1
|
Shariati K, Bedar M, Huang KX, Moghadam S, Mirzaie S, LaGuardia JS, Chen W, Kang Y, Ren X, Lee JC. Biomaterial Cues for Regulation of Osteoclast Differentiation and Function in Bone Regeneration. ADVANCED THERAPEUTICS 2025; 8:2400296. [PMID: 39867107 PMCID: PMC11756815 DOI: 10.1002/adtp.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 01/28/2025]
Abstract
Tissue regeneration involves dynamic dialogue between and among different cells and their surrounding matrices. Bone regeneration is specifically governed by reciprocity between osteoblasts and osteoclasts within the bone microenvironment. Osteoclast-directed resorption and osteoblast-directed formation of bone are essential to bone remodeling, and the crosstalk between these cells is vital to curating a sequence of events that culminate in the creation of bone tissue. Among bone biomaterial strategies, many have investigated the use of different material cues to direct the development and activity of osteoblasts. However, less attention has been given to exploring features that similarly target osteoclast formation and activity, with even fewer strategies demonstrating or integrating biomaterial-directed modulation of osteoblast-osteoclast coupling. This review aims to describe various biomaterial cues demonstrated to influence osteoclastogenesis and osteoclast function, emphasizing those that enhance a material construct's ability to achieve bone healing and regeneration. Additionally discussed are approaches that influence the communication between osteoclasts and osteoblasts, particularly in a manner that takes advantage of their coupling. Deepening our understanding of how biomaterial cues may dictate osteoclast differentiation, function, and influence on the microenvironment may enable the realization of bone-replacement interventions with enhanced integrative and regenerative capacities.
Collapse
Affiliation(s)
- Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Sarah Mirzaie
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Chen W, Bedar M, Zhou Q, Ren X, Kang Y, Huang KX, Rubino G, Kolliopoulos V, Moghadam S, Cascavita CT, Taylor JM, Chevalier JM, Harley BA, Lee JC. Correlating Material Properties to Osteoprotegerin Expression on Nanoparticulate Mineralized Collagen Glycosaminoglycan Scaffolds. Adv Healthc Mater 2024; 13:e2401037. [PMID: 38885525 PMCID: PMC11489015 DOI: 10.1002/adhm.202401037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Precision material design directed by cell biological processes represents a frontier in developing clinically translatable regenerative technologies. While understanding cell-material interactions on multipotent progenitor cells yields insights on target tissue differentiation, equally if not more important is the quantification of indirect multicellular interactions. In this work, the relationship of two material properties, phosphate content and stiffness, of a nanoparticulate mineralized collagen glycosaminoglycan scaffold (MC-GAG) in the expression of an endogenous anti-osteoclastogenic secreted protein, osteoprotegerin (OPG) by primary human mesenchymal stem cells (hMSCs) is evaluated. The phosphate content of MC-GAG requires the type III sodium phosphate symporter PiT-1/SLC20A1 for OPG expression, correlating with β-catenin downregulation, but is independent of the effects of phosphate ion on osteogenic differentiation. Using three stiffness MC-GAG variants that do not differ significantly by osteogenic differentiation, it is observed that the softest material elicited ≈1.6-2 times higher OPG expression than the stiffer materials. Knockdown of the mechanosensitive signaling axis of YAP, TAZ, β-catenin and combinations thereof in hMSCs on MC-GAG demonstrates that β-catenin downregulation increases OPG expression by 1.5-fold. Taken together, these data constitute a roadmap for material properties that can used to suppress osteoclast activation via osteoprotegerin expression separately from the anabolic processes of osteogenesis.
Collapse
Affiliation(s)
- Wei Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Meiwand Bedar
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Qi Zhou
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Xiaoyan Ren
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Youngnam Kang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Kelly X. Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Grace Rubino
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Shahrzad Moghadam
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Catherine T. Cascavita
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Jeremiah M. Taylor
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Jose M. Chevalier
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Justine C. Lee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| |
Collapse
|
3
|
Zhang Y, He F, Zhang Q, Lu H, Yan S, Shi X. 3D-Printed Flat-Bone-Mimetic Bioceramic Scaffolds for Cranial Restoration. RESEARCH (WASHINGTON, D.C.) 2023; 6:0255. [PMID: 37899773 PMCID: PMC10603392 DOI: 10.34133/research.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023]
Abstract
The limitations of autologous bone grafts necessitate the development of advanced biomimetic biomaterials for efficient cranial defect restoration. The cranial bones are typical flat bones with sandwich structures, consisting of a diploe in the middle region and 2 outer compact tables. In this study, we originally developed 2 types of flat-bone-mimetic β-tricalcium phosphate bioceramic scaffolds (Gyr-Comp and Gyr-Tub) by high-precision vat-photopolymerization-based 3-dimensional printing. Both scaffolds had 2 outer layers and an inner layer with gyroid pores mimicking the diploe structure. The outer layers of Gyr-Comp scaffolds simulated the low porosity of outer tables, while those of Gyr-Tub scaffolds mimicked the tubular pore structure in the tables of flat bones. The Gyr-Comp and Gyr-Tub scaffolds possessed higher compressive strength and noticeably promoted in vitro cell proliferation, osteogenic differentiation, and angiogenic activities compared with conventional scaffolds with cross-hatch structures. After implantation into rabbit cranial defects for 12 weeks, Gyr-Tub achieved the best repairing effects by accelerating the generation of bone tissues and blood vessels. This work provides an advanced strategy to prepare biomimetic biomaterials that fit the structural and functional needs of efficacious bone regeneration.
Collapse
Affiliation(s)
- Yihang Zhang
- School of Electromechanical Engineering,
Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Fupo He
- School of Electromechanical Engineering,
Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Qiang Zhang
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510641, P. R. China
| | - Haotian Lu
- Peking Union Medical College Graduate School, Beijing 100730, P. R. China
| | - Shengtao Yan
- Peking Union Medical College Graduate School, Beijing 100730, P. R. China
- Department of Emergency,
China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Xuetao Shi
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
4
|
Lin H, Zhang L, Zhang Q, Wang Q, Wang X, Yan G. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci 2023; 11:7034-7050. [PMID: 37782081 DOI: 10.1039/d3bm01214j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bioceramics have attracted considerable attention in the field of bone repair because of their excellent osteogenic properties, degradability, and biocompatibility. To resolve issues regarding limited formability, recent studies have introduced 3D printing technology for the fabrication of bioceramic bone repair scaffolds. Nevertheless, the mechanisms by which bioceramics promote bone repair and clinical applications of 3D-printed bioceramic scaffolds remain elusive. This review provides an account of the fabrication methods of 3D-printed degradable bioceramic scaffolds. In addition, the types and characteristics of degradable bioceramics used in clinical and preclinical applications are summarized. We have also highlighted the osteogenic molecular mechanisms in biomaterials with the aim of providing a basis and support for future research on the clinical applications of degradable bioceramic scaffolds. Finally, new developments and potential applications of 3D-printed degradable bioceramic scaffolds are discussed with reference to experimental and theoretical studies.
Collapse
Affiliation(s)
- Hui Lin
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Liyun Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiyue Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Xue Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| | - Guangqi Yan
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Ren X, Zhou Q, Bedar M, Foulad D, Huang KX, Dejam D, Dahan NJ, Kolliopoulos V, Harley BA, Lee JC. Modulating Temporospatial Phosphate Equilibrium by Nanoparticulate Mineralized Collagen Materials Induces Osteogenesis via PiT-1 and PiT-2. Adv Healthc Mater 2023; 12:e2202750. [PMID: 36863404 PMCID: PMC10330078 DOI: 10.1002/adhm.202202750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Indexed: 03/04/2023]
Abstract
The temporospatial equilibrium of phosphate contributes to physiological bone development and fracture healing, yet optimal control of phosphate content has not been explored in skeletal regenerative materials. Nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) is a synthetic, tunable material that promotes in vivo skull regeneration. In this work, the effects of MC-GAG phosphate content on the surrounding microenvironment and osteoprogenitor differentiation are investigated. This study finds that MC-GAG exhibits a temporal relationship with soluble phosphate with elution early in culture shifting to absorption with or without differentiating primary bone marrow-derived human mesenchymal stem cells (hMSCs). The intrinsic phosphate content of MC-GAG is sufficient to stimulate osteogenic differentiation of hMSCs in basal growth media without the addition of exogenous phosphate in a manner that can be severely reduced, but not eliminated, by knockdown of the sodium phosphate transporters PiT-1 or PiT-2. The contributions of PiT-1 and PiT-2 to MC-GAG-mediated osteogenesis are nonredundant but also nonadditive, suggestive that the heterodimeric form is essential to its activity. These findings indicate that the mineral content of MC-GAG alters phosphate concentrations within a local microenvironment resulting in osteogenic differentiation of progenitor cells via both PiT-1 and PiT-2.
Collapse
Affiliation(s)
- Xiaoyan Ren
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Qi Zhou
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Meiwand Bedar
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - David Foulad
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Kelly X. Huang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Dillon Dejam
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Natalie J. Dahan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Materials Science and Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Justine C. Lee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Department of Orthopaedic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Surgery and Perioperative Care, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| |
Collapse
|
6
|
Zhu X, Wang C, Bai H, Zhang J, Wang Z, Li Z, Zhao X, Wang J, Liu H. Functionalization of biomimetic mineralized collagen for bone tissue engineering. Mater Today Bio 2023; 20:100660. [PMID: 37214545 PMCID: PMC10199226 DOI: 10.1016/j.mtbio.2023.100660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Mineralized collagen (MC) is the basic unit of bone structure and function and is the main component of the extracellular matrix (ECM) in bone tissue. In the biomimetic method, MC with different nanostructures of neo-bone have been constructed. Among these, extra-fibrous MC has been approved by regulatory agencies and applied in clinical practice to play an active role in bone defect repair. However, in the complex microenvironment of bone defects, such as in blood supply disorders and infections, MC is unable to effectively perform its pro-osteogenic activities and needs to be functionalized to include osteogenesis and the enhancement of angiogenesis, anti-infection, and immunomodulation. This article aimed to discuss the preparation and biological performance of MC with different nanostructures in detail, and summarize its functionalization strategy. Then we describe the recent advances in the osteo-inductive properties and multifunctional coordination of MC. Finally, the latest research progress of functionalized biomimetic MC, along with the development challenges and future trends, are discussed. This paper provides a theoretical basis and advanced design philosophy for bone tissue engineering in different bone microenvironments.
Collapse
Affiliation(s)
- Xiujie Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Haotian Bai
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Xin Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 4110 Yatai Street, Changchun, 130041, PR China
| |
Collapse
|
7
|
Fortunato GM, Sigismondi S, Nicoletta M, Condino S, Montemurro N, Vozzi G, Ferrari V, De Maria C. Analysis of the Robotic-Based In Situ Bioprinting Workflow for the Regeneration of Damaged Tissues through a Case Study. Bioengineering (Basel) 2023; 10:bioengineering10050560. [PMID: 37237631 DOI: 10.3390/bioengineering10050560] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
This study aims to critically analyse the workflow of the in situ bioprinting procedure, presenting a simulated neurosurgical case study, based on a real traumatic event, for collecting quantitative data in support of this innovative approach. After a traumatic event involving the head, bone fragments may have to be removed and a replacement implant placed through a highly demanding surgical procedure in terms of surgeon dexterity. A promising alternative to the current surgical technique is the use of a robotic arm to deposit the biomaterials directly onto the damaged site of the patient following a planned curved surface, which can be designed pre-operatively. Here we achieved an accurate planning-patient registration through pre-operative fiducial markers positioned around the surgical area, reconstructed starting from computed tomography images. Exploiting the availability of multiple degrees of freedom for the regeneration of complex and also overhanging parts typical of anatomical defects, in this work the robotic platform IMAGObot was used to regenerate a cranial defect on a patient-specific phantom. The in situ bioprinting process was then successfully performed showing the great potential of this innovative technology in the field of cranial surgery. In particular, the accuracy of the deposition process was quantified, as well as the duration of the whole procedure was compared to a standard surgical practice. Further investigations include a biological characterisation over time of the printed construct as well as an in vitro and in vivo analysis of the proposed approach, to better analyse the biomaterial performances in terms of osteo-integration with the native tissue.
Collapse
Affiliation(s)
- Gabriele Maria Fortunato
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "E. Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Sofia Sigismondi
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "E. Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Matteo Nicoletta
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "E. Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Sara Condino
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- EndoCAS Center for Computer-Assisted Surgery, University of Pisa, 56126 Pisa, Italy
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy
| | - Giovanni Vozzi
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "E. Piaggio", University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Ferrari
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- EndoCAS Center for Computer-Assisted Surgery, University of Pisa, 56126 Pisa, Italy
| | - Carmelo De Maria
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- Research Centre "E. Piaggio", University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
8
|
Yu T, Zhang L, Dou X, Bai R, Wang H, Deng J, Zhang Y, Sun Q, Li Q, Wang X, Han B. Mechanically Robust Hydrogels Facilitating Bone Regeneration through Epigenetic Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203734. [PMID: 36161289 PMCID: PMC9661832 DOI: 10.1002/advs.202203734] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/24/2022] [Indexed: 05/26/2023]
Abstract
Development of artificial biomaterials by mimicking extracellular matrix of bone tissue is a promising strategy for bone regeneration. Hydrogel has emerged as a type of viable substitute, but its inhomogeneous networks and weak mechanics greatly impede clinical applications. Here, a dual crosslinked gelling system is developed with tunable architectures and mechanics to promote osteogenic capacity. Polyhedral oligomeric silsesquioxane (POSS) is designated as a rigid core surrounded by six disulfide-linked PEG shells and two 2-ureido-4[1H]-pyrimidinone (UPy) groups. Thiol-disulfide exchange is employed to fabricate chemical network because of the pH-responsive "on/off" function. While self-complementary UPy motif is capable of optimizing local microstructure to enhance mechanical properties. Taking the merits of biocompatibility and high-mechanics in periodontal ligament stem cells (PDLSCs) proliferation, attachment, and osteogenesis, hybrid hydrogel exhibits outstanding osteogenic potential both in vitro and in vivo. Importantly, it is the first time that a key epigenetic regulator of ten-eleven translocation 2 (Tet2) is discovered to significantly elevate the continuously active the WNT/β-catenin through Tet2/HDAC1/E-cadherin/β-catenin signaling cascade, thereby promoting PDLSCs osteogenesis. This work represents a general strategy to design the hydrogels with customized networks and biomimetic mechanics, and illustrates underlying osteogenic mechanisms that will extend the design rationales for high-functional biomaterials in tissue engineering.
Collapse
Affiliation(s)
- Tingting Yu
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Lingyun Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Xueyu Dou
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Rushui Bai
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Hufei Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jie Deng
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yunfan Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Qiannan Sun
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Qian Li
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Xing Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Bing Han
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| |
Collapse
|
9
|
Engineering a biomimetic bone scaffold that can regulate redox homeostasis and promote osteogenesis to repair large bone defects. Biomaterials 2022; 286:121574. [DOI: 10.1016/j.biomaterials.2022.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
|
10
|
Mechanosensitive Osteogenesis on Native Cellulose Scaffolds for Bone Tissue Engineering. J Biomech 2022; 135:111030. [DOI: 10.1016/j.jbiomech.2022.111030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 12/23/2022]
|
11
|
Zheng J, Zhao Z, Yang Y, Wang S, Zhao Y, Xiong Y, Yang S, Qiu Z, Song T, Zhang C, Wang X. Biphasic mineralized collagen based composite scaffold for cranial bone regeneration in developing sheep. Regen Biomater 2022; 9:rbac004. [PMID: 35592140 PMCID: PMC9113234 DOI: 10.1093/rb/rbac004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Appropriate mechanical support and excellent osteogenic capability are two essential prerequisites of customized implants for regenerating large-sized cranial bone defect. Although porous bone scaffolds have been widely proven to promote bone regeneration, their weak mechanical properties limit the clinical applications in cranioplasty. Herein, we applied two previously developed mineralized collagen-based bone scaffolds (MC), porous MC (pMC) and compact MC (cMC) to construct a biphasic MC composite bone scaffold (bMC) to repair the large-sized cranial bone defect in developing sheep. A supporting frame composed of cMC phase in the shape of tic–tac–toe structure was fabricated first and then embedded in pMC phase. The two phases had good interfacial bond, attributing to the formation of an interfacial zone. The in vivo performance of the bMC scaffold was evaluated by using a cranial bone defect model in 1-month-old sheep. The computed tomography imaging, X-ray scanning and histological evaluation showed that the pMC phase in the bMC scaffold, similar to the pMC scaffold, was gradually replaced by the regenerative bone tissues with comprehensively increased bone mineral density and complete connection of bone bridge in the whole region. The cMC frame promoted new bone formation beneath the frame without obvious degradation, thus providing appropriate mechanical protection and ensuring the structural integrity of the implant. In general, the sheep with bMC implantation exhibited the best status of survival, growth and the repair effect. The biphasic structural design may be a prospective strategy for developing new generation of cranioplasty materials to regenerate cranial bone defect in clinic.
Collapse
Affiliation(s)
- Jingchuan Zheng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhijun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical School, Baotou, 014010, China
| | - Yongdong Yang
- Dongzhimen Hospital Affiliated Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yonggang Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Xiong
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhiye Qiu
- Beijing Allgens Medical Science and Technology Co., Ltd., 100176, China, Beijing
| | - Tianxi Song
- Beijing Allgens Medical Science and Technology Co., Ltd., 100176, China, Beijing
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical School, Baotou, 014010, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
A Narrative Review of Cell-Based Approaches for Cranial Bone Regeneration. Pharmaceutics 2022; 14:pharmaceutics14010132. [PMID: 35057028 PMCID: PMC8781797 DOI: 10.3390/pharmaceutics14010132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 01/08/2023] Open
Abstract
Current cranial repair techniques combine the use of autologous bone grafts and biomaterials. In addition to their association with harvesting morbidity, autografts are often limited by insufficient quantity of bone stock. Biomaterials lead to better outcomes, but their effectiveness is often compromised by the unpredictable lack of integration and structural failure. Bone tissue engineering offers the promising alternative of generating constructs composed of instructive biomaterials including cells or cell-secreted products, which could enhance the outcome of reconstructive treatments. This review focuses on cell-based approaches with potential to regenerate calvarial bone defects, including human studies and preclinical research. Further, we discuss strategies to deliver extracellular matrix, conditioned media and extracellular vesicles derived from cell cultures. Recent advances in 3D printing and bioprinting techniques that appear to be promising for cranial reconstruction are also discussed. Finally, we review cell-based gene therapy approaches, covering both unregulated and regulated gene switches that can create spatiotemporal patterns of transgenic therapeutic molecules. In summary, this review provides an overview of the current developments in cell-based strategies with potential to enhance the surgical armamentarium for regenerating cranial vault defects.
Collapse
|
13
|
Zhou Q, Ren X, Oberoi MK, Bedar M, Caprini RM, Dewey MJ, Kolliopoulos V, Yamaguchi DT, Harley BA, Lee JC. β-Catenin Limits Osteogenesis on Regenerative Materials in a Stiffness-Dependent Manner. Adv Healthc Mater 2021; 10:e2101467. [PMID: 34585526 PMCID: PMC8665088 DOI: 10.1002/adhm.202101467] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Indexed: 12/30/2022]
Abstract
Targeted refinement of regenerative materials requires mechanistic understanding of cell-material interactions. The nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) scaffold is shown to promote skull regeneration in vivo without additive exogenous growth factors or progenitor cells, suggesting potential for clinical translation. This work evaluates modulation of MC-GAG stiffness on canonical Wnt (cWnt) signaling. Primary human bone marrow-derived mesenchymal stem cells (hMSCs) are differentiated on two MC-GAG scaffolds (noncrosslinked, NX-MC, 0.3 kPa vs conventionally crosslinked, MC, 3.9 kPa). hMSCs increase expression of activated β-catenin, the major cWnt intracellular mediator, and the mechanosensitive YAP protein with near complete subcellular colocalization on stiffer MC scaffolds. Overall Wnt pathway inhibition reduces activated β-catenin and osteogenic differentiation, while elevating BMP4 and phosphorylated Smad1/5 (p-Smad1/5) expression on MC, but not NX-MC. Unlike Wnt pathway downregulation, isolated canonical Wnt inhibition with β-catenin knockdown increases osteogenic differentiation and mineralization specifically on the stiffer MC. β-catenin knockdown also increases p-Smad1/5, Runx2, and BMP4 expression only on the stiffer MC material. Thus, while stiffness-induced activation of the Wnt and mechanotransduction pathways promotes osteogenesis on MC-GAG, activated β-catenin is a limiting agent and may serve as a useful target or readout for optimal modulation of stiffness in skeletal regenerative materials.
Collapse
Affiliation(s)
- Qi Zhou
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Xiaoyan Ren
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Michelle K. Oberoi
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Meiwand Bedar
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Rachel M. Caprini
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Marley J. Dewey
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Justine C. Lee
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| |
Collapse
|
14
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
15
|
Chen S, Wang H, Mainardi VL, Talò G, McCarthy A, John JV, Teusink MJ, Hong L, Xie J. Biomaterials with structural hierarchy and controlled 3D nanotopography guide endogenous bone regeneration. SCIENCE ADVANCES 2021; 7:eabg3089. [PMID: 34321208 PMCID: PMC8318363 DOI: 10.1126/sciadv.abg3089] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/11/2021] [Indexed: 05/08/2023]
Abstract
Biomaterials without exogenous cells or therapeutic agents often fail to achieve rapid endogenous bone regeneration with high quality. Here, we reported a class of three-dimensional (3D) nanofiber scaffolds with hierarchical structure and controlled alignment for effective endogenous cranial bone regeneration. 3D scaffolds consisting of radially aligned nanofibers guided and promoted the migration of bone marrow stem cells from the surrounding region to the center in vitro. These scaffolds showed the highest new bone volume, surface coverage, and mineral density among the tested groups in vivo. The regenerated bone exhibited a radially aligned fashion, closely recapitulating the scaffold's architecture. The organic phase in regenerated bone showed an aligned, layered, and densely packed structure, while the inorganic mineral phase showed a uniform distribution with smaller pore size and an even distribution of stress upon the simulated compression. We expect that this study will inspire the design of next-generation biomaterials for effective endogenous bone regeneration with desired quality.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hongjun Wang
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Valerio Luca Mainardi
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), via Tesserete 46, 6900, Lugano, Switzerland
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Material and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133, Milan, Italy
| | - Giuseppe Talò
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, via Galeazzi, 4, 20161, Milan, Italy
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew J Teusink
- Department of Orthaepedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Liu Hong
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
16
|
Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev 2021; 174:504-534. [PMID: 33991588 DOI: 10.1016/j.addr.2021.05.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Bone regenerative engineering provides a great platform for bone tissue regeneration covering cells, growth factors and other dynamic forces for fabricating scaffolds. Diversified biomaterials and their fabrication methods have emerged for fabricating patient specific bioactive scaffolds with controlled microstructures for bridging complex bone defects. The goal of this review is to summarize the points of scaffold design as well as applications for bone regeneration based on both electrospinning and 3D bioprinting. It first briefly introduces biological characteristics of bone regeneration and summarizes the applications of different types of material and the considerations for bone regeneration including polymers, ceramics, metals and composites. We then discuss electrospinning nanofibrous scaffold applied for the bone regenerative engineering with various properties, components and structures. Meanwhile, diverse design in the 3D bioprinting scaffolds for osteogenesis especially in the role of drug and bioactive factors delivery are assembled. Finally, we discuss challenges and future prospects in the development of electrospinning and 3D bioprinting for osteogenesis and prominent strategies and directions in future.
Collapse
|
17
|
Li B, Wang S, Zhao Y, Wang X. [The latest study on biomimetic mineralized collagen-based bone materials for pediatric skull regeneration and repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:278-285. [PMID: 33719234 DOI: 10.7507/1002-1892.202009078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a worldwide challenge in the field of neurosurgery, there is no effective treatment method for pediatric skull defects repair in clinic. Currently clinical used cranioplasty materials couldn't undergo adjustment in response to skull growth and deformation. An ideal material for pediatric cranioplasty should fulfill the requirements of achieving complete closure, good osseointegration, biodegradability and conformability, sufficient cerebral protection and optimal aesthetic, and functional restoration of calvaria. Biomimetic mineralized collagen-based bone material is a kind of material that simulates the microstructural unit of natural bone on the nanometer scale. Because of its high osteogenic activity, it is widely used in repair of all kinds of bone defects. Recently, the biomimetic mineralized collagen-based bone materials have successfully been applied for cranial regeneration and repair with satisfactory results. This review mainly introduces the characteristics of the biomimetic mineralized collagen-based bone materials, the advantages for the repair of pediatric skull defects, and the related progresses.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R.China
| | | | - Yonggang Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R.China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P.R.China
| |
Collapse
|
18
|
Zhou Q, Lyu S, Bertrand AA, Hu AC, Chan CH, Ren X, Dewey MJ, Tiffany AS, Harley BAC, Lee JC. Stiffness of Nanoparticulate Mineralized Collagen Scaffolds Triggers Osteogenesis via Mechanotransduction and Canonical Wnt Signaling. Macromol Biosci 2021; 21:e2000370. [PMID: 33382197 PMCID: PMC7977493 DOI: 10.1002/mabi.202000370] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 12/12/2022]
Abstract
The ability of the extracellular matrix (ECM) to instruct progenitor cell differentiation has generated excitement for the development of materials-based regenerative solutions. Described a nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) material capable of inducing in vivo skull regeneration without exogenous growth factors or ex vivo progenitor cell-priming is described previously. Here, the contribution of titrating stiffness to osteogenicity is evaluated by comparing noncrosslinked (NX-MC) and crosslinked (MC) forms of MC-GAG. While both materials are osteogenic, MC demonstrates an increased expression of osteogenic markers and mineralization compared to NX-MC. Both materials are capable of autogenously activating the canonical BMPR signaling pathway with phosphorylation of Smad1/5. However, unlike NX-MC, human mesenchymal stem cells cultured on MC demonstrate significant elevations in the major mechanotransduction mediators YAP and TAZ expression, coincident with β-catenin activation in the canonical Wnt signaling pathway. Inhibition of YAP/TAZ activation reduces osteogenic expression, mineralization, and β-catenin activation in MC, with less of an effect on NX-MC. YAP/TAZ inhibition also results in a reciprocal increase in Smad1/5 phosphorylation and BMP2 expression. The results indicate that increasing MC-GAG stiffness induces osteogenic differentiation via the mechanotransduction mediators YAP/TAZ and the canonical Wnt signaling pathway, whereas the canonical BMPR signaling pathway is activated independent of stiffness.
Collapse
Affiliation(s)
- Qi Zhou
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 90073, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| | - Shengyu Lyu
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 90073, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| | - Anthony A Bertrand
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 90073, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| | - Allison C Hu
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 90073, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| | - Candace H Chan
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 90073, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| | - Xiaoyan Ren
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 90073, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| | - Marley J Dewey
- Department of Materials Science and Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aleczandria S Tiffany
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Justine C Lee
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 90073, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
19
|
Microporosities in 3D-Printed Tricalcium-Phosphate-Based Bone Substitutes Enhance Osteoconduction and Affect Osteoclastic Resorption. Int J Mol Sci 2020; 21:ijms21239270. [PMID: 33291724 PMCID: PMC7731226 DOI: 10.3390/ijms21239270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 01/01/2023] Open
Abstract
Additive manufacturing is a key technology required to realize the production of a personalized bone substitute that exactly meets a patient’s need and fills a patient-specific bone defect. Additive manufacturing can optimize the inner architecture of the scaffold for osteoconduction, allowing fast and reliable defect bridging by promoting rapid growth of new bone tissue into the scaffold. The role of scaffold microporosity/nanoarchitecture in osteoconduction remains elusive. To elucidate this relationship, we produced lithography-based osteoconductive scaffolds from tricalcium phosphate (TCP) with identical macro- and microarchitecture, but varied their nanoarchitecture/microporosity by ranging maximum sintering temperatures from 1000 °C to 1200 °C. After characterization of the different scaffolds’ microporosity, compression strength, and nanoarchitecture, we performed in vivo studies that showed that ingrowth of bone as an indicator of osteoconduction significantly decreased with decreasing microporosity. Moreover, at the 1200 °C peak sinter temperature and lowest microporosity, osteoclastic degradation of the material was inhibited. Thus, even for wide-open porous TCP-based scaffolds, a high degree of microporosity appears to be essential for optimal osteoconduction and creeping substitution, which can prevent non-unions, the major complication during bone regeneration procedures.
Collapse
|
20
|
Sun K, Lin H, Tang Y, Xiang S, Xue J, Yin W, Tan J, Peng H, Alexander PG, Tuan RS, Wang B. Injectable BMP-2 gene-activated scaffold for the repair of cranial bone defect in mice. Stem Cells Transl Med 2020; 9:1631-1642. [PMID: 32785966 PMCID: PMC7695643 DOI: 10.1002/sctm.19-0315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering using adult human mesenchymal stem cells (MSCs) seeded within biomaterial scaffolds has shown the potential to enhance bone healing. Recently, we have developed an injectable, biodegradable methacrylated gelatin‐based hydrogel, which was especially effective in producing scaffolds in situ and allowed the delivery of high viable stem cells and gene vehicles. The well‐demonstrated benefits of recombinant adeno‐associated viral (rAAV) vector, including long‐term gene transfer efficiency and relative safety, combination of gene and cell therapies has been developed in both basic and translational research to support future bone tissue regeneration clinical trials. In this study, we have critically assessed the applicability of single‐step visible light (VL) photocrosslinking fabrication of gelatin scaffold to deliver rAAV encoding human bone morphogenetic protein‐2 (BMP‐2) gene to address the need for sustained BMP‐2 presence localized within scaffolds for the repair of cranial bone defect in mouse model. In this method, rAAV‐BMP‐2 and human bone marrow‐derived MSCs (hBMSCs) were simultaneously included into gelatin scaffolds during scaffold formation by VL illumination. We demonstrated that the subsequent release of rAAV‐BMP‐2 constructs from the scaffold matrix, which resulted in efficient in situ expression of BMP‐2 gene by hBMSCs seeded within the scaffolds, and thus induced their osteogenic differentiation without the supplement of exogenous BMP‐2. The reparative capacity of this novel stem cell‐seeded and gene‐activated scaffolds was further confirmed in the cranial defect in the severe combined immunodeficiency mice, revealed by imaging, histology, and immunohistochemistry at 6 weeks after cranial defect treatment.
Collapse
Affiliation(s)
- Kai Sun
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shiqi Xiang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jingwen Xue
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Weifeng Yin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jian Tan
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Peter G Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Li X, Chen M, Wang P, Yao Y, Han X, Liang J, Jiang Q, Sun Y, Fan Y, Zhang X. A highly interweaved HA-SS-nHAp/collagen hybrid fibering hydrogel enhances osteoinductivity and mineralization. NANOSCALE 2020; 12:12869-12882. [PMID: 32520065 DOI: 10.1039/d0nr01824d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The combination of bioactive hydroxyapatite (HAp) with biomimetic bone matrix biomaterials as bone filling scaffolds is a promising strategy for bone regeneration, but the undesirable dispersion of HAp and its interfacial interaction result in inefficient mineralization, mechanical instability, incomplete osteointegration, and even repair failure. Herein, the size dispersion and stabilization of nano-hydroxyapatite (nHAp) in aqueous media were obviously improved by hydrophilic solubilisation and strong negatively charged thiolated hyaluronic acid (HA-SH). Furthermore, the highly interweaved HA-SS-nHAp/collagen hybrid fibering hydrogel exhibited significantly improved mechanical properties and structural stability due to its thickened and densified interweaved fiber network, which ensured the homogeneous dispersion of nHAp in the matrix materials and its integration with the hydrogel network structure completely by covalent self-crosslinking among the sulfhydryl groups derived from the free HA-SH polymer and the mercapto functional groups on the surface of nHAp. Compared with the physically combined micro-hydroxyapatite (μHAp) (d≤25 μm) and nHAp (∼530 nm) with injectable bionic HA-SH and collagen type I biopolymers, HA-SS-nHAp/collagen achieved the maximum efficiency in facilitating rabbit bone marrow stromal cell (rBMSC) adhesion, proliferation and osteogenic differentiation in vitro. The in vivo murine dorsal subcutaneous implantation results further confirmed that the interweaved fiber network structure in HA-SS-nHAp/collagen significantly promoted osteoinductivity and mineralization. This work provides novel insights for the development of new low invasive bone filling biomaterials.
Collapse
Affiliation(s)
- Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hsieh TE, Lin SJ, Chen LC, Chen CC, Lai PL, Huang CC. Optimizing an Injectable Composite Oxygen-Generating System for Relieving Tissue Hypoxia. Front Bioeng Biotechnol 2020; 8:511. [PMID: 32528945 PMCID: PMC7264163 DOI: 10.3389/fbioe.2020.00511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Oxygen deficiency resulting from bone fracture-induced vascular disruption leads to massive cell death and delayed osteoblast differentiation, ultimately impairing new bone formation and fracture healing. Enhancing local tissue oxygenation can help promote bone regeneration. In this work, an injectable composite oxygen-generating system consisting of calcium peroxide (CaO2)/manganese dioxide (MnO2)-encapsulated poly lactic-co-glycolic acid (PLGA) microparticles (CaO2 + MnO2@PLGA MPs) is proposed for the local delivery of oxygen. By utilizing a series of methodologies, the impacts of each component used for MP fabrication on the oxygen release behavior and cytotoxicity of the CaO2 + MnO2@ PLGA MPs are thoroughly investigated. Our analytical data obtained from in vitro studies indicate that the optimized CaO2 + MnO2@PLGA MPs developed in this study can effectively relieve the hypoxia of preosteoblast MC3T3-E1 cells that are grown under low oxygen tension and promote their osteogenic differentiation, thus holding great promise in enhancing fractural healing by increasing tissue oxygenation.
Collapse
Affiliation(s)
- Tai-En Hsieh
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-Ju Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Chi Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Chieh Chen
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
23
|
Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110893. [PMID: 32409051 DOI: 10.1016/j.msec.2020.110893] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
Large-sized bone defect repair is a challenging task in orthopedic surgery. Porous scaffolds with controlled release of growth factors have been investigated for many years. In this study, a hydroxyapatite composite scaffold was prepared by 3D printing at low temperature and coating with layer-by-layer (LBL) assembly. Bone morphogenic protein-2 (BMP-2) and vascular endothelial growth factors (VEGF) were loaded into the composite scaffolds. The release of dual growth factors was analyzed in vitro. The cell growth and osteogenic differentiation were assessed by culturing MC3T3-E1 cells onto the scaffolds. In an established rabbit model of critical-sized calvarial defect (15 mm in diameter), the osteogenic and angiogenic properties after implantation of scaffolds were evaluated by micro-computed tomography (micro-CT) and stained sections. Our results showed that the scaffolds possessed well-designed porous structure and could release two growth factors in a sustained way. The micro-CT analysis showed that the scaffolds with BMP-2/VEGF could accelerate new bone formation. Findings of immunochemical staining of collagen type I and lectin indicated that better osteogenic and angiogenic properties induced by BMP-2 and VEGF. These results suggested that the novel composite scaffolds combined with BMP-2/VEGF had both osteogenic and angiogenic abilities which could enhance new bone formation with good quality. Thus, the combination of 3D printed scaffolds loaded with BMP-2/VEGF might provide a potential solution for bone repair and regeneration in clinical applications.
Collapse
|
24
|
Ren X, Zhou Q, Foulad D, Tiffany AS, Dewey MJ, Bischoff D, Miller TA, Reid RR, He TC, Yamaguchi DT, Harley BAC, Lee JC. Osteoprotegerin reduces osteoclast resorption activity without affecting osteogenesis on nanoparticulate mineralized collagen scaffolds. SCIENCE ADVANCES 2019; 5:eaaw4991. [PMID: 31206025 PMCID: PMC6561746 DOI: 10.1126/sciadv.aaw4991] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/03/2019] [Indexed: 05/02/2023]
Abstract
The instructive capabilities of extracellular matrix-inspired materials for osteoprogenitor differentiation have sparked interest in understanding modulation of other cell types within the bone regenerative microenvironment. We previously demonstrated that nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) scaffolds efficiently induced osteoprogenitor differentiation and bone healing. In this work, we combined adenovirus-mediated delivery of osteoprotegerin (AdOPG), an endogenous anti-osteoclastogenic decoy receptor, in primary human mesenchymal stem cells (hMSCs) with MC-GAG to understand the role of osteoclast inactivation in augmentation of bone regeneration. Simultaneous differentiation of osteoprogenitors on MC-GAG and osteoclast progenitors resulted in bidirectional positive regulation. AdOPG expression did not affect osteogenic differentiation alone. In the presence of both cell types, AdOPG-transduced hMSCs on MC-GAG diminished osteoclast-mediated resorption in direct contact; however, osteoclast-mediated augmentation of osteogenic differentiation was unaffected. Thus, the combination of OPG with MC-GAG may represent a method for uncoupling osteogenic and osteoclastogenic differentiation to augment bone regeneration.
Collapse
Affiliation(s)
- Xiaoyan Ren
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
- UCLA Molecular Biology Institute, Los Angeles, CA 90095, USA
| | - Qi Zhou
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
- UCLA Molecular Biology Institute, Los Angeles, CA 90095, USA
| | - David Foulad
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
- UCLA Molecular Biology Institute, Los Angeles, CA 90095, USA
| | - Aleczandria S. Tiffany
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marley J. Dewey
- Department of Materials Science and Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David Bischoff
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Timothy A. Miller
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Russell R. Reid
- Section of Plastic and Reconstructive Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Department of Orthopaedic Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Justine C. Lee
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
- UCLA Molecular Biology Institute, Los Angeles, CA 90095, USA
- Corresponding author.
| |
Collapse
|
25
|
Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. NANOSCALE 2019; 11:4147-4182. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioinspired synthesis offers potential green strategies to build highly complex nanomaterials by utilizing the unique nanostructures, functions, and properties of biomolecules, in which the biomolecular recognition and self-assembly processes play important roles in tailoring the structures and functions of bioinspired materials. Further understanding of biomolecular self-assembly for inspiring the formation and assembly of nanoparticles would promote the design and fabrication of functional nanomaterials for various applications. In this review, we focus on recent advances in bioinspired synthesis and applications of hierarchical nanomaterials based on biomolecular self-assembly. We first discuss biomolecular self-assembly towards biological nanomaterials, in which the mechanisms and ways of biomolecular self-assembly as well as various self-assembled biomolecular nanostructures are demonstrated. Secondly, the bioinspired synthesis strategies including molecule-molecule interaction, molecule-material recognition, molecule-mediated nucleation and growth, and molecule-mediated reduction/oxidation are introduced and discussed. Meanwhile, typical examples and discussions on how biomolecular self-assembly inspires the formation of hierarchical hybrid nanomaterials are presented. Finally, the applications of bioinspired nanomaterials in biofuel cells, light-harvesting systems, batteries, supercapacitors, catalysis, water/air purification, and environmental monitoring are presented and discussed. We believe that this review will be very helpful for readers to understand the self-assembly of biomolecules and the biomimetic/bioinspired strategies for synthesizing hierarchical nanomaterials on the one hand, and on the other hand to design novel materials for extended applications in nanotechnology, materials science, analytical science, and biomedical engineering.
Collapse
Affiliation(s)
- Coucong Gong
- Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhou C, Liu S, Li J, Guo K, Yuan Q, Zhong A, Yang J, Wang J, Sun J, Wang Z. Collagen Functionalized With Graphene Oxide Enhanced Biomimetic Mineralization and in Situ Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44080-44091. [PMID: 30475576 DOI: 10.1021/acsami.8b17636] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomimetic mineralization using simulated body fluid (SBF) can form a bonelike apatite (Ap) on the natural polymers and enhance osteoconductivity and biocompatibility, and reduce immunological rejection. Nevertheless, the coating efficiency of the bonelike apatite layer on natural polymers still needs to be improved. Graphene oxide (GO) is rich in functional groups, such as carbonyls (-COOH) and hydroxyls (-OH), which can provide more active sites for biomimetic mineralization and improve the proliferation of the rat bone marrow stromal cells (r-BMSCs). In this study, we introduced 0%, 0.05%, 0.1%, and 0.2% w/v concentrations of GO into collagen (Col) scaffolds and immersed the fabricated scaffolds into SBF for 1, 7, and 14 days. In vitro environment scanning electron microscopy (ESEM), energy-dispersive spectrometry (EDS), thermogravimetric analysis (TGA), micro-CT, calcium quantitative analysis, and cellular analysis were used to evaluate the formation of bonelike apatite on the scaffolds. In vivo implantation of the scaffolds into the rat cranial defect was used to analyze the bone regeneration ability. The resulting GO-Col-Ap scaffolds exhibited a porous and interconnected structure coated with a homogeneous distribution of bonelike apatite on their surfaces. The Ca/P ratio of 0.1% GO-Col-Ap group was equal to that of natural bone tissue on the basis of EDS analysis. More apatites were observed in the 0.1% GO-Col-Ap group through TGA analysis, micro-CT evaluation, and calcium quantitative analysis. Furthermore, the 0.1% GO-Col-Ap group showed significantly higher r-BMSCs adhesion and proliferation in vitro and more than 2-fold higher bone formation than the Col-Ap group in vivo. Our study provides a new approach of introducing graphene oxide into bone tissue engineering scaffolds to enhance biomimetic mineralization.
Collapse
Affiliation(s)
- Chuchao Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Shaokai Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Jialun Li
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Ke Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Quan Yuan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China
| |
Collapse
|
27
|
Wang S, Zhao Z, Yang Y, Mikos AG, Qiu Z, Song T, Cui F, Wang X, Zhang C. A high-strength mineralized collagen bone scaffold for large-sized cranial bone defect repair in sheep. Regen Biomater 2018; 5:283-292. [PMID: 30338126 PMCID: PMC6184757 DOI: 10.1093/rb/rby020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
Large-sized cranial bone defect repair presents a great challenge in the clinic. The ideal cranioplasty materials to realize the functional and cosmetic recovery of the defect must have sufficient mechanical support, excellent biocompatibility, good osseointegration and biodegradability as well. In this study, a high-strength mineralized collagen (MC) bone scaffold was developed with biomimetic composition, microstructure and mechanical properties for the repair of sheep large-sized cranial bone defects in comparison with two traditional cranioplasty materials, polymethyl methacrylate and titanium mesh. The compact MC scaffold showed no distinct pore structure and therefore possessed good mechanical properties. The strength and elastic modulus of the scaffold were much higher than those of natural cancellous bone and slightly lower than those of natural compact bone. In vitro cytocompatibility evaluation revealed that the human bone marrow mesenchymal stem cells (hBMSC) had good viability, attachment and proliferation on the compact MC scaffold indicating its excellent biocompatibility. An adult sheep cranial bone defect model was constructed to evaluate the performances of these cranioplasty materials in repairing the cranial bone defects. The results were investigated by gross observation, computed tomography scanning as well as histological assessments. The in vivo evaluations indicated that compact MC scaffold showed notable osteoconductivity and osseointegration with surrounding cranial bone tissues by promoting bone regeneration. Our results suggested that the compact MC scaffold has a promising potential for large-sized cranial bone defect repair.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Zhijun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical School, Baotou, China
| | - Yongdong Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Dongzhimen Hospital Affiliated Beijing University of Chinese Medicine, Beijing, China
| | | | - Zhiye Qiu
- Beijing Allgens Medical Science and Technology Co., Ltd., Beijing, China
| | - Tianxi Song
- Beijing Allgens Medical Science and Technology Co., Ltd., Beijing, China
| | - Fuzhai Cui
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical School, Baotou, China
| |
Collapse
|
28
|
Chen TH, Ghayor C, Siegenthaler B, Schuler F, Rüegg J, De Wild M, Weber FE. Lattice Microarchitecture for Bone Tissue Engineering from Calcium Phosphate Compared to Titanium. Tissue Eng Part A 2018; 24:1554-1561. [PMID: 29999466 PMCID: PMC6198759 DOI: 10.1089/ten.tea.2018.0014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Additive manufacturing of bone tissue engineering scaffolds will become a key element for personalized bone tissue engineering in the near future. Several additive manufacturing processes are based on extrusion where the deposition of the filament will result in a three-dimensional lattice structure. Recently, we studied diverse lattice structures for bone tissue engineering realized by laser sintering of titanium. In this work, we used lithography-based ceramic manufacturing of lattice structures to produce scaffolds from tricalcium phosphates (TCP) and compared them in vivo to congruent titanium scaffolds manufactured with the identical computer-aided design data to look for material-based differences in bony healing. The results show that, during a 4-week period in a noncritical-size defect in a rabbit calvarium, both scaffolds with the identical microarchitecture performed equally well in terms of bony regeneration and bony bridging of the defect. A significant increase in both parameters could only be achieved when the TCP-based scaffolds were doped with bone morphogenetic protein-2. In a critical-size defect in the calvarial bone of rabbits, however, the titanium scaffold performed significantly better than the TCP-based scaffold, most likely due to its higher mechanical stability. We conclude that titanium and TCP-based scaffolds of the same microarchitecture perform equally well in terms of bone regeneration, provided the microarchitecture meets the mechanical demand at the site of implantation.
Collapse
Affiliation(s)
- Tse-Hsiang Chen
- 1 Oral Biotechnology and Bioengineering, Center of Dental Medicine, University of Zurich , Zurich, Switzerland
| | - Chafik Ghayor
- 1 Oral Biotechnology and Bioengineering, Center of Dental Medicine, University of Zurich , Zurich, Switzerland
| | - Barbara Siegenthaler
- 1 Oral Biotechnology and Bioengineering, Center of Dental Medicine, University of Zurich , Zurich, Switzerland
| | - Felix Schuler
- 2 School of Life Sciences, Institute for Medical and Analytical Technologies, University of Applied Sciences Northwestern Switzerland , Muttenz, Switzerland
| | - Jasmine Rüegg
- 2 School of Life Sciences, Institute for Medical and Analytical Technologies, University of Applied Sciences Northwestern Switzerland , Muttenz, Switzerland
| | - Michael De Wild
- 2 School of Life Sciences, Institute for Medical and Analytical Technologies, University of Applied Sciences Northwestern Switzerland , Muttenz, Switzerland
| | - Franz E Weber
- 1 Oral Biotechnology and Bioengineering, Center of Dental Medicine, University of Zurich , Zurich, Switzerland .,3 CABMM, Center for Applied Biotechnology and Molecular Medicine, University of Zurich , Zurich, Switzerland .,4 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich , Zurich, Switzerland
| |
Collapse
|
29
|
Su W, Ma X, Sun Z, Yi Z, Cui X, Chen G, Chen X, Guo B, Li X. RhBMP-2 and concomitant rapid material degradation synergistically promote bone repair and regeneration with collagen-hydroxyapatite nanocomposites. J Mater Chem B 2018; 6:4338-4350. [PMID: 32254509 DOI: 10.1039/c8tb00405f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effective treatment of bone defects is still a great challenge in clinical practice. Synthetic bone-grafting substitutes of composition and structure analogous to bone as well as incorporated with growth factors are considered to be a promising solution. In this study, a collagen-hydroxyapatite (CHA) nanocomposite scaffold was developed by collagen self-assembly with simultaneous HA synthesis. The physicochemical properties such as morphology, inorganic phase, thermal decomposition, specific surface area and pore size distribution were characterized. The osteogenicity of CHA in the absence or presence of recombinant human bone morphogenetic protein-2 (rhBMP-2) was assessed both by cell culturing and animal implantation experiments. The gene expression results showed that the osteogenic differentiation capacity of rat bone mesenchymal stem cells (rBMSCs) has been enhanced both by CHA and rhBMP-2. The efficient bone regeneration of femoral defects in rabbits was achieved with CHA and CHA pre-absorbed rhBMP-2 (CHA/B), confirmed by micro-computed tomography measurements, histological observation and immunohistochemical analyses. The CHA nanocomposite was completely degraded within 8 weeks and replaced by new bone. It was found that rhBMP-2 not only accelerated and enhanced bone formation, but also expedited the degradation of CHA. It is believed that the rhBMP-2 and concomitant rapid material degradation synergistically promote bone repair and regeneration with CHA. The biodegradation behavior of CHA in the presence of rhBMP-2 can be further investigated to gain an in-depth understanding of the complex interplays among biomaterials, growth factors and their target cells. The relevant knowledge will facilitate the search for a reasonable, safe and efficient methodology for the introduction of growth factors to biomaterials so as to achieve satisfactory tissue regeneration.
Collapse
Affiliation(s)
- Wen Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Weng L, Boda SK, Wang H, Teusink MJ, Shuler FD, Xie J. Novel 3D Hybrid Nanofiber Aerogels Coupled with BMP-2 Peptides for Cranial Bone Regeneration. Adv Healthc Mater 2018; 7:e1701415. [PMID: 29498244 PMCID: PMC6317907 DOI: 10.1002/adhm.201701415] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/15/2018] [Indexed: 12/30/2022]
Abstract
An ideal synthetic bone graft is a combination of the porous and nanofibrous structure presented by natural bone tissue as well as osteoinductive biochemical factors such as bone morphogenetic protein 2 (BMP-2). In this work, ultralight 3D hybrid nanofiber aerogels composed of electrospun PLGA-collagen-gelatin and Sr-Cu codoped bioactive glass fibers with incorporation of heptaglutamate E7 domain specific BMP-2 peptides have been developed and evaluated for their potential in cranial bone defect healing. The nanofiber aerogels are surgically implanted into 8 mm × 1 mm (diameter × thickness) critical-sized defects created in rat calvariae. A sustained release of E7-BMP-2 peptide from the degradable hybrid aerogels significantly enhances bone healing and defect closure over 8 weeks in comparison to unfilled defects. Histomorphometry and X-ray microcomputed tomography (µ-CT) analysis reveal greater bone volume and bone formation area in case of the E7-BMP-2 peptide loaded hybrid nanofiber aerogels. Further, histopathology data divulged a near complete nanofiber aerogel degradation along with enhanced vascularization of the regenerated tissue. Together, this study for the first time demonstrates the fabrication of 3D hybrid nanofiber aerogels from 2D electrospun fibers and their loading with therapeutic osteoinductive BMP-2 mimicking peptide for cranial bone tissue regeneration.
Collapse
Affiliation(s)
- Lin Weng
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sunil Kumar Boda
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Hongjun Wang
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Matthew J. Teusink
- Department of Orthopedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Franklin D. Shuler
- Department of Orthopaedic Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755 United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
31
|
Sun T, Liu M, Yao S, Ji Y, Shi L, Tang K, Xiong Z, Yang F, Chen K, Guo X. Guided osteoporotic bone regeneration with composite scaffolds of mineralized ECM/heparin membrane loaded with BMP2-related peptide. Int J Nanomedicine 2018; 13:791-804. [PMID: 29440901 PMCID: PMC5804122 DOI: 10.2147/ijn.s152698] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction At present, the treatment of osteoporotic defects poses a great challenge to clinicians, owing to the lower regeneration capacity of the osteoporotic bone as compared with the normal bone. The guided bone regeneration (GBR) technology provides a promising strategy to cure osteoporotic defects using bioactive membranes. The decellularized matrix from the small intestinal submucosa (SIS) has gained popularity for its natural microenvironment, which induces cell response. Materials and methods In this study, we developed heparinized mineralized SIS loaded with bone morphogenetic protein 2 (BMP2)-related peptide P28 (mSIS/P28) as a novel GBR membrane for guided osteoporotic bone regeneration. These mSIS/P28 membranes were obtained through the mineralization of SIS (mSIS), followed by P28 loading onto heparinized mSIS. The heparinized mSIS membrane was designed to improve the immobilization efficacy and facilitate controlled release of P28. P28 release from mSIS-heparin-P28 and its effects on the proliferation, viability, and osteogenic differentiation of bone marrow stromal stem cells from ovariectomized rats (rBMSCs-OVX) were investigated in vitro. Furthermore, a critical-sized OVX calvarial defect model was used to assess the bone regeneration capability of mSIS-heparin-P28 in vivo. Results In vitro results showed that P28 release from mSIS-heparin-P28 occurred in a controlled manner, with a long-term release time of 40 days. Moreover, mSIS-heparin-P28 promoted cell proliferation and viability, alkaline phosphatase activity, and mRNA expression of osteogenesis-related genes in rBMSCs-OVX without the addition of extra osteogenic components. In vivo experiments revealed that mSIS-heparin-P28 dramatically stimulated osteoporotic bone regeneration. Conclusion The heparinized mSIS loaded with P28 may serve as a potential GBR membrane for repairing osteoporotic defects.
Collapse
Affiliation(s)
- Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Taikang Tongji Hospital, Wuhan 430050, China
| | - Sheng Yao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanhui Ji
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kai Tang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zekang Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
32
|
Yu F, Zong C, Jin S, Zheng J, Chen N, Huang J, Chen Y, Huang F, Yang Z, Tang Y, Ding G. Optimization of Extraction Conditions and Characterization of Pepsin-Solubilised Collagen from Skin of Giant Croaker (Nibea japonica). Mar Drugs 2018; 16:md16010029. [PMID: 29342895 PMCID: PMC5793077 DOI: 10.3390/md16010029] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/06/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022] Open
Abstract
In the present study, response surface methodology was performed to investigate the effects of extraction parameters on pepsin-solubilised collagen (PSC) from the skin of the giant croaker Nibea japonica. The optimum extraction conditions of PSC were as follows: concentration of pepsin was 1389 U/g, solid-liquid ratio was 1:57 and hydrolysis time was 8.67 h. Under these conditions, the extraction yield of PSC was up to 84.85%, which is well agreement with the predict value of 85.03%. The PSC from Nibea japonica skin was then characterized as type I collagen by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The fourier transforms infrared spetroscopy (FTIR) analysis revealed that PSC maintains its triple-helical structure by the hydrogen bond. All PSCs were soluble in the pH range of 1.0-4.0 and decreases in solubility were observed at neutral or alkaline conditions. All PSCs had a decrease in solubility in the presence of sodium chloride, especially with a concentration above 2%. So, the Nibea japonica skin could serve as another potential source of collagen.
Collapse
Affiliation(s)
- Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Chuhong Zong
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Shujie Jin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Jiawen Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Nan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Ju Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yan Chen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Fangfang Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
33
|
Oliveira I, Carvalho AL, Radhouani H, Gonçalves C, Oliveira JM, Reis RL. Promising Biomolecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:189-205. [PMID: 29736574 DOI: 10.1007/978-3-319-76735-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The osteochondral defect (OD) comprises the articular cartilage and its subchondral bone. The treatment of these lesions remains as one of the most problematic clinical issues, since these defects include different tissues, requiring distinct healing approaches. Among the growing applications of regenerative medicine, clinical articular cartilage repair has been used for two decades, and it is an effective example of translational medicine; one of the most used cell-based repair strategies includes implantation of autologous cells in degradable scaffolds such as alginate, agarose, collagen, chitosan, chondroitin sulfate, cellulose, silk fibroin, hyaluronic acid, and gelatin, among others. Concerning the repair of osteochondral defects, tissue engineering and regenerative medicine started to design single- or bi-phased scaffold constructs, often containing hydroxyapatite-collagen composites, usually used as a bone substitute. Biomolecules such as natural and synthetic have been explored to recreate the cartilage-bone interface through multilayered biomimetic scaffolds. In this chapter, a succinct description about the most relevant natural and synthetic biomolecules used on cartilage and bone repair, describing the procedures to obtain these biomolecules, their chemical structure, common modifications to improve its characteristics, and also their application in the biomedical fields, is given.
Collapse
Affiliation(s)
- Isabel Oliveira
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana L Carvalho
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hajer Radhouani
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Cristiana Gonçalves
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco/Guimarães, Portugal
| |
Collapse
|