1
|
Bardini R, Di Carlo S. Computational methods for biofabrication in tissue engineering and regenerative medicine - a literature review. Comput Struct Biotechnol J 2024; 23:601-616. [PMID: 38283852 PMCID: PMC10818159 DOI: 10.1016/j.csbj.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/30/2024] Open
Abstract
This literature review rigorously examines the growing scientific interest in computational methods for Tissue Engineering and Regenerative Medicine biofabrication, a leading-edge area in biomedical innovation, emphasizing the need for accurate, multi-stage, and multi-component biofabrication process models. The paper presents a comprehensive bibliometric and contextual analysis, followed by a literature review, to shed light on the vast potential of computational methods in this domain. It reveals that most existing methods focus on single biofabrication process stages and components, and there is a significant gap in approaches that utilize accurate models encompassing both biological and technological aspects. This analysis underscores the indispensable role of these methods in understanding and effectively manipulating complex biological systems and the necessity for developing computational methods that span multiple stages and components. The review concludes that such comprehensive computational methods are essential for developing innovative and efficient Tissue Engineering and Regenerative Medicine biofabrication solutions, driving forward advancements in this dynamic and evolving field.
Collapse
Affiliation(s)
- Roberta Bardini
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca Degli Abruzzi, 24, Turin, 10129, Italy
| | - Stefano Di Carlo
- Department of Control and Computer Engineering, Polytechnic University of Turin, Corso Duca Degli Abruzzi, 24, Turin, 10129, Italy
| |
Collapse
|
2
|
Mestre R, Astobiza AM, Webster-Wood VA, Ryan M, Saif MTA. Ethics and responsibility in biohybrid robotics research. Proc Natl Acad Sci U S A 2024; 121:e2310458121. [PMID: 39042690 PMCID: PMC11294997 DOI: 10.1073/pnas.2310458121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
The industrial revolution of the 19th century marked the onset of an era of machines and robots that transformed societies. Since the beginning of the 21st century, a new generation of robots envisions similar societal transformation. These robots are biohybrid: part living and part engineered. They may self-assemble and emerge from complex interactions between living cells. While this new era of living robots presents unprecedented opportunities for positive societal impact, it also poses a host of ethical challenges. A systematic, nuanced examination of these ethical issues is of paramount importance to guide the evolution of this nascent field. Multidisciplinary fields face the challenge that inertia around collective action to address ethical boundaries may result in unexpected consequences for researchers and societies alike. In this Perspective, we i) clarify the ethical challenges associated with biohybrid robotics, ii) discuss the need for and elements of a potential governance framework tailored to this technology; and iii) propose tangible steps toward ethical compliance and policy formation in the field of biohybrid robotics.
Collapse
Affiliation(s)
- Rafael Mestre
- Agents, Interaction and Complexity Group, School of Electronics and Computer Science, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Politics and International Relations Department, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Centre for Democratic Futures, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Centre for Robotics, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Aníbal M. Astobiza
- Department of Public Law, University of the Basque Country/Euskal Herriko Unibertsitatea, Donostia20018, Spain
| | - Victoria A. Webster-Wood
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh15213, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh15213, Pennsylvania
- The Robotics Institute, Carnegie Mellon University, Pittsburgh15213, Pennsylvania
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh15213, Pennsylvania
| | - Matt Ryan
- Politics and International Relations Department, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Centre for Democratic Futures, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
- Democratic Innovations Research Unit, Goethe-Universität, Frankfurt am Main60323, Germany
| | - M. Taher A. Saif
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana61801, Illinois
| |
Collapse
|
3
|
Raman R. Biofabrication of Living Actuators. Annu Rev Biomed Eng 2024; 26:223-245. [PMID: 38959387 DOI: 10.1146/annurev-bioeng-110122-013805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The impact of tissue engineering has extended beyond a traditional focus in medicine to the rapidly growing realm of biohybrid robotics. Leveraging living actuators as functional components in machines has been a central focus of this field, generating a range of compelling demonstrations of robots capable of muscle-powered swimming, walking, pumping, gripping, and even computation. In this review, we highlight key advances in fabricating tissue-scale cardiac and skeletal muscle actuators for a range of functional applications. We discuss areas for future growth including scalable manufacturing, integrated feedback control, and predictive modeling and also propose methods for ensuring inclusive and bioethics-focused pedagogy in this emerging discipline. We hope this review motivates the next generation of biomedical engineers to advance rational design and practical use of living machines for applications ranging from telesurgery to manufacturing to on- and off-world exploration.
Collapse
Affiliation(s)
- Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
4
|
de Kanter AFJ, Jongsma KR, Bouten CVC, Bredenoord AL. How Smart are Smart Materials? A Conceptual and Ethical Analysis of Smart Lifelike Materials for the Design of Regenerative Valve Implants. SCIENCE AND ENGINEERING ETHICS 2023; 29:33. [PMID: 37668955 PMCID: PMC10480256 DOI: 10.1007/s11948-023-00453-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
It may soon become possible not just to replace, but to re-grow healthy tissues after injury or disease, because of innovations in the field of Regenerative Medicine. One particularly promising innovation is a regenerative valve implant to treat people with heart valve disease. These implants are fabricated from so-called 'smart', 'lifelike' materials. Implanted inside a heart, these implants stimulate re-growth of a healthy, living heart valve. While the technological development advances, the ethical implications of this new technology are still unclear and a clear conceptual understanding of the notions 'smart' and 'lifelike' is currently lacking. In this paper, we explore the conceptual and ethical implications of the development of smart lifelike materials for the design of regenerative implants, by analysing heart valve implants as a showcase. In our conceptual analysis, we show that the materials are considered 'smart' because they can communicate with human tissues, and 'lifelike' because they are structurally similar to these tissues. This shows that regenerative valve implants become intimately integrated in the living tissues of the human body. As such, they manifest the ontological entanglement of body and technology. In our ethical analysis, we argue this is ethically significant in at least two ways: It exacerbates the irreversibility of the implantation procedure, and it might affect the embodied experience of the implant recipient. With our conceptual and ethical analysis, we aim to contribute to responsible development of smart lifelike materials and regenerative implants.
Collapse
Affiliation(s)
- Anne-Floor J de Kanter
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands.
| | - Karin R Jongsma
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Annelien L Bredenoord
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam, 3062 PA, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Yuan Z, Guo Q, Jin D, Zhang P, Yang W. Biohybrid Soft Robots Powered by Myocyte: Current Progress and Future Perspectives. MICROMACHINES 2023; 14:1643. [PMID: 37630179 PMCID: PMC10456826 DOI: 10.3390/mi14081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Myocyte-driven robots, a type of biological actuator that combines myocytes with abiotic systems, have gained significant attention due to their high energy efficiency, sensitivity, biocompatibility, and self-healing capabilities. These robots have a unique advantage in simulating the structure and function of human tissues and organs. This review covers the research progress in this field, detailing the benefits of myocyte-driven robots over traditional methods, the materials used in their fabrication (including myocytes and extracellular materials), and their properties and manufacturing techniques. Additionally, the review explores various control methods, robot structures, and motion types. Lastly, the potential applications and key challenges faced by myocyte-driven robots are discussed and summarized.
Collapse
Affiliation(s)
- Zheng Yuan
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Y.); (Q.G.)
| | - Qinghao Guo
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Y.); (Q.G.)
| | - Delu Jin
- School of Human Ities and Social Science, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Peifan Zhang
- Control Science and Engineering, Naval Aviation University, Yantai 264001, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (Z.Y.); (Q.G.)
| |
Collapse
|
6
|
de Kanter AFJ, Jongsma KR, Verhaar MC, Bredenoord AL. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:167-187. [PMID: 36112697 PMCID: PMC10122262 DOI: 10.1089/ten.teb.2022.0033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Abstract
Tissue Engineering (TE) is a branch of Regenerative Medicine (RM) that combines stem cells and biomaterial scaffolds to create living tissue constructs to restore patients' organs after injury or disease. Over the last decade, emerging technologies such as 3D bioprinting, biofabrication, supramolecular materials, induced pluripotent stem cells, and organoids have entered the field. While this rapidly evolving field is expected to have great therapeutic potential, its development from bench to bedside presents several ethical and societal challenges. To make sure TE will reach its ultimate goal of improving patient welfare, these challenges should be mapped out and evaluated. Therefore, we performed a systematic review of the ethical implications of the development and application of TE for regenerative purposes, as mentioned in the academic literature. A search query in PubMed, Embase, Scopus, and PhilPapers yielded 2451 unique articles. After systematic screening, 237 relevant ethical and biomedical articles published between 2008 and 2021 were included in our review. We identified a broad range of ethical implications that could be categorized under 10 themes. Seven themes trace the development from bench to bedside: (1) animal experimentation, (2) handling human tissue, (3) informed consent, (4) therapeutic potential, (5) risk and safety, (6) clinical translation, and (7) societal impact. Three themes represent ethical safeguards relevant to all developmental phases: (8) scientific integrity, (9) regulation, and (10) patient and public involvement. This review reveals that since 2008 a significant body of literature has emerged on how to design clinical trials for TE in a responsible manner. However, several topics remain in need of more attention. These include the acceptability of alternative translational pathways outside clinical trials, soft impacts on society and questions of ownership over engineered tissues. Overall, this overview of the ethical and societal implications of the field will help promote responsible development of new interventions in TE and RM. It can also serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. Impact statement To our knowledge, this is the first time that the ethical implications of Tissue Engineering (TE) have been reviewed systematically. By gathering existing scholarly work and identifying knowledge gaps, this review facilitates further research into the ethical and societal implications of TE and Regenerative Medicine (RM) and other emerging biomedical technologies. Moreover, it will serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. As such, our review may promote successful and responsible development of new strategies in TE and RM.
Collapse
Affiliation(s)
- Anne-Floor J. de Kanter
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin R. Jongsma
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annelien L. Bredenoord
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Bhullar AS, Zhang L, Burns N, Cheng X, Guo P. Voltage controlled shutter regulates channel size and motion direction of protein aperture as durable nano-electric rectifier-----An opinion in biomimetic nanoaperture. Biomaterials 2022; 291:121863. [PMID: 36356474 PMCID: PMC9766157 DOI: 10.1016/j.biomaterials.2022.121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
In optical devices such as camera or microscope, an aperture is used to regulate light intensity for imaging. Here we report the discovery and construction of a durable bio-aperture at nanometerscale that can regulate current at the pico-ampere scale. The nano-aperture is made of 12 identical protein subunits that form a 3.6-nm channel with a shutter and "one-way traffic" property. This shutter responds to electrical potential differences across the aperture and can be turned off for double stranded DNA translocation. This voltage enables directional control, and three-step regulation for opening and closing. The nano-aperture was constructed in vitro and purified into homogeneity. The aperture was stable at pH2-12, and a temperature of -85C-60C. When an electrical potential was held, three reproducible discrete steps of current flowing through the channel were recorded. Each step reduced 32% of the channel dimension evident by the reduction of the measured current flowing through the aperture. The current change is due to the change of the resistance of aperture size. The transition between these three distinct steps and the direction of the current was controlled via the polarity of the voltage applied across the aperture. When the C-terminal of the aperture was fused to an antigen, the antibody and antigen interaction resulted in a 32% reduction of the channel size. This phenomenon was used for disease diagnosis since the incubation of the antigen-nano-aperture with a specific cancer antibody resulted in a change of 32% of current. The purified truncated cone-shape aperture automatically self-assembled efficiently into a sheet of the tetragonal array via head-to-tail self-interaction. The nano-aperture discovery with a controllable shutter, discrete-step current regulation, formation of tetragonal sheet, and one-way current traffic provides a nanoscale electrical circuit rectifier for nanodevices and disease diagnosis.
Collapse
Affiliation(s)
- Abhjeet S Bhullar
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaolin Cheng
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; College of Pharmacy, Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; College of Medicine; Dorothy M. Davis Heart and Lung Research Institute; And Comprehensive Cancer Center. The Ohio State University, Columbus, OH, 43210, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; College of Pharmacy, Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
8
|
Yap TF, Liu Z, Rajappan A, Shimokusu TJ, Preston DJ. Necrobotics: Biotic Materials as Ready-to-Use Actuators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201174. [PMID: 35875913 PMCID: PMC9561765 DOI: 10.1002/advs.202201174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Designs perfected through evolution have informed bioinspired animal-like robots that mimic the locomotion of cheetahs and the compliance of jellyfish; biohybrid robots go a step further by incorporating living materials directly into engineered systems. Bioinspiration and biohybridization have led to new, exciting research, but humans have relied on biotic materials-non-living materials derived from living organisms-since their early ancestors wore animal hides as clothing and used bones for tools. In this work, an inanimate spider is repurposed as a ready-to-use actuator requiring only a single facile fabrication step, initiating the area of "necrobotics" in which biotic materials are used as robotic components. The unique walking mechanism of spiders-relying on hydraulic pressure rather than antagonistic muscle pairs to extend their legs-results in a necrobotic gripper that naturally resides in its closed state and can be opened by applying pressure. The necrobotic gripper is capable of grasping objects with irregular geometries and up to 130% of its own mass. Furthermore, the gripper can serve as a handheld device and innately camouflages in outdoor environments. Necrobotics can be further extended to incorporate biotic materials derived from other creatures with similar hydraulic mechanisms for locomotion and articulation.
Collapse
Affiliation(s)
- Te Faye Yap
- Department of Mechanical EngineeringRice UniversityHoustonTX77005USA
| | - Zhen Liu
- Department of Mechanical EngineeringRice UniversityHoustonTX77005USA
| | - Anoop Rajappan
- Department of Mechanical EngineeringRice UniversityHoustonTX77005USA
| | | | - Daniel J. Preston
- Department of Mechanical EngineeringRice UniversityHoustonTX77005USA
| |
Collapse
|
9
|
Wang J, Wang Y, Kim Y, Yu T, Bashir R. Multi-actuator light-controlled biological robots. APL Bioeng 2022; 6:036103. [PMID: 36035771 PMCID: PMC9417571 DOI: 10.1063/5.0091507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 11/14/2022] Open
Abstract
Biohybrid robots, composed of cellular actuators and synthetic scaffolds, have garnered much attention in recent years owing to the advantages provided by their biological components. In recent years, various forms of biohybrid robots have been developed that are capable of life-like movements, such as walking, swimming, and gripping. Specifically, for walking or crawling biorobots, there is a need for complex functionality and versatile and robust fabrication processes. Here, we designed and fabricated multi-actuator biohybrid walkers with multi-directional walking capabilities in response to noninvasive optical stimulation through a scalable modular biofabrication process. Our new fabrication approach provides a constant mechanical strain throughout the cellular differentiation and maturation process. This maximizes the myotube formation and alignment, limits passive bending, and produces higher active forces. These demonstrations of the new fabrication process and bioactuator designs can pave the way for advanced multi-cellular biohybrid robots and enhance our understanding of the emergent behaviors of these multi-cellular engineered living systems.
Collapse
Affiliation(s)
| | | | | | - Tianqi Yu
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | | |
Collapse
|
10
|
Abstract
The next robotics frontier will be led by biohybrids. Capable biohybrid robots require microfluidics to sustain, improve, and scale the architectural complexity of their core ingredient: biological tissues. Advances in microfluidics have already revolutionized disease modeling and drug development, and are positioned to impact regenerative medicine but have yet to apply to biohybrids. Fusing microfluidics with living materials will improve tissue perfusion and maturation, and enable precise patterning of sensing, processing, and control elements. This perspective suggests future developments in advanced biohybrids.
Collapse
|
11
|
Aydin O, Passaro AP, Raman R, Spellicy SE, Weinberg RP, Kamm RD, Sample M, Truskey GA, Zartman J, Dar RD, Palacios S, Wang J, Tordoff J, Montserrat N, Bashir R, Saif MTA, Weiss R. Principles for the design of multicellular engineered living systems. APL Bioeng 2022; 6:010903. [PMID: 35274072 PMCID: PMC8893975 DOI: 10.1063/5.0076635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell-cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the "black box" of living cells.
Collapse
Affiliation(s)
| | - Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, USA
| | - Ritu Raman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Robert P. Weinberg
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts 02115, USA
| | | | - Matthew Sample
- Center for Ethics and Law in the Life Sciences, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sebastian Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jesse Tordoff
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ron Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Buso C, Zanini P, Titotto S. Bioinspired design proposal for a new external bone fixator device. Biomed Phys Eng Express 2022; 8. [PMID: 35100569 DOI: 10.1088/2057-1976/ac5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022]
Abstract
The article presents a new medical device through an authorial and interdisciplinary approach. It consists of a flexible external fixator, whose flexible property may bring advantages over rigid mechanisms. Its design was inspired by the DNA biological mechanism of condensation, while the modeling was based on the pseudo-rigid modeling technique. From the models obtained, this study conducted prototyping and computational tests to obtain a proof-of-concept of the bioinspired theory and dynamic functioning effectiveness. The prototyping relied on hot glue manufacturing and the computational simulations consisted of linear static analysis. The experimental analysis concluded that the prototype with fewer beams and thinner beams delivered better results in all three parameters: flexibility, height variation and rotation arc. In the computational analysis, among the design models with the variation of the number of beams, the model with 8 beams performed better. Concerning thickness variation, the one whose beams measured 8mm in thickness showed better results. Among the models with length variation, the design made with 100 mm long beams better equilibrated the parameters.
Collapse
Affiliation(s)
- Carla Buso
- 4D Printing and Biomimetics (4DB) Research Group, Universidade Federal do ABC, Av. dos Estados, 5001 - Bangú, Santo Andre, SP, 09210-170, BRAZIL
| | - Plinio Zanini
- 4D Printing and Biomimetics (4DB) Research Group, Universidade Federal do ABC, Av. dos Estados, 5001 - Bangú, Santo Andre, SP, 09210-170, BRAZIL
| | - Silvia Titotto
- 4D Printing and Biomimetics (4DB) Research Group, Universidade Federal do ABC, Av. dos Estados, 5001 - Bangú, Santo Andre, 09210-170, BRAZIL
| |
Collapse
|
13
|
Gangadharan S, Raman K. The art of molecular computing: Whence and whither. Bioessays 2021; 43:e2100051. [PMID: 34101866 DOI: 10.1002/bies.202100051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022]
Abstract
An astonishingly diverse biomolecular circuitry orchestrates the functioning machinery underlying every living cell. These biomolecules and their circuits have been engineered not only for various industrial applications but also to perform other atypical functions that they were not evolved for-including computation. Various kinds of computational challenges, such as solving NP-complete problems with many variables, logical computation, neural network operations, and cryptography, have all been attempted through this unconventional computing paradigm. In this review, we highlight key experiments across three different ''eras'' of molecular computation, beginning with molecular solutions, transitioning to logic circuits and ultimately, more complex molecular networks. We also discuss a variety of applications of molecular computation, from solving NP-hard problems to self-assembled nanostructures for delivering molecules, and provide a glimpse into the exciting potential that molecular computing holds for the future. Also see the video abstract here: https://youtu.be/9Mw0K0vCSQw.
Collapse
Affiliation(s)
- Sahana Gangadharan
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Karthik Raman
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India.,Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
14
|
|
15
|
Guix M, Mestre R, Patiño T, De Corato M, Fuentes J, Zarpellon G, Sánchez S. Biohybrid soft robots with self-stimulating skeletons. Sci Robot 2021; 6:6/53/eabe7577. [PMID: 34043566 DOI: 10.1126/scirobotics.abe7577] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Bioinspired hybrid soft robots that combine living and synthetic components are an emerging field in the development of advanced actuators and other robotic platforms (i.e., swimmers, crawlers, and walkers). The integration of biological components offers unique characteristics that artificial materials cannot precisely replicate, such as adaptability and response to external stimuli. Here, we present a skeletal muscle-based swimming biobot with a three-dimensional (3D)-printed serpentine spring skeleton that provides mechanical integrity and self-stimulation during the cell maturation process. The restoring force inherent to the spring system allows a dynamic skeleton compliance upon spontaneous muscle contraction, leading to a cyclic mechanical stimulation process that improves the muscle force output without external stimuli. Optimization of the 3D-printed skeletons is carried out by studying the geometrical stiffnesses of different designs via finite element analysis. Upon electrical actuation of the muscle tissue, two types of motion mechanisms are experimentally observed: directional swimming when the biobot is at the liquid-air interface and coasting motion when it is near the bottom surface. The integrated compliant skeleton provides both the mechanical self-stimulation and the required asymmetry for directional motion, displaying its maximum velocity at 5 hertz (800 micrometers per second, 3 body lengths per second). This skeletal muscle-based biohybrid swimmer attains speeds comparable with those of cardiac-based biohybrid robots and outperforms other muscle-based swimmers. The integration of serpentine-like structures in hybrid robotic systems allows self-stimulation processes that could lead to higher force outputs in current and future biomimetic robotic platforms.
Collapse
Affiliation(s)
- Maria Guix
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain.
| | - Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain.,Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Marco De Corato
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Judith Fuentes
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Giulia Zarpellon
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
16
|
Akiyama Y, Nakayama A, Nakano S, Amiya R, Hirose J. An Electrical Stimulation Culture System for Daily Maintenance-Free Muscle Tissue Production. CYBORG AND BIONIC SYSTEMS 2021; 2021:9820505. [PMID: 36285137 PMCID: PMC9494718 DOI: 10.34133/2021/9820505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Low-labor production of tissue-engineered muscles (TEMs) is one of the key technologies to realize the practical use of muscle-actuated devices. This study developed and then demonstrated the daily maintenance-free culture system equipped with both electrical stimulation and medium replacement functions. To avoid ethical issues, immortal myoblast cells C2C12 were used. The system consisting of gel culture molds, a medium replacement unit, and an electrical stimulation unit could produce 12 TEMs at one time. The contractile forces of the TEMs were measured with a newly developed microforce measurement system. Even the TEMs cultured without electrical stimulation generated forces of almost 2 mN and were shortened by 10% in tetanic contractions. Regarding the contractile forces, electrical stimulation by a single pulse at 1 Hz was most effective, and the contractile forces in tetanus were over 2.5 mN. On the other hand, continuous pulses decreased the contractile forces of TEMs. HE-stained cross-sections showed that myoblast cells proliferated and fused into myotubes mainly in the peripheral regions, and fewer cells existed in the internal region. This must be due to insufficient supplies of oxygen and nutrients inside the TEMs. By increasing the supplies, one TEM might be able to generate a force up to around 10 mN. The tetanic forces of the TEMs produced by the system were strong enough to actuate microstructures like previously reported crawling robots. This daily maintenance-free culture system which could stably produce TEMs strong enough to be utilized for microrobots should contribute to the advancement of biohybrid devices.
Collapse
Affiliation(s)
- Yoshitake Akiyama
- Faculty of Textile Science and Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
- Department of Biomedical Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Akemi Nakayama
- Faculty of Textile Science and Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | - Shota Nakano
- Department of Biomedical Engineering, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, Japan
| | | | - Jun Hirose
- Tech Alpha, 649-1 Ohtsuka, Hachioji, Tokyo, Japan
| |
Collapse
|
17
|
Mestre R, Patiño T, Sánchez S. Biohybrid robotics: From the nanoscale to the macroscale. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1703. [PMID: 33533200 DOI: 10.1002/wnan.1703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 01/10/2021] [Indexed: 12/11/2022]
Abstract
Biohybrid robotics is a field in which biological entities are combined with artificial materials in order to obtain improved performance or features that are difficult to mimic with hand-made materials. Three main level of integration can be envisioned depending on the complexity of the biological entity, ranging from the nanoscale to the macroscale. At the nanoscale, enzymes that catalyze biocompatible reactions can be used as power sources for self-propelled nanoparticles of different geometries and compositions, obtaining rather interesting active matter systems that acquire importance in the biomedical field as drug delivery systems. At the microscale, single enzymes are substituted by complete cells, such as bacteria or spermatozoa, whose self-propelling capabilities can be used to transport cargo and can also be used as drug delivery systems, for in vitro fertilization practices or for biofilm removal. Finally, at the macroscale, the combinations of millions of cells forming tissues can be used to power biorobotic devices or bioactuators by using muscle cells. Both cardiac and skeletal muscle tissue have been part of remarkable examples of untethered biorobots that can crawl or swim due to the contractions of the tissue and current developments aim at the integration of several types of tissue to obtain more realistic biomimetic devices, which could lead to the next generation of hybrid robotics. Tethered bioactuators, however, result in excellent candidates for tissue models for drug screening purposes or the study of muscle myopathies due to their three-dimensional architecture. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Chemistry Department, University of Rome, Rome, Italy
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, China
| |
Collapse
|
18
|
Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L, Full R, Jacobstein N, Kumar V, McNutt M, Merrifield R, Nelson BJ, Scassellati B, Taddeo M, Taylor R, Veloso M, Wang ZL, Wood R. The grand challenges of Science Robotics. Sci Robot 2021; 3:3/14/eaar7650. [PMID: 33141701 DOI: 10.1126/scirobotics.aar7650] [Citation(s) in RCA: 376] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
Abstract
One of the ambitions of Science Robotics is to deeply root robotics research in science while developing novel robotic platforms that will enable new scientific discoveries. Of our 10 grand challenges, the first 7 represent underpinning technologies that have a wider impact on all application areas of robotics. For the next two challenges, we have included social robotics and medical robotics as application-specific areas of development to highlight the substantial societal and health impacts that they will bring. Finally, the last challenge is related to responsible innovation and how ethics and security should be carefully considered as we develop the technology further.
Collapse
Affiliation(s)
- Guang-Zhong Yang
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK.
| | - Jim Bellingham
- Center for Marine Robotics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Pierre E Dupont
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peer Fischer
- Institute of Physical Chemistry, University of Stuttgart, Stuttgart, Germany.,Micro, Nano, and Molecular Systems Laboratory, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Luciano Floridi
- Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK.,Digital Ethics Lab, Oxford Internet Institute, University of Oxford, Oxford, UK.,Department of Computer Science, University of Oxford, Oxford, UK.,Data Ethics Group, Alan Turing Institute, London, UK.,Department of Economics, American University, Washington, DC 20016, USA
| | - Robert Full
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Neil Jacobstein
- Singularity University, NASA Research Park, Moffett Field, CA 94035, USA.,MediaX, Stanford University, Stanford, CA 94305, USA
| | - Vijay Kumar
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcia McNutt
- National Academy of Sciences, Washington, DC 20418, USA
| | - Robert Merrifield
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Brian Scassellati
- Department of Computer Science, Yale University, New Haven, CT 06520, USA.,Department Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA
| | - Mariarosaria Taddeo
- Digital Ethics Lab, Oxford Internet Institute, University of Oxford, Oxford, UK.,Department of Computer Science, University of Oxford, Oxford, UK.,Data Ethics Group, Alan Turing Institute, London, UK
| | - Russell Taylor
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Manuela Veloso
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Robert Wood
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
19
|
Effects of Cryopreservation on Cell Metabolic Activity and Function of Biofabricated Structures Laden with Osteoblasts. MATERIALS 2020; 13:ma13081966. [PMID: 32331435 PMCID: PMC7215951 DOI: 10.3390/ma13081966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Biofabrication and maturation of bone constructs is a long-term task that requires a high degree of specialization. This specialization falls onto the hierarchy complexity of the bone tissue that limits the transfer of this technology to the clinic. This work studied the effects of the short-term cryopreservation on biofabricated osteoblast-containing structures, with the final aim to make them steadily available in biobanks. The biological responses studied include the osteoblast post-thawing metabolic activity and the recovery of the osteoblastic function of 3D-bioprinted osteoblastic structures and beta tricalcium phosphate (β-TCP) scaffolds infiltrated with osteoblasts encapsulated in a hydrogel. The obtained structures were cryopreserved at −80 °C for 7 days using dimethyl sulfoxide (DMSO) as cryoprotectant additive. After thawing the structures were cultured up to 14 days. The results revealed fundamental biological aspects for the successful cryopreservation of osteoblast constructs. In summary, immature osteoblasts take longer to recover than mature osteoblasts. The pre-cryopreservation culture period had an important effect on the metabolic activity and function maintain, faster recovering normal values when cryopreserved after longer-term culture (7 days). The use of β-TCP scaffolds further improved the osteoblast survival after cryopreservation, resulting in similar levels of alkaline phosphatase activity in comparison with the non-preserved structures. These results contribute to the understanding of the biology of cryopreserved osteoblast constructs, approaching biofabrication to the clinical practice.
Collapse
|
20
|
Raman R, Hua T, Gwynne D, Collins J, Tamang S, Zhou J, Esfandiary T, Soares V, Pajovic S, Hayward A, Langer R, Traverso G. Light-degradable hydrogels as dynamic triggers for gastrointestinal applications. SCIENCE ADVANCES 2020; 6:eaay0065. [PMID: 32010768 PMCID: PMC6968934 DOI: 10.1126/sciadv.aay0065] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/14/2019] [Indexed: 05/21/2023]
Abstract
Triggerable materials capable of being degraded by selective stimuli stand to transform our capacity to precisely control biomedical device activity and performance while reducing the need for invasive interventions. Here, we describe the development of a modular and tunable light-triggerable hydrogel system capable of interfacing with implantable devices. We apply these materials to two applications in the gastrointestinal (GI) tract: a bariatric balloon and an esophageal stent. We demonstrate biocompatibility and on-demand triggering of the material in vitro, ex vivo, and in vivo. Moreover, we characterize performance of the system in a porcine large animal model with an accompanying ingestible LED. Light-triggerable hydrogels have the potential to be applied broadly throughout the GI tract and other anatomic areas. By demonstrating the first use of light-degradable hydrogels in vivo, we provide biomedical engineers and clinicians with a previously unavailable, safe, dynamically deliverable, and precise tool to design dynamically actuated implantable devices.
Collapse
Affiliation(s)
- Ritu Raman
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tiffany Hua
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Declan Gwynne
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joy Collins
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Siddartha Tamang
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jianlin Zhou
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tina Esfandiary
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vance Soares
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Simo Pajovic
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alison Hayward
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Appiah C, Arndt C, Siemsen K, Heitmann A, Staubitz A, Selhuber-Unkel C. Living Materials Herald a New Era in Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807747. [PMID: 31267628 DOI: 10.1002/adma.201807747] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/07/2019] [Indexed: 05/22/2023]
Abstract
Living beings have an unsurpassed range of ways to manipulate objects and interact with them. They can make autonomous decisions and can heal themselves. So far, a conventional robot cannot mimic this complexity even remotely. Classical robots are often used to help with lifting and gripping and thus to alleviate the effects of menial tasks. Sensors can render robots responsive, and artificial intelligence aims at enabling autonomous responses. Inanimate soft robots are a step in this direction, but it will only be in combination with living systems that full complexity will be achievable. The field of biohybrid soft robotics provides entirely new concepts to address current challenges, for example the ability to self-heal, enable a soft touch, or to show situational versatility. Therefore, "living materials" are at the heart of this review. Similarly to biological taxonomy, there is a recent effort for taxonomy of biohybrid soft robotics. Here, an expansion is proposed to take into account not only function and origin of biohybrid soft robotic components, but also the materials. This materials taxonomy key demonstrates visually that materials science will drive the development of the field of soft biohybrid robotics.
Collapse
Affiliation(s)
- Clement Appiah
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
| | - Christine Arndt
- Institute for Materials Science, University of Kiel, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Katharina Siemsen
- Institute for Materials Science, University of Kiel, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Anne Heitmann
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
| | - Anne Staubitz
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
- Otto-Diels-Institute for Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, D-24118, Kiel, Germany
| | | |
Collapse
|
22
|
Wang X, Jiao N, Tung S, Liu L. Photoresponsive Graphene Composite Bilayer Actuator for Soft Robots. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30290-30299. [PMID: 31361459 DOI: 10.1021/acsami.9b09491] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Highly deformable and photoresponsive smart actuators are attracting increasing attention. Here, a high concentration of graphene is dispersed in polydimethylsiloxane (PDMS) by combining the advantages of various dispersion methods. The composite and pure PDMS layers are used to fabricate bilayer actuators with a high capacity for rapid deformation. The fabricated bilayer actuators exhibit novel and interesting properties. A bilayer actuator containing a 30 wt % graphene composite can be deflected by 7.9 mm in the horizontal direction under infrared laser irradiation. The graphene concentration in the composite influences actuator adjustment to deformation and its response speed, and the composite also exhibits superhydrophobicity. On the basis of its superhydrophobicity and large deformation capacity, the actuator made with 30 wt % graphene composite is used to construct a beluga whale soft robot. The robot can swim quickly in water at an average speed of 6 mm/s, and it can cover a distance of 30 mm in 5 s when irradiated just once with an infrared laser. Actuators fabricated with this method can be used in artificial muscle, bionic grippers, and various soft robots that require actuators with large deformation capacities.
Collapse
Affiliation(s)
- Xiaodong Wang
- University of the Chinese Academy of Sciences , Beijing 100049 , China
| | | | - Steve Tung
- Department of Mechanical Engineering , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | | |
Collapse
|
23
|
Sample M, Boulicault M, Allen C, Bashir R, Hyun I, Levis M, Lowenthal C, Mertz D, Montserrat N, Palmer MJ, Saha K, Zartman J. Multi-cellular engineered living systems: building a community around responsible research on emergence. Biofabrication 2019; 11:043001. [PMID: 31158828 PMCID: PMC7551891 DOI: 10.1088/1758-5090/ab268c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ranging from miniaturized biological robots to organoids, multi-cellular engineered living systems (M-CELS) pose complex ethical and societal challenges. Some of these challenges, such as how to best distribute risks and benefits, are likely to arise in the development of any new technology. Other challenges arise specifically because of the particular characteristics of M-CELS. For example, as an engineered living system becomes increasingly complex, it may provoke societal debate about its moral considerability, perhaps necessitating protection from harm or recognition of positive moral and legal rights, particularly if derived from cells of human origin. The use of emergence-based principles in M-CELS development may also create unique challenges, making the technology difficult to fully control or predict in the laboratory as well as in applied medical or environmental settings. In response to these challenges, we argue that the M-CELS community has an obligation to systematically address the ethical and societal aspects of research and to seek input from and accountability to a broad range of stakeholders and publics. As a newly developing field, M-CELS has a significant opportunity to integrate ethically responsible norms and standards into its research and development practices from the start. With the aim of seizing this opportunity, we identify two general kinds of salient ethical issues arising from M-CELS research, and then present a set of commitments to and strategies for addressing these issues. If adopted, these commitments and strategies would help define M-CELS as not only an innovative field, but also as a model for responsible research and engineering.
Collapse
Affiliation(s)
- Matthew Sample
- Pragmatic Health Ethics Research Unit, Institut de recherches cliniques de Montreal and Department of Neurology and Neurosurgery, McGill University, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Grant L, Raman R, Cvetkovic C, Ferrall-Fairbanks MC, Pagan-Diaz GJ, Hadley P, Ko E, Platt MO, Bashir R. Long-Term Cryopreservation and Revival of Tissue-Engineered Skeletal Muscle. Tissue Eng Part A 2019; 25:1023-1036. [PMID: 30412045 PMCID: PMC6916121 DOI: 10.1089/ten.tea.2018.0202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/06/2018] [Indexed: 01/13/2023] Open
Abstract
IMPACT STATEMENT The ability to freeze, revive, and prolong the lifetime of tissue-engineered skeletal muscle without incurring any loss of function represents a significant advancement in the field of tissue engineering. Cryopreservation enables the efficient fabrication, storage, and shipment of these tissues. This in turn facilitates multidisciplinary collaboration between research groups, enabling advances in skeletal muscle regenerative medicine, organ-on-a-chip models of disease, drug testing, and soft robotics. Furthermore, the observation that freezing undifferentiated skeletal muscle enhances functional performance may motivate future studies developing stronger and more clinically relevant engineered muscle.
Collapse
Affiliation(s)
- Lauren Grant
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ritu Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Caroline Cvetkovic
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Meghan C. Ferrall-Fairbanks
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Gelson J. Pagan-Diaz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Pierce Hadley
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Eunkyung Ko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Manu O. Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
25
|
Leeder WM, Giehler F, Joswig J, Göringer HU. Bioinspired Design of Lysolytic Triterpenoid-Peptide Conjugates that Kill African Trypanosomes. Chembiochem 2019; 20:1251-1255. [PMID: 30609206 DOI: 10.1002/cbic.201800674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Indexed: 11/07/2022]
Abstract
Humans have evolved a natural immunity against Trypanosoma brucei infections, which is executed by two serum (lipo)protein complexes known as trypanolytic factors (TLF). The active TLF ingredient is the primate-specific apolipoprotein L1 (APOL1). The protein has a pore-forming activity that kills parasites by lysosomal and mitochondrial membrane fenestration. Of the many trypanosome subspecies, only two are able to counteract the activity of APOL1; this illustrates its evolutionarily optimized design and trypanocidal potency. Herein, we ask whether a synthetic (syn) TLF can be synthesized by using the design principles of the natural TLF complexes but with different chemical building blocks. We demonstrate the stepwise development of triterpenoid-peptide conjugates, in which the triterpenoids act as a cell-binding, uptake and lysosomal-transport modules and the synthetic peptide GALA acts as a pH-sensitive, pore-forming lysolytic toxin. As designed, the conjugate kills infective-stage African trypanosomes through lysosomal lysis thus demonstrating a proof-of-principle for the bioinspired, forward-design of a synTLF.
Collapse
Affiliation(s)
- W-Matthias Leeder
- Molecular Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - Fabian Giehler
- Molecular Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.,Present address: Helmholtz Zentrum München für Gesundheit und Umwelt (GmbH), Research Unit Gene Vectors Munich (Germany) and, German Center for Infection Research (DZIF), Partner Site Munich, Marchionistrasse 25, 81377, Munich, Germany
| | - Juliane Joswig
- Molecular Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - H Ulrich Göringer
- Molecular Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| |
Collapse
|
26
|
Affiliation(s)
- Ritu Raman
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
27
|
Zhao Q, Wang Y, Cui H, Du X. Bio-inspired sensing and actuating materials. JOURNAL OF MATERIALS CHEMISTRY C 2019; 7:6493-6511. [DOI: 10.1039/c9tc01483g] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Biological systems contain various amazing examples that can display adaptive and active behaviors in response to external stimuli.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering
- Shenzhen Institutes of Advanced Technology (SIAT)
- Chinese Academy of Sciences (CAS)
- Shenzhen
- China
| | - Yunlong Wang
- Institute of Biomedical & Health Engineering
- Shenzhen Institutes of Advanced Technology (SIAT)
- Chinese Academy of Sciences (CAS)
- Shenzhen
- China
| | - Huanqing Cui
- Institute of Biomedical & Health Engineering
- Shenzhen Institutes of Advanced Technology (SIAT)
- Chinese Academy of Sciences (CAS)
- Shenzhen
- China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering
- Shenzhen Institutes of Advanced Technology (SIAT)
- Chinese Academy of Sciences (CAS)
- Shenzhen
- China
| |
Collapse
|
28
|
Kamm RD, Bashir R, Arora N, Dar RD, Gillette MU, Griffith LG, Kemp ML, Kinlaw K, Levin M, Martin AC, McDevitt TC, Nerem RM, Powers MJ, Saif TA, Sharpe J, Takayama S, Takeuchi S, Weiss R, Ye K, Yevick HG, Zaman MH. Perspective: The promise of multi-cellular engineered living systems. APL Bioeng 2018; 2:040901. [PMID: 31069321 PMCID: PMC6481725 DOI: 10.1063/1.5038337] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Recent technological breakthroughs in our ability to derive and differentiate induced pluripotent stem cells, organoid biology, organ-on-chip assays, and 3-D bioprinting have all contributed to a heightened interest in the design, assembly, and manufacture of living systems with a broad range of potential uses. This white paper summarizes the state of the emerging field of "multi-cellular engineered living systems," which are composed of interacting cell populations. Recent accomplishments are described, focusing on current and potential applications, as well as barriers to future advances, and the outlook for longer term benefits and potential ethical issues that need to be considered.
Collapse
Affiliation(s)
- Roger D. Kamm
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Rashid Bashir
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | - Natasha Arora
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Roy D. Dar
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | | | - Linda G. Griffith
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Melissa L. Kemp
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Adam C. Martin
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | | - Robert M. Nerem
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Mark J. Powers
- Thermo Fisher Scientific, Frederick, Maryland 21704, USA
| | - Taher A. Saif
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona 08003, Spain
| | | | | | - Ron Weiss
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Kaiming Ye
- Binghamton University, Binghamton, New York 13902, USA
| | - Hannah G. Yevick
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | |
Collapse
|
29
|
Ahadian S, Khademhosseini A. Smart scaffolds in tissue regeneration. Regen Biomater 2018; 5:125-128. [PMID: 29977595 PMCID: PMC6007551 DOI: 10.1093/rb/rby007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances in biofabrication technologies and chemical synthesis approaches have enabled the fabrication of smart scaffolds that aim to mimic the dynamic nature of the native extracellular matrix. These scaffolds have paved the way for tissue regeneration in a dynamic and controllable manner.
Collapse
Affiliation(s)
- Samad Ahadian
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Ali Khademhosseini
- Department of Bioengineering
- Department of Radiology
- Department of Chemical and Biomolecular Engineering
- Center for Minimally Invasive Therapeutics (C-MIT)
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095-1600, USA
| |
Collapse
|
30
|
Ricotti L, Trimmer B, Feinberg AW, Raman R, Parker KK, Bashir R, Sitti M, Martel S, Dario P, Menciassi A. Biohybrid actuators for robotics: A review of devices actuated by living cells. Sci Robot 2017; 2:2/12/eaaq0495. [PMID: 33157905 DOI: 10.1126/scirobotics.aaq0495] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
Actuation is essential for artificial machines to interact with their surrounding environment and to accomplish the functions for which they are designed. Over the past few decades, there has been considerable progress in developing new actuation technologies. However, controlled motion still represents a considerable bottleneck for many applications and hampers the development of advanced robots, especially at small length scales. Nature has solved this problem using molecular motors that, through living cells, are assembled into multiscale ensembles with integrated control systems. These systems can scale force production from piconewtons up to kilonewtons. By leveraging the performance of living cells and tissues and directly interfacing them with artificial components, it should be possible to exploit the intricacy and metabolic efficiency of biological actuation within artificial machines. We provide a survey of important advances in this biohybrid actuation paradigm.
Collapse
Affiliation(s)
- Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy.
| | - Barry Trimmer
- Department of Biology, Tufts University, Medford, MA 02153, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ritu Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kevin K Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Metin Sitti
- Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Sylvain Martel
- NanoRobotics Laboratory, Department of Computer and Software Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| |
Collapse
|
31
|
Webster-Wood VA, Akkus O, Gurkan UA, Chiel HJ, Quinn RD. Organismal Engineering: Towards a Robotic Taxonomic Key for Devices Using Organic Materials. Sci Robot 2017; 2:eaap9281. [PMID: 31360812 PMCID: PMC6663099 DOI: 10.1126/scirobotics.aap9281] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Can we create robots with the behavioral flexibility and robustness of animals? Engineers often use bio-inspiration to mimic animals. Recent advances in tissue engineering now allow the use of components from animals. By integrating organic and synthetic components, researchers are moving towards the development of engineered organisms whose structural framework, actuation, sensing, and control are partially or completely organic. This review discusses recent exciting work demonstrating how organic components can be used for all facets of robot development. Based on this analysis, we propose a Robotic Taxonomic Key to guide the field towards a unified lexicon for device description.
Collapse
Affiliation(s)
| | - Ozan Akkus
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Umut A. Gurkan
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Hillel J. Chiel
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Roger D. Quinn
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|