1
|
Viola M, Cedillo-Servin G, van Genderen AM, Imhof I, Vena P, Mihajlovic M, Piluso S, Malda J, Vermonden T, Castilho M. Microstructured silk fiber scaffolds with enhanced stretchability. Biomater Sci 2024; 12:5225-5238. [PMID: 39229829 PMCID: PMC11372760 DOI: 10.1039/d4bm00624k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Despite extensive research, current methods for creating three-dimensional (3D) silk fibroin (SF) scaffolds lack control over molecular rearrangement, particularly in the formation of β-sheet nanocrystals that severely embrittle SF, as well as hierarchical fiber organization at both micro- and macroscale. Here, we introduce a fabrication process based on electrowriting of aqueous SF solutions followed by post-processing using an aqueous solution of sodium dihydrogen phosphate (NaH2PO4). This approach enables gelation of SF chains via controlled β-sheet formation and partial conservation of compliant random coil structures. Moreover, this process allows for precise architecture control in microfiber scaffolds, enabling the creation of 3D flat and tubular macro-geometries with square-based and crosshatch microarchitectures, featuring inter-fiber distances of 400 μm and ∼97% open porosity. Remarkably, the crosslinked printed structures demonstrated a balanced coexistence of β-sheet and random coil conformations, which is uncommon for organic solvent-based crosslinking methods. This synergy of printing and post-processing yielded stable scaffolds with high compliance (modulus = 0.5-15 MPa) and the ability to support elastic cyclic loading up to 20% deformation. Furthermore, the printed constructs supported in vitro adherence and growth of human renal epithelial and endothelial cells with viability above 95%. These cells formed homogeneous monolayers that aligned with the fiber direction and deposited type-IV collagen as a specific marker of healthy extracellular matrix, indicating that both cell types attach, proliferate, and organize their own microenvironment within the SF scaffolds. These findings represent a significant development in fabricating organized stable SF scaffolds with unique microfiber structures and mechanical and biological properties that make them highly promising for tissue engineering applications.
Collapse
Affiliation(s)
- Martina Viola
- Department of Orthopaedics, University Medical Centre Utrecht, Utrecht, The Netherlands
- Division of Pharmaceutics, Department of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Gerardo Cedillo-Servin
- Department of Orthopaedics, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Anne Metje van Genderen
- Division of Pharmacology, Department of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Isabelle Imhof
- Department of Orthopaedics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Paula Vena
- Department of Orthopaedics, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marko Mihajlovic
- Division of Pharmaceutics, Department of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Jos Malda
- Department of Orthopaedics, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tina Vermonden
- Division of Pharmaceutics, Department of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Miguel Castilho
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Yalcın B, Onder GO, Goktepe O, Suna PA, Mat OC, Koseoglu E, Cetindag E, Baran M, Bitgen N, Öz Gergı N Ö, Yay A. Enhanced kidney damage induced by increasing nonylphenol doses: impact on autophagy-related proteins and proinflammatory cytokines in rats. Toxicol Mech Methods 2024; 34:867-876. [PMID: 38769906 DOI: 10.1080/15376516.2024.2358348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Nonylphenol (NP) is an organic pollutant and endocrine disruptor chemical that has harmful effects on the environment and living organisms. This study looked at whether kidney tissues subjected to increasing doses of nonylphenol generated alterations in histopathologic, pro-inflammatory, and autophagic markers. Fifty rats were divided into five groups of ten each: group I: healthy group, II: control (corn oil), group III: 25 μl/kg NP, group IV: 50 μl/kg NP, group V: 75 μl/kg NP. The kidney tissue samples were obtained for histopathological, immunohistochemical, and biochemical analyses. The histological deteriorations observed in all NP groups included tubular epithelial cell degeneration, inflammation areas, and hemorrhage. The immunohistochemical investigations showed that NP significantly elevated the autophagy markers (Beclin-1, LC3A/B, p62), pro-inflammatory cytokines (TNF-α, IL-6), HIF-1α, and eNOS in group III, IV and V compared with group I and II. The biochemical analysis also revealed that pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) increased in correlation with the NP doses, but only IL-1β reached statistical significance in NP treated rats kidney tissue. The biochemical findings have been confirmed by the histological studies. The damage to renal tissue caused by NP exposure may worsen it by increasing inflammatory and autophagic markers.
Collapse
Affiliation(s)
- Betul Yalcın
- Department of Histology and Embryology, Adıyaman University, Adıyaman, Turkey
| | - Gozde Ozge Onder
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ozge Goktepe
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Pınar Alisan Suna
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Eda Koseoglu
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Emre Cetindag
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmacy Basic Science, Erciyes University, Kayseri, Turkey
| | - Nazmiye Bitgen
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Özlem Öz Gergı N
- Department of Surgical Medicine Science, Anesthesiology and Reanimation, Erciyes University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
3
|
Genderen AMV, G Valverde M, Capendale PE, Kersten V, Sendino Garví E, Schuurmans CCL, Ruelas M, Soeiro JT, Tang G, Janssen MJ, Jansen J, Mihăilă SM, Vermonden T, Zhang YS, Masereeuw R. Co-axial Printing of Convoluted Proximal Tubule for Kidney Disease Modeling. Biofabrication 2022; 14. [PMID: 35700695 DOI: 10.1088/1758-5090/ac7895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
Despite the increasing incidence of kidney-related diseases, we are still far from understanding the underlying mechanisms of these diseases and their progression. This lack of understanding is partly because of a poor replication of the diseases in vitro, limited to planar culture. Advancing towards three-dimensional models, hereby we propose coaxial printing to obtain microfibers containing a helical hollow microchannel. These recapitulate the architecture of the proximal tubule (PT), an important nephron segment often affected in kidney disorders. A stable gelatin/alginate-based ink was formulated to allow printability while maintaining structural properties. Fine tuning of the composition, printing temperature and extrusion rate allowed for optimal ink viscosity that led to coiling of the microfiber's inner channel. The printed microfibers exhibited prolonged structural stability (42 days) and cytocompatibility in culture. Healthy conditionally immortalized PT epithelial cells and a knockout cell model for cystinosis (CTNS-/-) were seeded to mimic two genotypes of PT. Upon culturing for 14 days, engineered PT showed homogenous cytoskeleton organization as indicated by staining for filamentous actin, barrier-formation and polarization with apical marker α-tubulin and basolateral marker Na+/K+-ATPase. Cell viability was slightly decreased upon prolonged culturing for 14 days, which was more pronounced inCTNS-/-microfibers. Finally, cystinosis cells showed reduced apical transport activity in the microfibers compared to healthy PT epithelial cells when looking at breast cancer resistance protein and multidrug resistance-associated protein 4. Engineered PT incorporated in a custom-designed microfluidic chip allowed to assess leak-tightness of the epithelium, which appeared less tight in cystinosis PT compared to healthy PT, in agreement with its in vivo phenotype. While we are still on the verge of patient-oriented medicine, this system holds great promise for further research in establishing advanced in vitro disease models.
Collapse
Affiliation(s)
- Anne Metje van Genderen
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Marta G Valverde
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Pamela E Capendale
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Valerie Kersten
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Elena Sendino Garví
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Carl C L Schuurmans
- Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Marina Ruelas
- Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts, 02139, UNITED STATES
| | - Joana T Soeiro
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Guosheng Tang
- Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts, 02139, UNITED STATES
| | - Manoe J Janssen
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Jitske Jansen
- Pathology and Pediatric Nephrology, Radboud University Medical Center, -, Nijmegen, 6525 GA, NETHERLANDS
| | - Silvia M Mihăilă
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Tina Vermonden
- Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Universiteit Utrecht, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Y Shrike Zhang
- Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts, 02139, UNITED STATES
| | - Rosalinde Masereeuw
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| |
Collapse
|
4
|
Vermue IJM, Begum R, Castilho M, Rookmaaker MB, Masereeuw R, Bouten CVC, Verhaar MC, Cheng C. Renal Biology Driven Macro- and Microscale Design Strategies for Creating an Artificial Proximal Tubule Using Fiber-Based Technologies. ACS Biomater Sci Eng 2021; 7:4679-4693. [PMID: 34490771 PMCID: PMC8512683 DOI: 10.1021/acsbiomaterials.1c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Chronic kidney disease
affects one in six people worldwide. Due
to the scarcity of donor kidneys and the complications associated
with hemodialysis (HD), a cell-based bioartificial kidney (BAK) device
is desired. One of the shortcomings of HD is the lack of active transport
of solutes that would normally be performed by membrane transporters
in kidney epithelial cells. Specifically, proximal tubule (PT) epithelial
cells play a major role in the active transport of metabolic waste
products. Therefore, a BAK containing an artificial PT to actively
transport solutes between the blood and the filtrate could provide
major therapeutic advances. Creating such an artificial PT requires
a biocompatible tubular structure which supports the adhesion and
function of PT-specific epithelial cells. Ideally, this scaffold should
structurally replicate the natural PT basement membrane which consists
mainly of collagen fibers. Fiber-based technologies such as electrospinning
are therefore especially promising for PT scaffold manufacturing.
This review discusses the use of electrospinning technologies to generate
an artificial PT scaffold for ex vivo/in
vivo cellularization. We offer a comparison of currently
available electrospinning technologies and outline the desired scaffold
properties required to serve as a PT scaffold. Discussed also are
the potential technologies that may converge in the future, enabling
the effective and biomimetic incorporation of synthetic PTs in to
BAK devices and beyond.
Collapse
Affiliation(s)
- IJsbrand M Vermue
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Runa Begum
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, 3508 GA Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Regenerative Medicine Center Utrecht, 3508 GA Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.,Experimental Cardiology, Department of Cardiology, Thorax Center, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
5
|
van Genderen AM, Jansen K, Kristen M, van Duijn J, Li Y, Schuurmans CCL, Malda J, Vermonden T, Jansen J, Masereeuw R, Castilho M. Topographic Guidance in Melt-Electrowritten Tubular Scaffolds Enhances Engineered Kidney Tubule Performance. Front Bioeng Biotechnol 2021; 8:617364. [PMID: 33537294 PMCID: PMC7848123 DOI: 10.3389/fbioe.2020.617364] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: To date, tubular tissue engineering relies on large, non-porous tubular scaffolds (Ø > 2 mm) for mechanical self-support, or smaller (Ø 150-500 μm) tubes within bulk hydrogels for studying renal transport phenomena. To advance the engineering of kidney tubules for future implantation, constructs should be both self-supportive and yet small-sized and highly porous. Here, we hypothesize that the fabrication of small-sized porous tubular scaffolds with a highly organized fibrous microstructure by means of melt-electrowriting (MEW) allows the development of self-supported kidney proximal tubules with enhanced properties. Materials and Methods: A custom-built melt-electrowriting (MEW) device was used to fabricate tubular fibrous scaffolds with small diameter sizes (Ø = 0.5, 1, 3 mm) and well-defined, porous microarchitectures (rhombus, square, and random). Human umbilical vein endothelial cells (HUVEC) and human conditionally immortalized proximal tubular epithelial cells (ciPTEC) were seeded into the tubular scaffolds and tested for monolayer formation, integrity, and organization, as well as for extracellular matrix (ECM) production and renal transport functionality. Results: Tubular fibrous scaffolds were successfully manufactured by fine control of MEW instrument parameters. A minimum inner diameter of 1 mm and pore sizes of 0.2 mm were achieved and used for subsequent cell experiments. While HUVEC were unable to bridge the pores, ciPTEC formed tight monolayers in all scaffold microarchitectures tested. Well-defined rhombus-shaped pores outperformed and facilitated unidirectional cell orientation, increased collagen type IV deposition, and expression of the renal transporters and differentiation markers organic cation transporter 2 (OCT2) and P-glycoprotein (P-gp). Discussion and Conclusion: Here, we present smaller diameter engineered kidney tubules with microgeometry-directed cell functionality. Due to the well-organized tubular fiber scaffold microstructure, the tubes are mechanically self-supported, and the self-produced ECM constitutes the only barrier between the inner and outer compartment, facilitating rapid and active solute transport.
Collapse
Affiliation(s)
- Anne Metje van Genderen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Marleen Kristen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joost van Duijn
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yang Li
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Carl C L Schuurmans
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Tina Vermonden
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Jitske Jansen
- Department of Pathology and Pediatric Nephrology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
6
|
Abd-Elkareem M, Abou Khalil NS, Sayed AEDH. Cytoprotective effect of Nigella sativa seed on 4-nonylphenol-induced renal damage in the African catfish (Clarias gariepinus). CHEMOSPHERE 2020; 259:127379. [PMID: 32590174 DOI: 10.1016/j.chemosphere.2020.127379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
4-Nonylphenol (4-NP) is a nephrotoxic substance that is highly prevalent in aquatic environments. Nigella sativa seed (NSS) has many biological activities and is widely used throughout the world as a medicinal product. Therefore, in the present study, we investigated the cytoprotective effect of NSS on 4-NP-induced renal damage in African catfish (Clarias gariepinus). Thirty fish were divided into five equal groups: an untreated control group and four groups that were challenged with 4-NP at a dose of 0.1 mg L-1 of aquarium water and fed a basal diet supplemented with 0%, 1%, 2.5%, and 5% NSS, respectively, for 3 weeks. Histological, histochemical, and ultrastructural features of the kidney were then assessed as biomarkers for renal tissue damage. Our results confirmed that 4-NP was a potent cytotoxic agent for the kidney tissue and induced renal damage, with 4-NP-intoxicated fish showing necrosis in the epithelial cells of the renal corpuscles, renal proximal convoluted tubules, and intertubular hematopoietic tissue, as well as loss of or a decrease in microvilli, a decrease in mitochondria, and an increase in the lysosomes in the epithelial cells of the proximal convoluted tubules. The kidneys of 4-NP-intoxicated fish also showed increased numbers of Perls' Prussian blue-positive melanomacrophage centers and intraepithelial T-lymphocytes in the proximal convoluted tubules and plasma cells. The administration of NSS to 4-NP-challenged fish significantly minimized the cytotoxic effect of 4-NP, maintaining the normal kidney structure, with concentrations of 2.5% and 5% of feed being most effective for protecting the kidney against 4-NP-induced renal damage.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Anatomy, Histology, and Embryology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Nasser S Abou Khalil
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
7
|
Faria J, Ahmed S, Gerritsen KGF, Mihaila SM, Masereeuw R. Kidney-based in vitro models for drug-induced toxicity testing. Arch Toxicol 2019; 93:3397-3418. [PMID: 31664498 DOI: 10.1007/s00204-019-02598-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
Abstract
The kidney is frequently involved in adverse effects caused by exposure to foreign compounds, including drugs. An early prediction of those effects is crucial for allowing novel, safe drugs entering the market. Yet, in current pharmacotherapy, drug-induced nephrotoxicity accounts for up to 25% of the reported serious adverse effects, of which one-third is attributed to antimicrobials use. Adverse drug effects can be due to direct toxicity, for instance as a result of kidney-specific determinants, or indirectly by, e.g., vascular effects or crystals deposition. Currently used in vitro assays do not adequately predict in vivo observed effects, predominantly due to an inadequate preservation of the organs' microenvironment in the models applied. The kidney is highly complex, composed of a filter unit and a tubular segment, together containing over 20 different cell types. The tubular epithelium is highly polarized, and the maintenance of this polarity is critical for optimal functioning and response to environmental signals. Cell polarity is dependent on communication between cells, which includes paracrine and autocrine signals, as well as biomechanic and chemotactic processes. These processes all influence kidney cell proliferation, migration, and differentiation. For drug disposition studies, this microenvironment is essential for prediction of toxic responses. This review provides an overview of drug-induced injuries to the kidney, details on relevant and translational biomarkers, and advances in 3D cultures of human renal cells, including organoids and kidney-on-a-chip platforms.
Collapse
Affiliation(s)
- João Faria
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sabbir Ahmed
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Karin G F Gerritsen
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, The Netherlands
| | - Silvia M Mihaila
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Department of Nephrology and Hypertension, University Medical Center, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Bich L, Pradeu T, Moreau JF. Understanding Multicellularity: The Functional Organization of the Intercellular Space. Front Physiol 2019; 10:1170. [PMID: 31620013 PMCID: PMC6759637 DOI: 10.3389/fphys.2019.01170] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
The aim of this paper is to provide a theoretical framework to understand how multicellular systems realize functionally integrated physiological entities by organizing their intercellular space. From a perspective centered on physiology and integration, biological systems are often characterized as organized in such a way that they realize metabolic self-production and self-maintenance. The existence and activity of their components rely on the network they realize and on the continuous management of the exchange of matter and energy with their environment. One of the virtues of the organismic approach focused on organization is that it can provide an understanding of how biological systems are functionally integrated into coherent wholes. Organismic frameworks have been primarily developed by focusing on unicellular life. Multicellularity, however, presents additional challenges to our understanding of biological systems, related to how cells are capable to live together in higher-order entities, in such a way that some of their features and behaviors are constrained and controlled by the system they realize. Whereas most accounts of multicellularity focus on cell differentiation and increase in size as the main elements to understand biological systems at this level of organization, we argue that these factors are insufficient to provide an understanding of how cells are physically and functionally integrated in a coherent system. In this paper, we provide a new theoretical framework to understand multicellularity, capable to overcome these issues. Our thesis is that one of the fundamental theoretical principles to understand multicellularity, which is missing or underdeveloped in current accounts, is the functional organization of the intercellular space. In our view, the capability to be organized in space plays a central role in this context, as it enables (and allows to exploit all the implications of) cell differentiation and increase in size, and even specialized functions such as immunity. We argue that the extracellular matrix plays a crucial active role in this respect, as an evolutionary ancient and specific (non-cellular) control subsystem that contributes as a key actor to the functional specification of the multicellular space and to modulate cell fate and behavior. We also analyze how multicellular systems exert control upon internal movement and communication. Finally, we show how the organization of space is involved in some of the failures of multicellular organization, such as aging and cancer.
Collapse
Affiliation(s)
- Leonardo Bich
- Department of Logic and Philosophy of Science, IAS-Research Centre for Life, Mind and Society, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Thomas Pradeu
- ImmunoConcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
- CNRS UMR8590, Institut d’Histoire et de Philosophie des Sciences et des Techniques, Pantheon-Sorbonne University, Paris, France
| | - Jean-François Moreau
- ImmunoConcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
- CHU Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Louzao-Martinez L, van Dijk CG, Xu YJ, Korn A, Bekker NJ, Brouwhuis R, Nicese MN, Demmers JA, Goumans MJT, Masereeuw R, Duncker DJ, Verhaar MC, Cheng C. A proteome comparison between human fetal and mature renal extracellular matrix identifies EMILIN1 as a regulator of renal epithelial cell adhesion. Matrix Biol Plus 2019; 4:100011. [PMID: 33543009 PMCID: PMC7852202 DOI: 10.1016/j.mbplus.2019.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022] Open
Abstract
Cell-based approaches using tissue engineering and regenerative medicine to replace damaged renal tissue with 3D constructs is a promising emerging therapy for kidney disease. Besides living cells, a template provided by a scaffold based on biomaterials and bioactive factors is needed for successful kidney engineering. Nature's own template for a scaffolding system is the extracellular matrix (ECM). Research has focused on mapping the mature renal ECM; however, the developing fetal ECM matches more the active environment required in 3D renal constructs. Here, we characterized the differences between the human fetal and mature renal ECM using spectrometry-based proteomics of decellularized tissue. We identified 99 different renal ECM proteins of which the majority forms an overlapping core, but also includes proteins enriched in either the fetal or mature ECM. Relative protein quantification showed a significant dominance of EMILIN1 in the fetal ECM. We functionally tested the role of EMILIN1 in the ECM using a novel methodology that permits the reliable anchorage of native cell-secreted ECM to glass coverslips. Depletion of EMILIN1 from the ECM layer using siRNA mediated knock-down technologies does not affect renal epithelial cell growth, but does promote migration. Lack of EMILIN1 in the ECM layer reduces the adhesion strength of renal epithelial cells, shown by a decrease in focal adhesion points and associated stress fibers. We showed in this study the importance of a human renal fetal and mature ECM catalogue for identifying promising ECM components that have high implementation potential in scaffolds for 3D renal constructs. Proteomics revealed the differences between the renal fetal and mature extracellular matrix. EMILIN1 has a significant dominance in the fetal extracellular matrix. EMILIN1 depletion from the extracellular matrix reduces the adhesion strength and promotes migration of renal epithelial cells.
Collapse
Affiliation(s)
- Laura Louzao-Martinez
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Christian G.M. van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Yan Juan Xu
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Amber Korn
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Nicolaas J. Bekker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Romi Brouwhuis
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Maria Novella Nicese
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | | | | | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, the Netherlands
| | - Dirk J. Duncker
- Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, the Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
- Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, the Netherlands
- Corresponding author at: Department of Nephrology and Hypertension, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, the Netherlands, Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Jansen K, Castilho M, Aarts S, Kaminski MM, Lienkamp SS, Pichler R, Malda J, Vermonden T, Jansen J, Masereeuw R. Fabrication of Kidney Proximal Tubule Grafts Using Biofunctionalized Electrospun Polymer Scaffolds. Macromol Biosci 2019; 19:e1800412. [PMID: 30548802 PMCID: PMC7116029 DOI: 10.1002/mabi.201800412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 12/19/2022]
Abstract
The increasing prevalence of end-stage renal disease and persistent shortage of donor organs call for alternative therapies for kidney patients. Dialysis remains an inferior treatment as clearance of large and protein-bound waste products depends on active tubular secretion. Biofabricated tissues could make a valuable contribution, but kidneys are highly intricate and multifunctional organs. Depending on the therapeutic objective, suitable cell sources and scaffolds must be selected. This study provides a proof-of-concept for stand-alone kidney tubule grafts with suitable mechanical properties for future implantation purposes. Porous tubular nanofiber scaffolds are fabricated by electrospinning 12%, 16%, and 20% poly-ε-caprolactone (PCL) v/w (chloroform and dimethylformamide, 1:3) around 0.7 mm needle templates. The resulting scaffolds consist of 92%, 69%, and 54% nanofibers compared to microfibers, respectively. After biofunctionalization with L-3,4-dihydroxyphenylalanine and collagen IV, 10 × 106 proximal tubule cells per mL are injected and cultured until experimental readout. A human-derived cell model can bridge all fiber-to-fiber distances to form a monolayer, whereas small-sized murine cells form monolayers on dense nanofiber meshes only. Fabricated constructs remain viable for at least 3 weeks and maintain functionality as shown by inhibitor-sensitive transport activity, which suggests clearance capacity for both negatively and positively charged solutes.
Collapse
Affiliation(s)
- Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500,, 3508, GA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
| | - Sanne Aarts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500,, 3508, GA Utrecht, The Netherlands
| | - Michael M Kaminski
- University Medical Center Freiburg, Zentrale Klinische Forschung, Breisacher Straße 66,, 79106, Freiburg im Breisgau, Germany
| | - Soeren S Lienkamp
- University Medical Center Freiburg, Zentrale Klinische Forschung, Breisacher Straße 66,, 79106, Freiburg im Breisgau, Germany
| | - Roman Pichler
- University Medical Center Freiburg, Zentrale Klinische Forschung, Breisacher Straße 66,, 79106, Freiburg im Breisgau, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500,, 3508, GA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
- Department of Equine Sciences, Room G05228, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100,, 3584, CX Utrecht, The Netherlands
| | - Tina Vermonden
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
| | - Jitske Jansen
- Department of Pathology and Pediatric Nephrology, RIMLS, RIHS, Radboud University Medical Center, P.O. Box 9101, 6500, HB Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
| |
Collapse
|