.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 10/02/2015] [Accepted: 10/13/2015] [Indexed: 12/16/2022]
Abstract
Despite advances in polymeric nanoparticles (NPs) as effective delivery systems for anticancer drugs, rapid clearance from blood and poor penetration capacity in heterogeneous tumors still remain to be addressed. Here, a dual coating of poly (ethylene glycol)-poly (d,l-lactic acid) (PEG-PDLLA) and water-soluble chitosan oligosaccharide (CO) was used to develop PLGA-based NPs (PCPNPs) with colloidal stability for delivery of paclitaxel (PTX). The PCPNPs were prepared by a modified nanoprecipitation process and exhibited homogeneous size of 165.5nm, and slight positive charge (+3.54mV). The single PEG-PDLLA-coated PLGA NPs (PPNPs) with negative charge (-13.42mV) were prepared as control. Human breast cancer MDA-MB-231 cell and mice MDA-MB-231 xenograft model were used for in vitro and in vivo evaluation. Compared to Taxol®, both PCPNPs and PPNPs increased the intracellular uptake and exerted stronger inhibitory effect on tumor cells in vitro, especially for PCPNPs. Particularly, due to the near neutral surface charge and shielding by the dual coating, the blank cationic NP presented low cytotoxicity. With the synergistic action of PEG-PDLLA and CO, PCPNPs not only strongly inhibited macrophage uptake and extended the blood circulation time, but also improved the selective accumulation and interstitial penetration capacity to/in tumor site. Consequently, a significantly enhanced antitumor efficacy was observed for the cationic PCPNPs. Our findings suggest that, the dual PEG-PDLLA/CO coating can effective improve the tumor accumulation and interstitial penetration of NPs and, therefore may have great potential for tumor treatment. STATEMENT OF SIGNIFICANCE Rapid clearance from blood and poor penetration capacity in heterogeneous tumors represent great challenge for polymeric nanoparticles (NPs) as effective delivery systems for anticancer drugs. This study provides a promising cationic nanoparticle (PCPNPs) with dual coating of chitosan oligosaccharide (CO) and PEG-PDLLA to address the above problem. The PCPNPs prepared with 165.5nm and slight positive charge (+3.54mV) showed an improved accumulation and interstitial penetration capacity to/in tumor site, and thus led to an enhanced antitumor efficacy. This is the first time to report the cooperative effect of PEG-PDLLA and CO on PLGA NPs in this field. This work can arouse broad interests among researchers in the fields of nanomedicine, nanotechnology, and drug delivery system.
Collapse
|
29
|
Zuo ZQ, Chen KG, Yu XY, Zhao G, Shen S, Cao ZT, Luo YL, Wang YC, Wang J. Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials 2015; 82:48-59. [PMID: 26751819 DOI: 10.1016/j.biomaterials.2015.12.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), which hold a high capacity for self-renewal, play a central role in the development, metastasis, and recurrence of various malignancies. CSCs must be eradicated to cure instances of cancer; however, because they can reside far from tumor vessels, they are not easily targeted by drug agents carried by nanoparticle-based drug delivery systems. We herein demonstrate that promoting tumor penetration of nanoparticles by transforming growth factor β (TGF-β) signaling pathway inhibition facilitates CSC therapy. In our study, we observed that although nanoparticles carrying siRNA targeting the oncogene polo-like kinase 1 (Plk1) efficiently killed breast CSCs derived from MDA-MB-231 cells in vitro, this intervention enriched CSCs in the residual tumor tissue following systemic treatment. However, inhibition of the TGF-β signaling pathway with LY364947, an inhibitor of TGF-β type I receptor, promoted the penetration of nanoparticles in tumor tissue, significantly ameliorating the intratumoral distribution of nanoparticles in MDA-MB-231 xenografts and further leading to enhanced internalization of nanoparticles by CSCs. As a result, synergistic treatment with a nanoparticle drug delivery system and LY364947 inhibited tumor growth and reduced the proportion of CSCs in vivo. This study suggests that enhanced tumor penetration of drug-carrying nanoparticles can enhance CSCs clearance in vivo and consequently provide superior anti-tumor effects.
Collapse
Affiliation(s)
- Zu-Qi Zuo
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Kai-Ge Chen
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Xiao-Yuan Yu
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Gui Zhao
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Song Shen
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Zhi-Ting Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230027, PR China
| | - Ying-Li Luo
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Yu-Cai Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China
| | - Jun Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, 230027, PR China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, 230027, PR China; CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, Anhui, 230027, PR China.
| |
Collapse
|
30
|
Khantasup K, Chantima W, Sangma C, Poomputsa K, Dharakul T. Design and Generation of Humanized Single-chain Fv Derived from Mouse Hybridoma for Potential Targeting Application. Monoclon Antib Immunodiagn Immunother 2015; 34:404-17. [PMID: 26683180 DOI: 10.1089/mab.2015.0036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Single-chain variable antibody fragments (scFvs) are attractive candidates for targeted immunotherapy in several human diseases. In this study, a concise humanization strategy combined with an optimized production method for humanizing scFvs was successfully employed. Two antibody clones, one directed against the hemagglutinin of H5N1 influenza virus, the other against EpCAM, a cancer biomarker, were used to demonstrate the validity of the method. Heavy chain (VH) and light chain (VL) variable regions of immunoglobulin genes from mouse hybridoma cells were sequenced and subjected to the construction of mouse scFv 3-D structure. Based on in silico modeling, the humanized version of the scFv was designed via complementarity-determining region (CDR) grafting with the retention of mouse framework region (FR) residues identified by primary sequence analysis. Root-mean-square deviation (RMSD) value between mouse and humanized scFv structures was calculated to evaluate the preservation of CDR conformation. Mouse and humanized scFv genes were then constructed and expressed in Escherichia coli. Using this method, we successfully generated humanized scFvs that retained the targeting activity of their respective mouse scFv counterparts. In addition, the humanized scFvs were engineered with a C-terminal cysteine residue (hscFv-C) for site-directed conjugation for use in future targeting applications. The hscFv-C expression was extensively optimized to improve protein production yield. The protocol yielded a 20-fold increase in production of hscFv-Cs in E. coli periplasm. The strategy described in this study may be applicable in the humanization of other antibodies derived from mouse hybridoma.
Collapse
Affiliation(s)
- Kannika Khantasup
- 1 Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Warangkana Chantima
- 2 Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand .,4 National Nanotechnology Center , National Science and Technology Development Agency, Pathumthani, Thailand
| | - Chak Sangma
- 5 Department of Chemistry, Faculty of Science, Kasetsart University , Bangkok, Thailand
| | - Kanokwan Poomputsa
- 6 Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology , Bangkok, Thailand
| | - Tararaj Dharakul
- 3 Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand .,4 National Nanotechnology Center , National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
31
|
Kharkar PM, Kiick KL, Kloxin AM. Design of Thiol- and Light-sensitive Degradable Hydrogels using Michael-type Addition Reactions. Polym Chem 2015; 6:5565-5574. [PMID: 26284125 PMCID: PMC4536978 DOI: 10.1039/c5py00750j] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Injectable depots that respond to exogenous and endogenous stimuli present an attractive strategy for tunable, patient-specific drug delivery. Here, the design of injectable and multimodal degradable hydrogels that respond to externally applied light and physiological stimuli, specifically aqueous and reducing microenvironments, is reported. Rapid hydrogel formation was achieved using a thiol-maleimide click reaction between multifunctional poly(ethylene glycol) macromers. Hydrogel degradation kinetics in response to externally applied cytocompatible light, reducing conditions, and hydrolysis were characterized, and degradation of the gel was controlled over multiple time scales from seconds to days. Further, tailored release of an encapsulated model cargo, fluorescent nanobeads, was demonstrated.
Collapse
Affiliation(s)
- Prathamesh M. Kharkar
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - April M. Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
32
|
Hosseini M, Haji-Fatahaliha M, Jadidi-Niaragh F, Majidi J, Yousefi M. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1051-61. [PMID: 25612903 DOI: 10.3109/21691401.2014.998830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Mazzucchelli S, Truffi M, Fiandra L, Sorrentino L, Corsi F. Targeted approaches for HER2 breast cancer therapy: News from nanomedicine? World J Pharmacol 2014; 3:72-85. [DOI: 10.5497/wjp.v3.i4.72] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/29/2014] [Accepted: 09/24/2014] [Indexed: 02/07/2023] Open
Abstract
About 30% of human breast cancers are human epidermal growth factor receptor 2 (HER2)+. This particular biological portrait is characterized by the overexpression of HER2 receptor with the subsequent deregulation of downstream pathways, which control cellular survival and proliferation. The most effective treatment for HER2+ cancer is represented by therapy with HER2-targeted agents. Anti-HER2 therapy dramatically improves clinical outcomes, although it shows some limitations in achieving a proper treatment. These drawbacks of HER2-targeted therapy may be overcome with the development of HER2-targeted drug delivery nanodevices. These nanoparticles possess an internal three-dimensional compartimentalization, which allows to combine the specific target recognition with their capability to act as a drug reservoir for the selective delivery of chemotherapics to tumor sites. Moreover, nanoparticles useful in photothermal ablation or in photodynamic therapy have been functionalized in order to match specificity in tumor cell recognition and suitable chemical properties. Here, we summarize the state of the art concerning the HER2+ breast cancer and anti-HER2 therapy, in particular deepening the contribution of the nanomedicine. Description of preclinical studies performed with HER2-targeted nanoparticles for HER2+ breast cancer therapy will be preceded by an overview on HER2-targeting molecules and nano-conjugation strategies. Further investigation will be necessary to introduce these nano-drugs in clinical practice; however promising results encourage an upcoming translation of this research for the next future.
Collapse
|