1
|
Kawasaki R, Miura Y, Kono N, Fujita S, Yamana K, Ikeda A. Boron Agent Delivery Platforms Based on Natural Products for Boron Neutron Capture Therapy. ChemMedChem 2024; 19:e202400323. [PMID: 38830821 DOI: 10.1002/cmdc.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Boron neutron capture therapy (BNCT) is one of the most promising modalities for cancer treatment due to its minimal invasiveness. Although two types of boron agents are clinically used, several issues persist in their delivery, including poor water solubility, instability in aqueous media, selectivity toward cancer cells, accumulation in cancer cells, retention time in tumor tissue, and efficiency in achieving the boron neutron capture reaction. Addressing these challenges, numerous groups have explored various boron agents to enhance the therapeutic benefits of BNCT. This review summarizes delivery platforms based on natural products for BNCT.
Collapse
Affiliation(s)
- Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Yamato Miura
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Nanami Kono
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Seiya Fujita
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Keita Yamana
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| |
Collapse
|
2
|
Kitayama Y, Takigawa S, Yuba E, Harada A. Poly(vinyl alcohol)-Incorporated Core-Shell Polymer Nanogels Functionalized by Block Copolymer Installation for Cisplatin Delivery. Biomacromolecules 2024; 25:6465-6473. [PMID: 39230243 DOI: 10.1021/acs.biomac.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The functionalization approach for nanomaterials is of great importance for their application in drug delivery systems. Herein, an approach based on block copolymer installation into polymer nanogels was newly developed. Poly(vinyl alcohol)-incorporated polymer nanogels were prepared by a two-step dispersion/precipitation polymerization. Poly(methacrylic acid)-block-poly(3-fluorophenylboronic acid methacrylamide) (PMAA-b-PFPBMA) prepared by two-step reversible addition-fragmentation chain transfer polymerization was installed into the polymer nanogels via boronate ester formation. Furthermore, cisplatin as a cancer therapeutic drug was successfully loaded on the block copolymer-installed polymer nanogels, and cell death was achieved by using the resulting cisplatin-loaded nanogels. We believe that the functionality of the nanogels can be changed by varying the installed block copolymer, leading to the functionalization approach of polymer nanogels based on block copolymer installation, which will be of great utility in many fields.
Collapse
Affiliation(s)
- Yukiya Kitayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shunsuke Takigawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
3
|
Gorantla A, Hall JTVE, Troidle A, Janjic JM. Biomaterials for Protein Delivery: Opportunities and Challenges to Clinical Translation. MICROMACHINES 2024; 15:533. [PMID: 38675344 PMCID: PMC11052476 DOI: 10.3390/mi15040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The development of biomaterials for protein delivery is an emerging field that spans materials science, bioengineering, and medicine. In this review, we highlight the immense potential of protein-delivering biomaterials as therapeutic options and discuss the multifaceted challenges inherent to the field. We address current advancements and approaches in protein delivery that leverage stimuli-responsive materials, harness advanced fabrication techniques like 3D printing, and integrate nanotechnologies for greater targeting and improved stability, efficacy, and tolerability profiles. We also discuss the demand for highly complex delivery systems to maintain structural integrity and functionality of the protein payload. Finally, we discuss barriers to clinical translation, such as biocompatibility, immunogenicity, achieving reliable controlled release, efficient and targeted delivery, stability issues, scalability of production, and navigating the regulatory landscape for such materials. Overall, this review summarizes insights from a survey of the current literature and sheds light on the interplay between innovation and the practical implementation of biomaterials for protein delivery.
Collapse
Affiliation(s)
- Amogh Gorantla
- Department of Engineering, Wake Forest University, Winston-Salem, NC 27109, USA;
| | | | | | - Jelena M. Janjic
- School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| |
Collapse
|
4
|
Adachi T, Tahara Y, Yamamoto K, Yamamoto T, Kanamura N, Akiyoshi K, Mazda O. Cholesterol-Bearing Polysaccharide-Based Nanogels for Development of Novel Immunotherapy and Regenerative Medicine. Gels 2024; 10:206. [PMID: 38534624 DOI: 10.3390/gels10030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Novel functional biomaterials are expected to bring about breakthroughs in developing immunotherapy and regenerative medicine through their application as drug delivery systems and scaffolds. Nanogels are defined as nanoparticles with a particle size of 100 nm or less and as having a gel structure. Nanogels have a three-dimensional network structure of cross-linked polymer chains, which have a high water content, a volume phase transition much faster than that of a macrogel, and a quick response to external stimuli. As it is possible to transmit substances according to the three-dimensional mesh size of the gel, a major feature is that relatively large substances, such as proteins and nucleic acids, can be taken into the gel. Furthermore, by organizing nanogels as a building block, they can be applied as a scaffold material for tissue regeneration. This review provides a brief overview of the current developments in nanogels in general, especially drug delivery, therapeutic applications, and tissue engineering. In particular, polysaccharide-based nanogels are interesting because they have excellent complexation properties and are highly biocompatible.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyoto-fu, Kyotanabe-shi 610-0321, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| |
Collapse
|
5
|
Liao W, Xiao S, Yang J, Shi X, Zheng Y. Multifunctional nanogel based on carboxymethyl cellulose interfering with cellular redox homeostasis enhances phycocyanobilin photodynamic therapy. Carbohydr Polym 2024; 323:121416. [PMID: 37940295 DOI: 10.1016/j.carbpol.2023.121416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/28/2023] [Accepted: 09/17/2023] [Indexed: 11/10/2023]
Abstract
The redox homeostasis defense mechanism of tumor cells is one of the prime reasons for the unsatisfactory effect of photodynamic therapy (PDT). So far, little attention has been paid to this obstacle. In this work, we reported a synthesizing simple yet versatile nanogel (BCPS), synthesized by cystamine dihydrochloride functionalized sodium carboxymethylcellulose (CMC-SS), bovine serum albumin, and Phycocyanobilin self-assembly. The BCPS reduced the levels of glutathione molecules by reacting with glutathione, thereby interfering with intracellular redox homeostasis and enhancing the sensitivity of tumor cells to PDT. The BCPS was shown to possess excellent serum stability, high blood compatibility, low toxic side effects, and higher reactive oxygen species (ROS) utilization. After irradiation, the BCPS could significantly increase intracellular ROS level by approximately 1.6-fold and decrease the IC50 to HeLa cells by approximately 1.5-fold, compared to the pre-functional drugs BCP. This proposed strategy, based on increasing the utilization rate of ROS in tumor cells is promising for application potentials in tumor therapy.
Collapse
Affiliation(s)
- Wenqiang Liao
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Siqi Xiao
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; International Joint Laboratory of Intelligent Health Care, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
6
|
Kubeil M, Suzuki Y, Casulli MA, Kamal R, Hashimoto T, Bachmann M, Hayashita T, Stephan H. Exploring the Potential of Nanogels: From Drug Carriers to Radiopharmaceutical Agents. Adv Healthc Mater 2024; 13:e2301404. [PMID: 37717209 PMCID: PMC11468994 DOI: 10.1002/adhm.202301404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Nanogels open up access to a wide range of applications and offer among others hopeful approaches for use in the field of biomedicine. This review provides a brief overview of current developments of nanogels in general, particularly in the fields of drug delivery, therapeutic applications, tissue engineering, and sensor systems. Specifically, cyclodextrin (CD)-based nanogels are important because they have exceptional complexation properties and are highly biocompatible. Nanogels as a whole and CD-based nanogels in particular can be customized in a wide range of sizes and equipped with a desired surface charge as well as containing additional molecules inside and outside, such as dyes, solubility-mediating groups or even biological vector molecules for pharmaceutical targeting. Currently, biological investigations are mainly carried out in vitro, but more and more in vivo applications are gaining importance. Modern molecular imaging methods are increasingly being used for the latter. Due to an extremely high sensitivity and the possibility of obtaining quantitative data on pharmacokinetic and pharmacodynamic properties, nuclear methods such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) using radiolabeled compounds are particularly suitable here. The use of radiolabeled nanogels for imaging, but also for therapy, is being discussed.
Collapse
Affiliation(s)
- Manja Kubeil
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| | - Yota Suzuki
- Graduate School of Science and EngineeringSaitama University255 Shimo‐OkuboSakura‐KuSaitama338‐8570Japan
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | | | - Rozy Kamal
- Department of Nuclear MedicineManipal College of Health ProfessionsManipal Academy of Higher EducationManipalKarnataka576104India
| | - Takeshi Hashimoto
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | - Michael Bachmann
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| | - Takashi Hayashita
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | - Holger Stephan
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| |
Collapse
|
7
|
Zhao Q, Yue X, Miaomiao L, Yanming W, Wu G. Nano-injectable pH/NIR-responsive hydrogel for chemo-photothermal synergistic drug delivery. J Biomater Appl 2023; 38:614-628. [PMID: 37918422 DOI: 10.1177/08853282231209653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Conventional cancer treatments are highly toxic and ineffective; therefore, it is essential to develop less toxic and minimally invasive treatment methods. A pH/Near Infra-red (NIR) dual-responsive, nano-injectable smart hydrogel was fabricated by incorporating CuS nanoparticles into the hydrogel networks formed by a random copolymer of N-isopropylacrylamide (NIPAM) and double-bond functionalized uracil. Microstructural characterizations of synthesized polymer and hydrogels were carried out using transmission electron microscope (TEM), scanning electron microscope (SEM), nuclear magnetic resonance (NMR) and fourier transform infrared spectroscopy (FT-IR). Multiple hydrogen bonding interactions between uracils function as physical cross-linking points to construct the network structure of the polymeric nanogel without the addition of additional cross-linking agents, ensuring the material's safety. The amino group on the structure of uracil gives the uracil-modified polymeric hydrogel excellent pH responsiveness. Notably, as a temperature-responsive material, poly (N-isopropylacrylamide) (PNIPAM) nanogel solution can achieve in situ gel formation (within 100 s at 37°C) above its lower critical solution temperature (LCST), granting injectability to polymeric solutions. Moreover, using a hierarchical construction strategy, the variable loading of DOX and CuS was achieved. First, a heterogeneous system was created by encapsulating doxorubicin (DOX) inside the nanogel via hydrophobic and π-π stacking interactions, followed by the introduction of CuS nanoparticles as photosensitizers outside of the nanogels. Due to the presence of CuS nanoparticles, the gel is able to convert NIR light into local heat to enhance the destruction of tumor cells while simultaneously achieving rapid in situ gel formation. The in situ-forming hydrogel showed promising tissue biocompatibility. The in vitro antitumor test demonstrated the capacity of the nanocomposite hydrogel for chemo-photothermal synergistic therapy. Therefore, this prepared platform has the potential to become a safe and effective, smart-responsive drug carrier for chemotherapy and PTT synergy, a minimally invasive material for tumor treatment.
Collapse
Affiliation(s)
- Qian Zhao
- Key Laboratory of Functional Polymer Materials of MOE, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Xu Yue
- Key Laboratory of Functional Polymer Materials of MOE, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Liu Miaomiao
- College of Pharmacy, Nankai University, Tianjin, China
| | - Wang Yanming
- College of Pharmacy, Nankai University, Tianjin, China
| | - Guolin Wu
- Key Laboratory of Functional Polymer Materials of MOE, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Yabuuchi K, Suzuki M, Liang C, Hashimoto Y, Kimura T, Akiyoshi K, Kishida A. Preparation of Cholesterol-Modified Hyaluronic Acid Nanogel-Based Hydrogel and the Inflammatory Evaluation Using Macrophage-like Cells. Gels 2023; 9:866. [PMID: 37998957 PMCID: PMC10671248 DOI: 10.3390/gels9110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Nanogels are candidate biomaterials for tissue engineering and drug delivery. In the present study, a cholesterol-hyaluronic acid hydrogel was developed, and the pro-inflammatory response of macrophages to the hydrogel was investigated to determine its use in biomedical applications. Hyaluronic acid modified with cholesterol (modification rate: 0-15%) and maleimide (Chol-HA) was synthesized. The Chol-HA nanogel was formed through self-assembly via hydrophobic cholesterol interactions in aqueous solution. The Chol-HA hydrogel was formed through chemical crosslinking of the Chol-HA nanogel via a Michael addition reaction between the maleimide and thiol groups of 4arm-PEGSH. We found that the Chol-HA hydrogels with 5, 10, and 15% cholesterol inhibited the pro-inflammatory response of HiBiT-THP-1 cells, suggesting that the cholesterol contributed to the macrophage response. Furthermore, Interleukin 4 (IL-4) encapsulated in the hydrogel of the Chol-HA nanogel enhanced the inhibition of the inflammatory response in HiBiT-THP-1 cells. These results provide useful insights into the biomedical applications of hydrogels.
Collapse
Affiliation(s)
- Kohei Yabuuchi
- New Product Development Office, R&D Group, Healthcare Materials Division, Life Innovation SBU, Asahi Kasei Co., Chiyoda-ku, Tokyo 100-0006, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Mika Suzuki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Chen Liang
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
9
|
Li S, Yu Q, Li H, Chen M, Jin Y, Liu D. Self-Assembled Peptide Hydrogels in Regenerative Medicine. Gels 2023; 9:653. [PMID: 37623108 PMCID: PMC10453854 DOI: 10.3390/gels9080653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Regenerative medicine is a complex discipline that is becoming a hot research topic. Skin, bone, and nerve regeneration dominate current treatments in regenerative medicine. A new type of drug is urgently needed for their treatment due to their high vulnerability to damage and weak self-repairing ability. A self-assembled peptide hydrogel is a good scaffolding material in regenerative medicine because it is similar to the cytoplasmic matrix environment; it promotes cell adhesion, migration, proliferation, and division; and its degradation products are natural and harmless proteins. However, fewer studies have examined the specific mechanisms of self-assembled peptide hydrogels in promoting tissue regeneration. This review summarizes the applications and mechanisms of self-assembled short peptide and peptide hydrogels in skin, bone, and neural healing to improve their applications in tissue healing and regeneration.
Collapse
Affiliation(s)
- Shuangyang Li
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| | - Qixuan Yu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| | - Hongpeng Li
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| | - Meiqi Chen
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| | - Ye Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.L.); (Q.Y.); (H.L.); (M.C.)
| |
Collapse
|
10
|
Mohan S, Wal P, Pathak K, Khandai M, Behl T, Alhazmi HA, Khuwaja G, Khalid A. Nanosilver-functionalized polysaccharides as a platform for wound dressing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54385-54406. [PMID: 36961636 DOI: 10.1007/s11356-023-26450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Polysaccharides that are naturally sourced have enormous promise as wound dressings, due to their wider availability and reasonable cost and good biocompatibility. Furthermore, nanosilver extensively applied in wound treatment is attributed to its broad spectrum of antimicrobial effects and lesser drug resistance. Consequently, wound dressings in corporating nanosilver have attracted wide-scale interest in wound healing, and nanosilver-functionalized polysaccharide-based wound dressings present an affordable option for healing of chronic wounds. This review encompasses preparation methods, classification, and antibacterial performances of nanosilver wound dressings. The prospective research arenas of nanosilver-based wound polysaccharide dressings are also elaborated. The review attempts to include a summary of the most recent advancements in silver nanotechnology as well as guidance for the investigation of nanosilver-functionalized polysaccharide-based wound dressings.
Collapse
Affiliation(s)
- Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Pranay Wal
- Pharmacy, Pranveer Singh Institute of Technology, National Highway-2, Bhauti Road, Kanpur, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah, India
| | | | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| |
Collapse
|
11
|
Zhang Y, Chen J, Shi L, Ma F. Polymeric nanoparticle-based nanovaccines for cancer immunotherapy. MATERIALS HORIZONS 2023; 10:361-392. [PMID: 36541078 DOI: 10.1039/d2mh01358d] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Therapeutic cancer vaccines, which are designed to amplify tumor-specific T cell responses, have been envisioned as one of the most powerful tools for effective cancer immunotherapy. However, increasing the potency, quality and durability of the vaccine response remains a big challenge. In recent years, materials-based delivery systems focusing on the co-delivery of antigens and adjuvants to enhance cancer vaccination therapy have attracted increasing interest. Among various materials, polymeric nanoparticles (NPs) with different physicochemical properties which can incorporate multiple immunological cues are of great interest. In this review, the recent progress in the design and construction of both ex vivo subunit and in situ cancer vaccines using polymeric NPs is summarized. Especially, we will focus on how these NPs improve the adjuvanticity of vaccines. The design principles of polymeric NPs for ex vivo subunit cancer vaccines and in situ cancer vaccination are also discussed. Finally, we want to briefly discuss molecular chaperones in cancer immunity and the applications of our unique self-assembly mixed shell polymeric micelle-based nanochaperones for cancer vaccines.
Collapse
Affiliation(s)
- Yongxin Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Jiajing Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
| |
Collapse
|
12
|
Nanotechnology in tissue engineering and regenerative medicine. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Yan C, Li Q, Sun Q, Yang L, Liu X, Zhao Y, Shi M, Li X, Luo K. Promising Nanomedicines of Shikonin for Cancer Therapy. Int J Nanomedicine 2023; 18:1195-1218. [PMID: 36926681 PMCID: PMC10013574 DOI: 10.2147/ijn.s401570] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Malignant tumor, the leading cause of death worldwide, poses a serious threat to human health. For decades, natural product has been proven to be an essential source for novel anticancer drug discovery. Shikonin (SHK), a natural molecule separated from the root of Lithospermum erythrorhizon, shows great potential in anticancer therapy. However, its further clinical application is significantly restricted by poor bioavailability, adverse effects, and non-selective toxicity. With the development of nanotechnology, nano drug delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. To overcome the shortcoming of SHK, various nano drug delivery systems such as liposomes, polymeric micelles, nanoparticles, nanogels, and nanoemulsions, were developed to achieve efficient delivery for enhanced antitumor effects. Herein, this review summarizes the anticancer pharmacological activities and pharmacokinetics of SHK. Additionally, the latest progress of SHK nanomedicines in cancer therapy is outlined, focusing on long circulation, tumor targeting ability, tumor microenvironment responsive drug release, and nanosystem-mediated combination therapy. Finally, the challenges and prospects of SHK nanomedicines in the future clinical application are spotlighted.
Collapse
Affiliation(s)
- Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiang Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
14
|
Li X, Ren X, Zhang Y, Ding L, Huo M, Li Q. Fabry disease: Mechanism and therapeutics strategies. Front Pharmacol 2022; 13:1025740. [PMID: 36386210 PMCID: PMC9643830 DOI: 10.3389/fphar.2022.1025740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Fabry disease is a monogenic disease characterized by a deficiency or loss of the α-galactosidase A (GLA). The resulting impairment in lysosomal GLA enzymatic activity leads to the pathogenic accumulation of enzymatic substrate and, consequently, the progressive appearance of clinical symptoms in target organs, including the heart, kidney, and brain. However, the mechanisms involved in Fabry disease-mediated organ damage are largely ambiguous and poorly understood, which hinders the development of therapeutic strategies for the treatment of this disorder. Although currently available clinical approaches have shown some efficiency in the treatment of Fabry disease, they all exhibit limitations that need to be overcome. In this review, we first introduce current mechanistic knowledge of Fabry disease and discuss potential therapeutic strategies for its treatment. We then systemically summarize and discuss advances in research on therapeutic approaches, including enzyme replacement therapy (ERT), gene therapy, and chaperone therapy, as well as strategies targeting subcellular compartments, such as lysosomes, the endoplasmic reticulum, and the nucleus. Finally, the future development of potential therapeutic strategies is discussed based on the results of mechanistic studies and the limitations associated with these therapeutic approaches.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Yabing Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Ding
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Minfeng Huo
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| |
Collapse
|
15
|
Baek SL, Kim Y, Jang Y, Lee SM. Polyphenol-Incorporated Composite Nanogels of Multimodal Interactions for Enhanced Gel Stability and Cisplatin Delivery. ACS Macro Lett 2022; 11:1129-1135. [PMID: 36044353 DOI: 10.1021/acsmacrolett.2c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- So-Lee Baek
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Yeojin Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Yoojin Jang
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Sang-Min Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| |
Collapse
|
16
|
Kwon MJ, Seo Y, Cho H, Kim HS, Oh YJ, Genişcan S, Kim M, Park HH, Joe EH, Kwon MH, Kang HC, Kim BG. Nanogel-mediated delivery of oncomodulin secreted from regeneration-associated macrophages promotes sensory axon regeneration in the spinal cord. Theranostics 2022; 12:5856-5876. [PMID: 35966584 PMCID: PMC9373827 DOI: 10.7150/thno.73386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Abstract
Preconditioning nerve injury enhances axonal regeneration of dorsal root ganglia (DRG) neurons in part by driving pro-regenerative perineuronal macrophage activation. How these macrophages influence the neuronal capacity of axon regeneration remains elusive. We report that oncomodulin (ONCM) is produced from the regeneration-associated macrophages and strongly influences regeneration of DRG sensory axons. We also attempted to promote sensory axon regeneration by nanogel-mediated delivery of ONCM to DRGs. Methods:In vitro neuron-macrophage interaction model and preconditioning sciatic nerve injury were used to verify the necessity of ONCM in preconditioning injury-induced neurite outgrowth. We developed a nanogel-mediated delivery system in which electrostatic encapsulation of ONCM by a reducible epsilon-poly(L-lysine)-nanogel (REPL-NG) enabled a controlled release of ONCM. Results: Sciatic nerve injury upregulated ONCM in DRG macrophages. ONCM in macrophages was necessary to produce pro-regenerative macrophages in the in vitro model of neuron-macrophage interaction and played an essential role in preconditioning-induced neurite outgrowth. ONCM increased neurite outgrowth in cultured DRG neurons by activating a distinct gene set, particularly neuropeptide-related genes. Increasing extracellularly secreted ONCM in DRGs sufficiently enhanced the capacity of neurite outgrowth. Intraganglionic injection of REPL-NG/ONCM complex allowed sustained ONCM activity in DRG tissue and achieved a remarkable long-range regeneration of dorsal column sensory axons beyond spinal cord lesion. Conclusion: NG-mediated ONCM delivery could be exploited as a therapeutic strategy for promoting sensory axon regeneration following spinal cord injury.
Collapse
Affiliation(s)
- Min Jung Kwon
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,AI-Superconvergence KIURI Translational Research Center, Suwon, 16499, Republic of Korea
| | - Yeojin Seo
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hyung Soon Kim
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Young Joo Oh
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Simay Genişcan
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Minjae Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hee Hwan Park
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Eun-Hye Joe
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Myung-Hee Kwon
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Byung Gon Kim
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,Department of Neurology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,AI-Superconvergence KIURI Translational Research Center, Suwon, 16499, Republic of Korea
| |
Collapse
|
17
|
Adachi T, Miyamoto N, Imamura H, Yamamoto T, Marin E, Zhu W, Kobara M, Sowa Y, Tahara Y, Kanamura N, Akiyoshi K, Mazda O, Nishimura I, Pezzotti G. Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation. Int J Mol Sci 2022; 23:ijms23158099. [PMID: 35897669 PMCID: PMC9332688 DOI: 10.3390/ijms23158099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
This study presents a set of vibrational characterizations on a nanogel-cross-linked porous freeze-dried gel (NanoCliP-FD gel) scaffold for tissue engineering and regenerative therapy. This scaffold is designed for the in vitro culture of high-quality cartilage tissue to be then transplanted in vivo to enable recovery from congenital malformations in the maxillofacial area or crippling jaw disease. The three-dimensional scaffold for in-plate culture is designed with interface chemistry capable of stimulating cartilage formation and maintaining its structure through counteracting the dedifferentiation of mesenchymal stem cells (MSCs) during the formation of cartilage tissue. The developed interface chemistry enabled high efficiency in both growth rate and tissue quality, thus satisfying the requirements of large volumes, high matrix quality, and superior mechanical properties needed in cartilage transplants. We characterized the cartilage tissue in vitro grown on a NanoCliP-FD gel scaffold by human periodontal ligament-derived stem cells (a type of MSC) with cartilage grown by the same cells and under the same conditions on a conventional (porous) atelocollagen scaffold. The cartilage tissues produced by the MSCs on different scaffolds were comparatively evaluated by immunohistochemical and spectroscopic analyses. Cartilage differentiation occurred at a higher rate when MSCs were cultured on the NanoCliP-FD gel scaffold compared to the atelocollagen scaffold, and produced a tissue richer in cartilage matrix. In situ spectroscopic analyses revealed the cell/scaffold interactive mechanisms by which the NanoCliP-FD gel scaffold stimulated such increased efficiency in cartilage matrix formation. In addition to demonstrating the high potential of human periodontal ligament-derived stem cell cultures on NanoCliP-FD gel scaffolds in regenerative cartilage therapy, the present study also highlights the novelty of Raman spectroscopy as a non-destructive method for the concurrent evaluation of matrix quality and cell metabolic response. In situ Raman analyses on living cells unveiled for the first time the underlying physiological mechanisms behind such improved chondrocyte performance.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (Y.S.); (O.M.)
- Correspondence: (T.A.); (G.P.)
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hayata Imamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
| | - Elia Marin
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Miyuki Kobara
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan;
| | - Yoshihiro Sowa
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (Y.S.); (O.M.)
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan;
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (Y.S.); (O.M.)
| | - Ichiro Nishimura
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA;
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Giuseppe Pezzotti
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (Y.S.); (O.M.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Correspondence: (T.A.); (G.P.)
| |
Collapse
|
18
|
Šálek P, Dvořáková J, Hladysh S, Oleshchuk D, Pavlova E, Kučka J, Proks V. Stimuli-responsive polypeptide nanogels for trypsin inhibition. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:538-548. [PMID: 35812252 PMCID: PMC9235903 DOI: 10.3762/bjnano.13.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
A new type of hydrophilic, biocompatible, and biodegradable polypeptide nanogel depots loaded with the natural serine protease inhibitor α1-antitrypsin (AAT) was applied for the inhibition of the inflammatory mediator trypsin. Two types of nanogels were prepared from linear synthetic polypeptides based on biocompatible and biodegradable poly[N 5-(2-hydroxyethyl)-ʟ-glutamine-ran-N 5-propargyl-ʟ-glutamine-ran-N 5-(6-aminohexyl)-ʟ-glutamine]-ran-N 5-[2-(4-hydroxyphenyl)ethyl)-ʟ-glutamine] (PHEG-Tyr) or biocompatible N α-ʟ-lysine-grafted α,β-poly[(2-propyne)-ᴅ,ʟ-aspartamide-ran-(2-hydroxyethyl)-ᴅʟ-aspartamide-ran-(2-(4-hydroxyphenyl)ethyl)-ᴅʟ-aspartamide] (N α-Lys-NG). Both nanogels were prepared by HRP/H2O2-mediated crosslinking in inverse miniemulsions with pH and temperature-stimuli responsive behavior confirmed by dynamic light scattering and zeta potential measurements. The loading capacity of PHEG-Tyr and N α-Lys-NG nanogels and their release profiles were first optimized with bovine serum albumin. The nanogels were then used for loading and release of AAT. PHEG-Tyr and N α-Lys-NG nanogels showed different loading capacities for AAT with the maximum (20%) achieved with N α-Lys-NG nanogel. In both cases, the nanogel depots demonstrated a burst release of AAT during the first 6 h, which could be favorable for quick inhibition of trypsin. A consequent pilot in vitro inhibition study revealed that both PHEG-Tyr and N α-Lys-NG nanogels loaded with AAT successfully inhibited the enzymatic activity of trypsin. Furthermore, the inhibitory efficiency of the AAT-loaded nanogels was higher than that of only AAT. Interestingly, also non-loaded PHEG-Tyr and N α-Lys-NG nanogels were shown to effectively inhibit trypsin because they contain suitable amino acids in their structures that effectively block the active site of trypsin.
Collapse
Affiliation(s)
- Petr Šálek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Jana Dvořáková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Sviatoslav Hladysh
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Diana Oleshchuk
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Jan Kučka
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Vladimír Proks
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
19
|
Liang M, Li J, Han L. Receptor-mediated cascade targeting strategies for the application to medical diagnoses and therapeutics of glioma. JOURNAL OF NANOPARTICLE RESEARCH 2022; 24:106. [DOI: 10.1007/s11051-022-05482-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/02/2022] [Indexed: 01/06/2025]
|
20
|
Affiliation(s)
- Xiao Xu
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials School of Life Science and Technology China Pharmaceutical University Nanjing China
| | - Shiyang Shen
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials School of Life Science and Technology China Pharmaceutical University Nanjing China
| | - Ran Mo
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials School of Life Science and Technology China Pharmaceutical University Nanjing China
| |
Collapse
|
21
|
Protein antigen conjugated with cholesteryl amino-pullulan nanogel shows delayed degradation in dendritic cells and augmented immunogenicity. Vaccine 2021; 39:7526-7530. [PMID: 34852944 DOI: 10.1016/j.vaccine.2021.11.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 01/04/2023]
Abstract
Carriers that augment delivery, immunogenicity or both are crucial in the development of vaccines especially component vaccines as components of pathogens are often poorly immunogenic. Cholesteryl pullulan (CHP) that forms nano-sized hydrogel (nanogel) and encapsulates proteins was shown to be useful in the delivery of vaccines. Here we demonstrate that subcutaneous immunization of mice with bovine serum albumin (BSA) chemically conjugated to NH2-CHP nanogel induces strong antibody production. This augmented antibody production requires covalent conjugation between BSA and CHP, but does not require nanogel formation. Conjugation of NH2-CHP nanogel induces persistence of BSA in dendritic cells (DCs) in vivo. As resistance to lysosomal degradation was previously shown to augment antigen presentation by DCs, conjugation of antigens with CHP nanogel may enhance antibody production to antigens by delaying lysosomal degradation. Therefore, delayed degradation of antigens by covalent conjugation with nanoparticles may be a good strategy for the development of effective vaccines.
Collapse
|
22
|
Hayashi S, Sasaki Y, Kubo H, Sawada SI, Kinoshita N, Marukawa E, Harada H, Akiyoshi K. Construction of Hybrid Cell Spheroids Using Cell-Sized Cross-Linked Nanogel Microspheres as an Artificial Extracellular Matrix. ACS APPLIED BIO MATERIALS 2021; 4:7848-7855. [PMID: 35006766 DOI: 10.1021/acsabm.1c00796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of functional material supports or spacers into cell spheroids increases the free volume, allowing oxygen, nutrients, and waste products to diffuse in and out more freely. Here, a biocompatible polysaccharide spacer material was investigated. Microspheres were prepared by cross-linking cholesterol-modified pullulan (CHP) nanogels with poly(ethylene glycol) (PEG). The ratio of modified CHP nanogel to PEG cross-linker was optimized to give uniform microspheres with an average diameter of approximately 14 μm. Rhodamine B-labeled microspheres showed a homogeneous assembly with bone marrow-derived mesenchymal stem cells (1:1 ratio) to create hybrid cell spheroids. The addition of the cross-linked nanogel spacers did not affect the cell viability, indicating that the microspheres provided a biocompatible scaffold that supported cell proliferation. In addition, the microspheres were stable under culture conditions over 14 days. The hybrid cell spheroids were scaled up to millimeter size to demonstrate their potential as a transplantable treatment, and the cells were found to maintain their high viability. The hybrid cell spheroids are expected to support the production of organoids.
Collapse
Affiliation(s)
- Shunya Hayashi
- Department of Oral and Maxillofacial Surgery, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hirotaka Kubo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naoya Kinoshita
- Department of Oral and Maxillofacial Surgery, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Eriko Marukawa
- Department of Maxillofacial Surgery, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
23
|
Della Sala F, Fabozzi A, di Gennaro M, Nuzzo S, Makvandi P, Solimando N, Pagliuca M, Borzacchiello A. Advances in Hyaluronic-Acid-Based (Nano)Devices for Cancer Therapy. Macromol Biosci 2021; 22:e2100304. [PMID: 34657388 DOI: 10.1002/mabi.202100304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the main cause of fatality all over the world with a considerable growth rate. Many biologically active nanoplatforms are exploited for tumor treatment. Of nanodevices, hyaluronic acid (HA)-based systems have shown to be promising candidates for cancer therapy due to their high biocompatibility and cell internalization. Herein, surface functionalization of different nanoparticles (NPs), e.g., organic- and inorganic-based NPs, is highlighted. Subsequently, HA-based nanostructures and their applications in cancer therapy are presented.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Antonio Fabozzi
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Stefano Nuzzo
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Pooyan Makvandi
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Nicola Solimando
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Maurizio Pagliuca
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| |
Collapse
|
24
|
Gao W, Wang Z, Song F, Fu Y, Wu Q, Liu S. Temperature/Reduction Dual Response Nanogel Is Formed by In Situ Stereocomplexation of Poly (Lactic Acid). Polymers (Basel) 2021; 13:3492. [PMID: 34685251 PMCID: PMC8540984 DOI: 10.3390/polym13203492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
A novel type of dual responsive nanogels was synthesized by physical crosslinking of polylactic acid stereocomplexation: temperature and reduction dual stimulation responsive gels were formed in situ by mixing equal amounts of PLA (Poly (Lactic Acid)) enantiomeric graft copolymer micellar solution; the properties of double stimulation response make it more targeted in the field of drug release. The structural composition of the gels was studied by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FT-IR). Using transmission electron microscope (TEM) and dynamic light scattering (DLS) instruments, the differences in morphology and particle size were analyzed (indicating that nanogels have dual stimulus responses of temperature sensitivity and reduction). The Wide-Angle X-ray diffractionr (WAXD) was used to prove the stereocomplexation of PLA in the gels, the mechanical properties and gelation process of the gels were studied by rheology test. The physically cross-linked gel network generated by the self-recombination of micelles and then stereo-complexation has a more stable structure. The results show that the micelle properties, swelling properties and rheological properties of nanogels can be changed by adjusting the degree of polymerization of polylactic acid. In addition, it provides a safe and practical new method for preparing stable temperature/reduction response physical cross-linked gel.
Collapse
Affiliation(s)
| | | | | | | | | | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (W.G.); (Z.W.); (F.S.); (Y.F.); (Q.W.)
| |
Collapse
|
25
|
Sun J, Han J, Wang F, Liu K, Zhang H. Bioengineered Protein-based Adhesives for Biomedical Applications. Chemistry 2021; 28:e202102902. [PMID: 34622998 DOI: 10.1002/chem.202102902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Protein-based adhesives with their robust adhesion performance and excellent biocompatibility have been extensively explored over years. In particular, the unique adhesion behaviours of mussel and sandcastle worm inspired the development of synthetic adhesives. However, the chemical synthesized adhesives often demonstrate weak underwater adhesion performance and poor biocompatibility/biodegradability, limiting their further biomedical applications. In sharp contrast, genetically engineering endows the protein-based adhesives the ability to maintain underwater adhesion property as well as biocompatibility/biodegradability. Herein, we outline recent advances in the design and development of protein-based adhesives by genetic engineering. We summarize the fabrication and adhesion performance of elastin-like polypeptide-based adhesives, followed by mussel foot protein (mfp) based adhesives and other sources protein-based adhesives, such as, spider silk spidroin and suckerin. In addition, the biomedical applications of these bioengineered protein-based adhesives are presented. Finally, we give a brief summary and perspective on the future development of bioengineered protein-based adhesives.
Collapse
Affiliation(s)
- Jing Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jiaying Han
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
26
|
Nakai K, Yamamoto K, Kishida T, Kotani SI, Sato Y, Horiguchi S, Yamanobe H, Adachi T, Boschetto F, Marin E, Zhu W, Akiyoshi K, Yamamoto T, Kanamura N, Pezzotti G, Mazda O. Osteogenic Response to Polysaccharide Nanogel Sheets of Human Fibroblasts After Conversion Into Functional Osteoblasts by Direct Phenotypic Cell Reprogramming. Front Bioeng Biotechnol 2021; 9:713932. [PMID: 34540813 PMCID: PMC8446423 DOI: 10.3389/fbioe.2021.713932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Human dermal fibroblasts (HDFs) were converted into osteoblasts using a ALK inhibitor II (inhibitor of transforming growth factor-β signal) on freeze-dried nanogel-cross-linked porous (FD-NanoClip) polysaccharide sheets or fibers. Then, the ability of these directly converted osteoblasts (dOBs) to produce calcified substrates and the expression of osteoblast genes were analyzed in comparison with osteoblasts converted by exactly the same procedure but seeded onto a conventional atelocollagen scaffold. dOBs exposed to FD-NanoClip in both sheet and fiber morphologies produced a significantly higher concentration of calcium deposits as compared to a control cell sample (i.e., unconverted fibroblasts), while there was no statistically significant difference in calcification level between dOBs exposed to atelocollagen sheets and the control group. The observed differences in osteogenic behaviors were interpreted according to Raman spectroscopic analyses comparing different polysaccharide scaffolds and Fourier transform infrared spectroscopy analyses of dOB cultures. This study substantiates a possible new path to repair large bone defects through a simplified transplantation procedure using FD-NanoClip sheets with better osteogenic outputs as compared to the existing atelocollagen scaffolding material.
Collapse
Affiliation(s)
- Kei Nakai
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsunao Kishida
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shin-Ichiro Kotani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiki Sato
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Horiguchi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hironaka Yamanobe
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Francesco Boschetto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Elia Marin
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Giuseppe Pezzotti
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
27
|
Li J, Fernandez-Alvarez R, Tošner Z, Kereïche S, Uchman M, Matějíček P. Engineered nanogels shape templated by closo-dodecaborate nano-ion and dictated by chemical crosslinking for efficient boron delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Yang HY, Meng Du J, Jang MS, Mo XW, Sun XS, Lee DS, Lee JH, Fu Y. CD44-Targeted and Enzyme-Responsive Photo-Cross-Linked Nanogels with Enhanced Stability for In Vivo Protein Delivery. Biomacromolecules 2021; 22:3590-3600. [PMID: 34286578 DOI: 10.1021/acs.biomac.1c00653] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the biggest challenges of the protein delivery system is to realize stable and high protein encapsulation efficiency in blood circulation and rapid release of protein in the targeted tumor cells. To overcome these hurdles, we fabricated enzyme-responsive photo-cross-linked nanogels (EPNGs) through UV-triggered chemical cross-linking of cinnamyloxy groups in the side chain of PEGylation hyaluronic acid (HA) for CD44-targeted transport of cytochrome c (CC). The EPNGs showed high loading efficiency and excellent stability in different biological media. Notably, CC leakage effectively suppressed under physiological conditions but accelerated release in the presence of hyaluronidase, an overexpressed enzyme in tumor cells. Moreover, thiazolylblue tetrazolium bromide (MTT) results indicated that the vacant EPNGs showed excellent nontoxicity, while CC-loaded EPNGs exhibited higher killing efficiency to CD44-positive A549 cells than to CD44-negative HepG2 cells and free CC. Confocal images confirmed that CC-loaded EPNGs could effectively be internalized by CD44-mediated endocytosis pathway and rapidly escape from the endo/lysosomal compartment. Human lung tumor-bearing mice imaging assays further revealed that CC-loaded EPNGs actively target tumor locations. Remarkably, CC-loaded EPNGs also exhibited enhanced antitumor activity with negligible systemic toxicity. These results implied that these EPNGs have appeared as stable and promising nanocarriers for tumor-targeting protein delivery.
Collapse
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| | - Jia Meng Du
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Xin Wang Mo
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| | - Xin Shun Sun
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| |
Collapse
|
29
|
Kawasaki R, Ohdake R, Yamana K, Eto T, Sugikawa K, Ikeda A. Photodynamic therapy using self-assembled nanogels comprising chlorin e6-bearing pullulan. J Mater Chem B 2021; 9:6357-6363. [PMID: 34286817 DOI: 10.1039/d1tb00377a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With minimal invasiveness and spatiotemporal therapeutic effects, photodynamic therapy is one of the most promising candidates for cancer treatment. Here, we developed a facile self-assembled nanogel using photosensitizer-grafted polysaccharides called chlorin e6-bearing pullulan. Chlorin e6 is used as a photosensitizer in cancer therapy. The anti-cancer effect of photodynamic therapy with our nanogel system was 780 times higher than that of the commercially available photosensitizer Photofrin. Finally, we demonstrated that actively growing cancer cell spheroids can be completely suppressed after treatment. Our system could efficiently induce tumor regression in tumor xenograft mice.
Collapse
Affiliation(s)
- Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima, 739-8527, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Hata Y, Yoneda S, Tanaka S, Sawada T, Serizawa T. Structured liquids with interfacial robust assemblies of a nonionic crystalline surfactant. J Colloid Interface Sci 2021; 590:487-494. [DOI: 10.1016/j.jcis.2021.01.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
|
31
|
Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydr Polym 2021; 266:118119. [PMID: 34044935 DOI: 10.1016/j.carbpol.2021.118119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Nowadays nanoparticles are increasingly investigated for the targeted and controlled delivery of therapeutics, as suggested by the high number of research articles (2400 in 2000 vs 8500 in 2020). Among them, almost 2% investigated nanogels in 2020. Nanogels or nanohydrogels (NGs) are nanoparticles formed by a swollen three-dimensional network of synthetic polymers or natural macromolecules such as polysaccharides. NGs represent a highly versatile nanocarrier, able to deliver a number of therapeutics. Currently, NGs are undergoing clinical trials for the delivery of anti-cancer vaccines. Herein, the strategies to load low molecular weight drugs, (poly)peptides and genetic material into polysaccharide NGs as well as to formulate NGs-based vaccines are summarized, with a focus on the microfluidics approach.
Collapse
|
32
|
Yuki Y, Uchida Y, Sawada SI, Nakahashi-Ouchida R, Sugiura K, Mori H, Yamanoue T, Machita T, Honma A, Kurokawa S, Mukerji R, Briles DE, Akiyoshi K, Kiyono H. Characterization and Specification of a Trivalent Protein-Based Pneumococcal Vaccine Formulation Using an Adjuvant-Free Nanogel Nasal Delivery System. Mol Pharm 2021; 18:1582-1592. [PMID: 33621107 DOI: 10.1021/acs.molpharmaceut.0c01003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We previously developed a safe and effective nasal vaccine delivery system using a self-assembled nanosized hydrogel (nanogel) made from a cationic cholesteryl pullulan. Here, we generated three pneumococcal surface protein A (PspA) fusion antigens as a universal pneumococcal nasal vaccine and then encapsulated each PspA into a nanogel and mixed the three resulting monovalent formulations into a trivalent nanogel-PspA formulation. First, to characterize the nanogel-PspA formulations, we used native polyacrylamide gel electrophoresis (PAGE) to determine the average number of PspA molecules encapsulated per nanogel molecule. Second, we adopted two methods-a densitometric method based on lithium dodecyl sulfate (LDS)-PAGE and a biologic method involving sandwich enzyme-linked immunosorbent assay (ELISA)-to determine the PspA content in the nanogel formulations. Third, treatment of nanogel-PspA formulations by adding methyl-β-cyclodextrin released each PspA in its native form, as confirmed through circular dichroism (CD) spectroscopy. However, when nanogel-PspA formulations were heat-treated at 80 °C for 16 h, CD spectroscopy showed that each PspA was released in a denatured form. Fourth, we confirmed that the nanogel-PspA formulations were internalized into nasal mucosa effectively and that each PspA was gradually released from the nanogel in epithelial cells in mice. Fifth, LDS-PAGE densitometry and ELISA both indicated that the amount of trivalent PspA was dramatically decreased in the heat-treated nanogel compared with that before heating. When mice were immunized nasally using the heat-treated formulation, the immunologic activity of each PspA was dramatically reduced compared with that of the untreated formulation; in both cases, the immunologic activity correlated well with the content of each PspA as determined by LDS-PAGE densitometry and ELISA. Finally, we confirmed that the trivalent nanogel-PspA formulation induced equivalent titers of PspA-specific serum IgG and mucosal IgA Abs in immunized mice. These results show that the specification methods we developed effectively characterized our nanogel-based trivalent PspA nasal vaccine formulation.
Collapse
Affiliation(s)
- Yoshikazu Yuki
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,HanaVax Inc., Tokyo 103-0012, Japan
| | - Yohei Uchida
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Factory of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Rika Nakahashi-Ouchida
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kotomi Sugiura
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiromi Mori
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Yamanoue
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomonori Machita
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ayaka Honma
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shiho Kurokawa
- Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Reshmi Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham 35294, Alabama, United States
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham 35294, Alabama, United States
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Factory of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, Tokyo 113-8654, Japan.,Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan.,Department of Medicine, School of Medicine and CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccine, University of California, San Diego, San Diego, California, 92093, United States
| |
Collapse
|
33
|
Katsura S, Furuishi T, Ueda H, Yonemochi E. Cholesteryl-Conjugated Ribonuclease A Exhibits Enzyme Activity in Aqueous Solution and Resistance to Dimethyl Sulfoxide. ACS OMEGA 2021; 6:533-543. [PMID: 33458505 PMCID: PMC7807799 DOI: 10.1021/acsomega.0c05016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Using bovine pancreatic ribonuclease A (RNase A) and cholesterol, we synthesized cholesteryl-conjugated ribonuclease A (CHRNase A) to evaluate the influence of a conjugated hydrophobic moiety on protein function. Nuclear magnetic resonance and matrix-assisted laser desorption/ionization time-of-flight spectrometry suggested that one cholesteryl group was conjugated to RNase A. Differential scanning calorimetry indicated that CHRNase A was denatured in the solid state but was folded in phosphate buffer (0.05 mol/L, pH 6.5). CHRNase A resembled RNase A in its secondary structure, but circular dichroism (CD) spectra revealed that the helical content of CHRNase A was decreased and the tertiary structure of CHRNase A differed from that of RNase A. Furthermore, fluorescence measurements, CD spectra, an 8-anilino-1-naphthalenesulfonic acid ammonium salt-based assay, and surface tension measurements suggested that cholesterol was conjugated to a tyrosine residue on the protein surface. The relative activity of CHRNase A to RNase A was 79 ± 7%, and the enzyme activity of CHRNase A by adding β-cyclodextrin (β-CyD) increased to 129 ± 7%. Therefore, we considered that the cholesteryl group interacted with substrate (cytidine 2'3'-cyclic monophosphate monosodium salt) to inhibit the enzyme reaction. Finally, the environment around tyrosine residues in CHRNase A in dimethyl sulfoxide was similar to that of native RNase A in phosphate buffer (0.05 mol/L, pH 6.5). These results suggest that cholesterol conjugation to RNase A altered RNase A functionality, including improvement of RNase A resistance to dimethyl sulfoxide and modulation of the ability of β-CyD to control RNase A enzymatic activity.
Collapse
Affiliation(s)
- Shinji Katsura
- School
of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Formulation
Research Laboratory, Taiho Pharmaceutical
Co., Ltd., 224-2, Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Takayuki Furuishi
- School
of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Haruhisa Ueda
- School
of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Etsuo Yonemochi
- School
of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
34
|
Zhang L, Fu L, Zhang X, Chen L, Cai Q, Yang X. Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater Sci 2021; 9:1547-1573. [DOI: 10.1039/d0bm01595d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A state-of-the-art review on the design and preparation of hierarchical and heterogeneous hydrogel systems for interfacial tissue regeneration.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Lei Fu
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xin Zhang
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Linxin Chen
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| |
Collapse
|
35
|
Guo C, Zhang Y, Li Y, Zhang L, Jiang H, Tao J, Zhu J. Gold nanoparticle-guarded large-pore mesoporous silica nanocomposites for delivery and controlled release of cytochrome c. J Colloid Interface Sci 2021; 589:34-44. [PMID: 33444821 DOI: 10.1016/j.jcis.2020.12.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023]
Abstract
Efficient delivery of active proteins to specific cells and organs is one of the most important issues in medical applications. However, in most cases, proteins without appropriate carriers face numerous barriers when delivered to the target, due to their unsatisfied properties, such as poor stability, short half-life, and low membrane permeability. Herein, we have presented a large-pore mesoporous silica nanoparticle (LPMSN)-based protein delivery system. LPMSNs were obtained with ethyl acetate as a pore expander. A 2,3-dimethylmaleamic acid-containing silane coupling agent was modified on LPMSNs to provide pH-triggered charge reversal. After Cytochrome c (CC) was encapsulated in the large pores of LPMSNs, amino-terminated polyethylene glycol-modified gold nanoparticles (AuNPs) served as gateguards to cap the tunnels of LPMSNs and to avoid the leakage of CC. Above nanocomposites exhibited the capability to deliver active CC into cancer cells, charge reversal-induced protein release, as well as to initiate the apoptosis machinery of cancer cells in vitro. Importantly, the nanocomposites significantly inhibited tumor growth and extended survival rate without obvious side effects. This study provides a smart and efficient protein delivery platform with good safety profiles for efficacious tumor protein therapy in vivo.
Collapse
Affiliation(s)
- Chen Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yamin Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Yuce Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Hao Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
36
|
The Age of Multistimuli-responsive Nanogels: The Finest Evolved Nano Delivery System in Biomedical Sciences. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0152-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Adachi T, Boschetto F, Miyamoto N, Yamamoto T, Marin E, Zhu W, Kanamura N, Tahara Y, Akiyoshi K, Mazda O, Nishimura I, Pezzotti G. In Vivo Regeneration of Large Bone Defects by Cross-Linked Porous Hydrogel: A Pilot Study in Mice Combining Micro Tomography, Histological Analyses, Raman Spectroscopy and Synchrotron Infrared Imaging. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4275. [PMID: 32992758 PMCID: PMC7579234 DOI: 10.3390/ma13194275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023]
Abstract
The transplantation of engineered three-dimensional (3D) bone graft substitutes is a viable approach to the regeneration of severe bone defects. For large bone defects, an appropriate 3D scaffold may be necessary to support and stimulate bone regeneration, even when a sufficient number of cells and cell cytokines are available. In this study, we evaluated the in vivo performance of a nanogel tectonic 3D scaffold specifically developed for bone tissue engineering, referred to as nanogel cross-linked porous-freeze-dry (NanoCliP-FD) gel. Samples were characterized by a combination of micro-computed tomography scanning, Raman spectroscopy, histological analyses, and synchrotron radiation-based Fourier transform infrared spectroscopy. NanoCliP-FD gel is a modified version of a previously developed nanogel cross-linked porous (NanoCliP) gel and was designed to achieve highly improved functionality in bone mineralization. Spectroscopic imaging of the bone tissue grown in vivo upon application of NanoCliP-FD gel enables an evaluation of bone quality and can be employed to judge the feasibility of NanoCliP-FD gel scaffolding as a therapeutic modality for bone diseases associated with large bone defects.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
| | - Francesco Boschetto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); (G.P.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
| | - Elia Marin
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); (G.P.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); (G.P.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto-fu 610-0394, Japan;
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Ichiro Nishimura
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA;
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Re-constructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); (G.P.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| |
Collapse
|
38
|
Katsura S, Furuishi T, Ueda H, Yonemochi E. Synthesis and Characterization of Cholesteryl Conjugated Lysozyme (CHLysozyme). Molecules 2020; 25:molecules25163704. [PMID: 32823837 PMCID: PMC7465789 DOI: 10.3390/molecules25163704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Hydrophobic interaction is important for protein conformation. Conjugation of a hydrophobic group can introduce intermolecular hydrophobic contacts that can be contained within the molecule. It is possible that a strongly folded state can be formed in solution compared with the native state. In this study, we synthesized cholesteryl conjugated lysozyme (CHLysozyme) using lysozyme and cholesterol as the model protein and hydrophobic group, respectively. Cholesteryl conjugation to lysozyme was confirmed by nuclear-magnetic resonance. Differential-scanning calorimetry suggested that CHLysozyme was folded in solution. CHLysozyme secondary structure was similar to lysozyme, although circular dichroism spectra indicated differences to the tertiary structure. Fluorescence measurements revealed a significant increase in the hydrophobic surface of CHLysozyme compared with that of lysozyme; CHLysozyme self-associated by hydrophobic interaction of the conjugated cholesterol but the hydrophobic surface of CHLysozyme decreased with time. The results suggested that hydrophobic interaction changed from intramolecular interaction to an intermolecular interaction. Furthermore, the relative activity of CHLysozyme to lysozyme increased with time. Therefore, CHLysozyme likely forms a folded state with an extended durability of activity. Moreover, lysozyme was denatured in 100% DMSO but the local environment of tryptophan in CHLysozyme was similar to that of a native lysozyme. Thus, this study suggests that protein solution stability and resistance to organic solvents may be improved by conjugation of a hydrophobic group.
Collapse
Affiliation(s)
- Shinji Katsura
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (S.K.); (T.F.); (H.U.)
- Formulation research Lab., Taiho Pharmaceutical Co., Ltd., 224-2, Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Takayuki Furuishi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (S.K.); (T.F.); (H.U.)
| | - Haruhisa Ueda
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (S.K.); (T.F.); (H.U.)
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (S.K.); (T.F.); (H.U.)
- Correspondence: ; Tel.: +81-3-5498-5048
| |
Collapse
|
39
|
Watanabe T, Nishizawa Y, Minato H, Song C, Murata K, Suzuki D. Hydrophobic Monomers Recognize Microenvironments in Hydrogel Microspheres during Free-Radical-Seeded Emulsion Polymerization. Angew Chem Int Ed Engl 2020; 59:8849-8853. [PMID: 32232936 DOI: 10.1002/anie.202003493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/25/2020] [Indexed: 11/10/2022]
Abstract
The three-dimensional structure of nanocomposite microgels was precisely determined by cryo-electron micrography. Several nanocomposite microgels that differ with respect to their nanocomposite structure, which were obtained from seeded emulsion polymerization in the presence of microgels, were used as model nanocomposite materials for cryo-electron micrography. The obtained three-dimensional segmentation images of these nanocomposite microgels provide important insights into the interactions between the hydrophobic monomers and the microgels, that is, hydrophobic styrene monomers recognize molecular-scale differences in polarity within the microgels during the emulsion polymerization. This result led to the formation of unprecedented multi-layered nanocomposite microgels, which promise substantial potential in colloidal applications.
Collapse
Affiliation(s)
- Takumi Watanabe
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan
| | - Yuichiro Nishizawa
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan
| | - Haruka Minato
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan
| | - Chihong Song
- Department National Institute for Physiological Sciences, 38 Nishigonaka, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Department National Institute for Physiological Sciences, 38 Nishigonaka, Okazaki, Aichi, 444-8585, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan.,Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan
| |
Collapse
|
40
|
Watanabe T, Nishizawa Y, Minato H, Song C, Murata K, Suzuki D. Hydrophobic Monomers Recognize Microenvironments in Hydrogel Microspheres during Free‐Radical‐Seeded Emulsion Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Takumi Watanabe
- Graduate School of Textile Science & Technology Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| | - Yuichiro Nishizawa
- Graduate School of Textile Science & Technology Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| | - Haruka Minato
- Graduate School of Textile Science & Technology Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| | - Chihong Song
- Department National Institute for Physiological Sciences 38 Nishigonaka Okazaki Aichi 444-8585 Japan
| | - Kazuyoshi Murata
- Department National Institute for Physiological Sciences 38 Nishigonaka Okazaki Aichi 444-8585 Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
- Research Initiative for Supra-Materials Interdisciplinary Cluster for Cutting Edge Research Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| |
Collapse
|
41
|
Yang HY, Li Y, Jang MS, Fu Y, Wu T, Lee JH, Lee DS. Green preparation of pH-responsive and dual targeting hyaluronic acid nanogels for efficient protein delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
OURA S, WATANABE T, MINATO H, SUZUKI D. Impact of Particle Softness on Segregation of Binary Colloidal Suspensions Flowing in a Microchannel. KOBUNSHI RONBUNSHU 2019. [DOI: 10.1295/koron.2019-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shun OURA
- Graduate School of Textile Science & Technology, Shinshu University
| | - Takumi WATANABE
- Graduate School of Textile Science & Technology, Shinshu University
| | - Haruka MINATO
- Graduate School of Textile Science & Technology, Shinshu University
| | - Daisuke SUZUKI
- Graduate School of Textile Science & Technology, Shinshu University
- Division of Smart Textiles, Institute for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| |
Collapse
|