1
|
Lee SJ, Jeong W, Atala A. 3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408032. [PMID: 39420757 DOI: 10.1002/adma.202408032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Advancements in bioprinting technology are driving the creation of complex, functional tissue constructs for use in tissue engineering and regenerative medicine. Various methods, including extrusion, jetting, and light-based bioprinting, have their unique advantages and drawbacks. Over the years, researchers and industry leaders have made significant progress in enhancing bioprinting techniques and materials, resulting in the production of increasingly sophisticated tissue constructs. Despite this progress, challenges still need to be addressed in achieving clinically relevant, human-scale tissue constructs, presenting a hurdle to widespread clinical translation. However, with ongoing interdisciplinary research and collaboration, the field is rapidly evolving and holds promise for personalized medical interventions. Continued development and refinement of bioprinting technologies have the potential to address complex medical needs, enabling the development of functional, transplantable tissues and organs, as well as advanced in vitro tissue models.
Collapse
Affiliation(s)
- Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Wonwoo Jeong
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
2
|
Uchida F, Matsumoto K, Nishimuta M, Matsumoto T, Oishi K, Hara R, Machino R, Taniguchi D, Oyama S, Moriyama M, Tomoshige K, Doi R, Obata T, Miyazaki T, Nonaka T, Nakayama K, Nagayasu T. Fabrication of a three-dimensional scaffold-free trachea with horseshoe-shaped hyaline cartilage. Eur J Cardiothorac Surg 2024; 66:ezae336. [PMID: 39298442 DOI: 10.1093/ejcts/ezae336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVES Tracheal regeneration is challenging owing to its unique anatomy and low blood supply. Most tracheal regeneration applications require scaffolds. Herein, we developed bio-three-dimensional-printed scaffold-free artificial tracheas. METHODS We fabricated bio-three-dimensional-printed artificial tracheas. Their anterior surface comprised hyaline cartilage differentiated from mesenchymal stem cells, and their posterior surface comprised smooth muscle. Human bone marrow-derived mesenchymal stem cells were cultured and differentiated into chondrocytes using fibroblast growth factor-2 and transforming growth factor-beta-3. Initially, horseshoe-shaped spheroids were printed to cover the anterior surface of the artificial trachea, followed by the application of human bronchial smooth muscle cells for the posterior surface. After a 3-week maturing process, the artificial trachea was subjected to histological and immunohistochemical analyses. RESULTS The anterior surface of the artificial trachea comprised well-differentiated hyaline cartilage from human bone marrow-derived mesenchymal stem cells. Immunohistochemistry revealed that the smooth muscle expressed α-smooth muscle actin and smooth muscle myosin heavy chain 11. CONCLUSIONS A bio-three-dimensional-printed scaffold-free artificial trachea comprising different tissues at the front and back was successfully fabricated.
Collapse
Affiliation(s)
- Fumitake Uchida
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Masato Nishimuta
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Takamune Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Kaido Oishi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Ryosuke Hara
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Ryusuke Machino
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Daisuke Taniguchi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Shosaburo Oyama
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Masaaki Moriyama
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Koichi Tomoshige
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Ryoichiro Doi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Tomohiro Obata
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Takashi Nonaka
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering Faculty of Medicine, Saga University, Saga, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Kapat K, Gondane P, Kumbhakarn S, Takle S, Sable R. Challenges and Opportunities in Developing Tracheal Substitutes for the Recovery of Long-Segment Defects. Macromol Biosci 2024; 24:e2400054. [PMID: 39008817 DOI: 10.1002/mabi.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Tracheal resection and reconstruction procedures are necessary when stenosis, tracheomalacia, tumors, vascular lesions, or tracheal injury cause a tracheal blockage. Replacement with a tracheal substitute is often recommended when the trauma exceeds 50% of the total length of the trachea in adults and 30% in children. Recently, tissue engineering and other advanced techniques have shown promise in fabricating biocompatible tracheal substitutes with physical, morphological, biomechanical, and biological characteristics similar to native trachea. Different polymers and biometals are explored. Even with limited success with tissue-engineered grafts in clinical settings, complete healing of tracheal defects remains a substantial challenge due to low mechanical strength and durability of the graft materials, inadequate re-epithelialization and vascularization, and restenosis. This review has covered a range of reconstructive and regenerative techniques, design criteria, the use of bioprostheses and synthetic grafts for the recovery of tracheal defects, as well as the traditional and cutting-edge methods of their fabrication, surface modification for increased immuno- or biocompatibility, and associated challenges.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| |
Collapse
|
4
|
Ma J, Wu C, Xu J. The Development of Lung Tissue Engineering: From Biomaterials to Multicellular Systems. Adv Healthc Mater 2024:e2401025. [PMID: 39206615 DOI: 10.1002/adhm.202401025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The challenge of the treatment of end-stage lung disease poses an urgent clinical demand for lung tissue engineering. Over the past few years, various lung tissue-engineered constructs are developed for lung tissue regeneration and respiratory pathology study. In this review, an overview of recent achievements in the field of lung tissue engineering is proposed. The introduction of lung structure and lung injury are stated briefly at first. After that, the lung tissue-engineered constructs are categorized into three types: acellular, monocellular, and multicellular systems. The different bioengineered constructs included in each system that can be applied to the reconstruction of the trachea, airway epithelium, alveoli, and even whole lung are described in detail, followed by the highlight of relevant representative research. Finally, the challenges and future directions of biomaterials, manufacturing technologies, and cells involved in lung tissue engineering are discussed. Overall, this review can provide referable ideas for the realization of functional lung regeneration and permanent lung substitution.
Collapse
Affiliation(s)
- Jingge Ma
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| |
Collapse
|
5
|
Wei S, Zhang Y, Luo F, Duan K, Li M, Lv G. Tissue-engineered tracheal implants: Advancements, challenges, and clinical considerations. Bioeng Transl Med 2024; 9:e10671. [PMID: 39036086 PMCID: PMC11256149 DOI: 10.1002/btm2.10671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 07/23/2024] Open
Abstract
Restoration of extensive tracheal damage remains a significant challenge in respiratory medicine, particularly in instances stemming from conditions like infection, congenital anomalies, or stenosis. The trachea, an essential element of the lower respiratory tract, constitutes a fibrocartilaginous tube spanning approximately 10-12 cm in length. It is characterized by 18 ± 2 tracheal cartilages distributed anterolaterally with the dynamic trachealis muscle located posteriorly. While tracheotomy is a common approach for patients with short-length defects, situations requiring replacement arise when the extent of lesion exceeds 1/2 of the length in adults (or 1/3 in children). Tissue engineering (TE) holds promise in developing biocompatible airway grafts for addressing challenges in tracheal regeneration. Despite the potential, the extensive clinical application of tissue-engineered tracheal substitutes encounters obstacles, including insufficient revascularization, inadequate re-epithelialization, suboptimal mechanical properties, and insufficient durability. These limitations have led to limited success in implementing tissue-engineered tracheal implants in clinical settings. This review provides a comprehensive exploration of historical attempts and lessons learned in the field of tracheal TE, contextualizing the clinical prerequisites and vital criteria for effective tracheal grafts. The manufacturing approaches employed in TE, along with the clinical application of both tissue-engineered and non-tissue-engineered approaches for tracheal reconstruction, are discussed in detail. By offering a holistic view on TE substitutes and their implications for the clinical management of long-segment tracheal lesions, this review aims to contribute to the understanding and advancement of strategies in this critical area of respiratory medicine.
Collapse
Affiliation(s)
- Shixiong Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
- Department of Thoracic SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Yiyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
- Department of Thoracic SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Feixiang Luo
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Kexing Duan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
6
|
Baptista LS, Mironov V, Koudan E, Amorim ÉA, Pampolha TP, Kasyanov V, Kovalev A, Senatov F, Granjeiro JM. Bioprinting Using Organ Building Blocks: Spheroids, Organoids, and Assembloids. Tissue Eng Part A 2024; 30:377-386. [PMID: 38062998 DOI: 10.1089/ten.tea.2023.0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Three-dimensional (3D) bioprinting, a promising advancement in tissue engineering technology, involves the robotic, layer-by-layer additive biofabrication of functional 3D tissue and organ constructs. This process utilizes biomaterials, typically hydrogels and living cells, following digital models. Traditional tissue engineering uses a classic triad of living cells, scaffolds, and physicochemical signals in bioreactors. A scaffold is a temporary, often biodegradable, support structure. Tissue engineering primarily falls into two categories: (i) scaffold based and (ii) scaffold free. The latter, scaffold-free 3D bioprinting, is gaining increasing popularity. Organ building blocks (OBB), capable of self-assembly and self-organization, such as tissue spheroids, organoids, and assembloids, have begun to be utilized in scaffold-free bioprinting. This article discusses the expanding range of OBB, presents the rapidly evolving collection of bioprinting and bioassembly methods using these OBB, and finally, outlines the advantages, challenges, and future perspectives of using OBB in organ printing.
Collapse
Affiliation(s)
- Leandra Santos Baptista
- Campus Duque de Caxias Prof Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality, and Technology (Inmetro), Rio de Janeiro, Brazil
- Laboratory of Eukaryotic Cell Biology, National Institute of Metrology, Quality and Technology (Inmetro), Rio de Janeiro, Brazil
| | - Vladimir Mironov
- Campus Duque de Caxias Prof Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elizaveta Koudan
- Center for Biomedical Engineering, National University of Science and Technology "MISIS," Moscow, Russia
| | - Érica Almeida Amorim
- Campus Duque de Caxias Prof Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Gcell 3D, Rio de Janeiro, Brazil
- Precision Medicine Research Center, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tathiana Proença Pampolha
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality, and Technology (Inmetro), Rio de Janeiro, Brazil
- Laboratory of Eukaryotic Cell Biology, National Institute of Metrology, Quality and Technology (Inmetro), Rio de Janeiro, Brazil
| | - Vladimir Kasyanov
- Joint Laboratory of Traumatology and Orthopaedics, Riga Stradins University, Riga, Latvia
| | - Alexei Kovalev
- Priorov Central National Institute of Traumatology and Orthopedics, Moscow, Russia
| | - Fedor Senatov
- Center for Biomedical Engineering, National University of Science and Technology "MISIS," Moscow, Russia
| | - José Mauro Granjeiro
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality, and Technology (Inmetro), Rio de Janeiro, Brazil
- Laboratory of Eukaryotic Cell Biology, National Institute of Metrology, Quality and Technology (Inmetro), Rio de Janeiro, Brazil
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói, Brazil
| |
Collapse
|
7
|
Taniguchi D, Kamata S, Rostami S, Tuin S, Marin-Araujo A, Guthrie K, Petersen T, Waddell TK, Karoubi G, Keshavjee S, Haykal S. Evaluation of a decellularized bronchial patch transplant in a porcine model. Sci Rep 2023; 13:21773. [PMID: 38066170 PMCID: PMC10709302 DOI: 10.1038/s41598-023-48643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Biological scaffolds for airway reconstruction are an important clinical need and have been extensively investigated experimentally and clinically, but without uniform success. In this study, we evaluated the use of a decellularized bronchus graft for airway reconstruction. Decellularized left bronchi were procured from decellularized porcine lungs and utilized as grafts for airway patch transplantation. A tracheal window was created and the decellularized bronchus was transplanted into the defect in a porcine model. Animals were euthanized at 7 days, 1 month, and 2 months post-operatively. Histological analysis, immunohistochemistry, scanning electron microscopy, and strength tests were conducted in order to evaluate epithelialization, inflammation, and physical strength of the graft. All pigs recovered from general anesthesia and survived without airway obstruction until the planned euthanasia timepoint. Histological and electron microscopy analyses revealed that the decellularized bronchus graft was well integrated with native tissue and covered by an epithelial layer at 1 month. Immunostaining of the decellularized bronchus graft was positive for CD31 and no difference was observed with immune markers (CD3, CD11b, myeloperoxidase) at two months. Although not significant, tensile strength was decreased after one month, but recovered by two months. Decellularized bronchial grafts show promising results for airway patch reconstruction in a porcine model. Revascularization and re-epithelialization were observed and the immunological reaction was comparable with the autografts. This approach is clinically relevant and could potentially be utilized for future applications for tracheal replacement.
Collapse
Affiliation(s)
- Daisuke Taniguchi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Satoshi Kamata
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
| | - Sara Rostami
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
| | - Stephen Tuin
- United Therapeutics Corp, Research Triangle Park, NC, 27709, USA
| | - Alba Marin-Araujo
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
| | - Kelly Guthrie
- United Therapeutics Corp, Research Triangle Park, NC, 27709, USA
| | - Thomas Petersen
- United Therapeutics Corp, Research Triangle Park, NC, 27709, USA
| | - Thomas K Waddell
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Golnaz Karoubi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada.
- Division of Plastic & Reconstructive Surgery, University Health Network, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Zhou J, Li Q, Tian Z, Yao Q, Zhang M. Recent advances in 3D bioprinted cartilage-mimicking constructs for applications in tissue engineering. Mater Today Bio 2023; 23:100870. [PMID: 38179226 PMCID: PMC10765242 DOI: 10.1016/j.mtbio.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Human cartilage tissue can be categorized into three types: hyaline cartilage, elastic cartilage and fibrocartilage. Each type of cartilage tissue possesses unique properties and functions, which presents a significant challenge for the regeneration and repair of damaged tissue. Bionics is a discipline in which humans study and imitate nature. A bionic strategy based on comprehensive knowledge of the anatomy and histology of human cartilage is expected to contribute to fundamental study of core elements of tissue repair. Moreover, as a novel tissue-engineered technology, 3D bioprinting has the distinctive advantage of the rapid and precise construction of targeted models. Thus, by selecting suitable materials, cells and cytokines, and by leveraging advanced printing technology and bionic concepts, it becomes possible to simultaneously realize multiple beneficial properties and achieve improved tissue repair. This article provides an overview of key elements involved in the combination of 3D bioprinting and bionic strategies, with a particular focus on recent advances in mimicking different types of cartilage tissue.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Qi Li
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Zhuang Tian
- Department of Joint Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China
| | - Qi Yao
- Department of Joint Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| |
Collapse
|
9
|
Liu Y, Zheng K, Meng Z, Wang L, Liu X, Guo B, He J, Tang X, Liu M, Ma N, Li X, Zhao J. A cell-free tissue-engineered tracheal substitute with sequential cytokine release maintained airway opening in a rabbit tracheal full circumferential defect model. Biomaterials 2023; 300:122208. [PMID: 37352607 DOI: 10.1016/j.biomaterials.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/21/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
In this study, a cell-free tissue-engineered tracheal substitute was developed, which is based on a 3D-printed polycaprolactone scaffold coated with a gelatin-methacryloyl (GelMA) hydrogel, with transforming growth factor-β1 (TGF-β) and stromal cell-derived factor-1α (SDF-1) sequentially embedded, to facilitate cell recruitment and differentiation toward chondrocyte-phenotype. TGF-β was loaded onto polydopamine particles, and then encapsulated into the GelMA together with SDF-1, and called G/S/P@T, which was used to coat 3D-printed PCL scaffold to form the tracheal substitute. A rapid release of SDF-1 was observed during the first week, followed by a slow and sustained release of TGF-β for approximately four weeks. The tracheal substitute significantly promoted the recruitment of mesenchymal stromal cells (MSCs) or human bronchial epithelial cells in vitro, and enhanced the ability of MSCs to differentiate towards chondrocyte phenotype. Implantation of the tissue-engineered tracheal substitute with a rabbit tracheal anterior defect model improved regeneration of airway epithelium, recruitment of endogenous MSCs and expression of markers of chondrocytes at the tracheal defect site. Moreover, the tracheal substitute maintained airway opening for 4 weeks in a tracheal full circumferential defect model with airway epithelium coverage at the defect sites without granulation tissue accumulation in the tracheal lumen or underneath. The promising results suggest that this simple, cell-free tissue-engineered tracheal substitute can be used directly after tracheal defect removal and should be further developed towards clinical application.
Collapse
Affiliation(s)
- Yujian Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China; Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, Hubei, 430070, China
| | - Kaifu Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China; Department of General Surgery, The 991st Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Xiangyang, Hubei, 441000, China
| | - Zijie Meng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Xi Liu
- Department of Cardiothoracic Surgery, The 980th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Shijiazhuang, Hebei, 052460, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, And Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiyang Tang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Mingyao Liu
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China.
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China.
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
10
|
Shen Z, Xia T, Zhao J, Pan S. Current status and future trends of reconstructing a vascularized tissue-engineered trachea. Connect Tissue Res 2023; 64:428-444. [PMID: 37171223 DOI: 10.1080/03008207.2023.2212052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Alternative treatment of long tracheal defects remains one of the challenges faced by thoracic surgeons. Tissue engineering has shown great potential in addressing this regenerative medicine conundrum and the technology to make tracheal grafts using this technique is rapidly maturing, leading to unique therapeutic approaches. However, the clinical application of tissue-engineered tracheal implants is limited by insufficient revascularization. Among them, realizing the vascularization of a tissue-engineered trachea is the most challenging problem to overcome. To achieve long-term survival after tracheal transplantation, an effective blood supply must be formed to support the metabolism of seeded cells and promote tissue healing and regeneration. Otherwise, repeated infection, tissue necrosis, lumen stenosis lack of effective epithelialization, need for repeated bronchoscopy after surgery, and other complications will be inevitable and lead to graft failure and a poor outcome. Here we review and analyze various tissue engineering studies promoting angiogenesis in recent years. The general situation of reconstructing a vascularized tissue-engineered trachea, including current problems and future development trends, is elaborated from the perspectives of seed cells, scaffold materials, growth factors and signaling pathways, surgical interventions in animal models and clinical applications. This review also provides ideas and methods for the further development of better biocompatible tracheal substitutes in the future.
Collapse
Affiliation(s)
- Ziqing Shen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Sun F, Shen Z, Zhang B, Lu Y, Shan Y, Wu Q, Yuan L, Zhu J, Pan S, Wang Z, Wu C, Zhang G, Yang W, Xu X, Shi H. Biomimetic in situ tracheal microvascularization for segmental tracheal reconstruction in one-step. Bioeng Transl Med 2023; 8:e10534. [PMID: 37476057 PMCID: PMC10354772 DOI: 10.1002/btm2.10534] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 07/22/2023] Open
Abstract
Formation of functional and perfusable vascular network is critical to ensure the long-term survival and functionality of the engineered tissue tracheae after transplantation. However, the greatest challenge in tracheal-replacement therapy is the promotion of tissue regeneration by rapid graft vascularization. Traditional prevascularization methods for tracheal grafts typically utilize omentum or muscle flap wrapping, which requires a second operation; vascularized segment tracheal orthotopic transplantation in one step remains difficult. This study proposes a method to construct a tissue-engineered tracheal graft, which directly forms the microvascular network after orthotopic transplantation in vivo. The focus of this study was the preparation of a hybrid tracheal graft that is non-immunogenic, has good biomechanical properties, supports cell proliferation, and quickly vascularizes. The results showed that vacuum-assisted decellularized trachea-polycaprolactone hybrid scaffold could match most of the above requirements as closely as possible. Furthermore, endothelial progenitor cells (EPCs) were extracted and used as vascularized seed cells and seeded on the surfaces of hybrid grafts before and during the tracheal orthotopic transplantation. The results showed that the microvascularized tracheal grafts formed maintained the survival of the recipient, showing a satisfactory therapeutic outcome. This is the first study to utilize EPCs for microvascular construction of long-segment trachea in one-step; the approach represents a promising method for microvascular tracheal reconstruction.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Zhiming Shen
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Boyou Zhang
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Yi Lu
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Yibo Shan
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Qiang Wu
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Lei Yuan
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Jianwei Zhu
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Shu Pan
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhihao Wang
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Cong Wu
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Guozhong Zhang
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Wenlong Yang
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Xiangyu Xu
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Hongcan Shi
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| |
Collapse
|
12
|
Lee HY, Lee JW. Current Status and Future Outlook of Additive Manufacturing Technologies for the Reconstruction of the Trachea. J Funct Biomater 2023; 14:jfb14040196. [PMID: 37103286 PMCID: PMC10141199 DOI: 10.3390/jfb14040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Tracheal stenosis and defects occur congenitally and in patients who have undergone tracheal intubation and tracheostomy due to long-term intensive care. Such issues may also be observed during tracheal removal during malignant head and neck tumor resection. However, to date, no treatment method has been identified that can simultaneously restore the appearance of the tracheal skeleton while maintaining respiratory function in patients with tracheal defects. Therefore, there is an urgent need to develop a method that can maintain tracheal function while simultaneously reconstructing the skeletal structure of the trachea. Under such circumstances, the advent of additive manufacturing technology that can create customized structures using patient medical image data provides new possibilities for tracheal reconstruction surgery. In this study, the three-dimensional (3D) printing and bioprinting technologies used in tracheal reconstruction are summarized, and various research results related to the reconstruction of mucous membranes, cartilage, blood vessels, and muscle tissue, which are tissues required for tracheal reconstruction, are classified. The prospects for 3D-printed tracheas in clinical studies are also described. This review serves as a guide for the development of artificial tracheas and clinical trials using 3D printing and bioprinting.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
13
|
Derman ID, Singh YP, Saini S, Nagamine M, Banerjee D, Ozbolat IT. Bioengineering and Clinical Translation of Human Lung and its Components. Adv Biol (Weinh) 2023; 7:e2200267. [PMID: 36658734 PMCID: PMC10121779 DOI: 10.1002/adbi.202200267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Indexed: 01/21/2023]
Abstract
Clinical lung transplantation has rapidly established itself as the gold standard of treatment for end-stage lung diseases in a restricted group of patients since the first successful lung transplant occurred. Although significant progress has been made in lung transplantation, there are still numerous obstacles on the path to clinical success. The development of bioartificial lung grafts using patient-derived cells may serve as an alternative treatment modality; however, challenges include developing appropriate scaffold materials, advanced culture strategies for lung-specific multiple cell populations, and fully matured constructs to ensure increased transplant lifetime following implantation. This review highlights the development of tissue-engineered tracheal and lung equivalents over the past two decades, key problems in lung transplantation in a clinical environment, the advancements made in scaffolds, bioprinting technologies, bioreactors, organoids, and organ-on-a-chip technologies. The review aims to fill the lacuna in existing literature toward a holistic bioartificial lung tissue, including trachea, capillaries, airways, bifurcating bronchioles, lung disease models, and their clinical translation. Herein, the efforts are on bridging the application of lung tissue engineering methods in a clinical environment as it is thought that tissue engineering holds enormous promise for overcoming the challenges associated with the clinical translation of bioengineered human lung and its components.
Collapse
Affiliation(s)
- I. Deniz Derman
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Yogendra Pratap Singh
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Shweta Saini
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Momoka Nagamine
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Department of Chemistry, Penn State University; University Park, PA,16802, USA
| | - Dishary Banerjee
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University; University Park, PA, 16802, USA
- Materials Research Institute, Penn State University; University Park, PA, 16802, USA
- Cancer Institute, Penn State University; University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University; University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, Turkey
| |
Collapse
|
14
|
Banerjee D, Singh YP, Datta P, Ozbolat V, O'Donnell A, Yeo M, Ozbolat IT. Strategies for 3D bioprinting of spheroids: A comprehensive review. Biomaterials 2022; 291:121881. [DOI: 10.1016/j.biomaterials.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022]
|
15
|
Chen Y, Zhang C, Zhang S, Qi H, Zhang D, Li Y, Fang J. Novel advances in strategies and applications of artificial articular cartilage. Front Bioeng Biotechnol 2022; 10:987999. [PMID: 36072291 PMCID: PMC9441570 DOI: 10.3389/fbioe.2022.987999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Artificial articular cartilage (AC) is extensively applied in the repair and regeneration of cartilage which lacks self-regeneration capacity because of its avascular and low-cellularity nature. With advances in tissue engineering, bioengineering techniques for artificial AC construction have been increasing and maturing gradually. In this review, we elaborated on the advances of biological scaffold technologies in artificial AC including freeze-drying, electrospinning, 3D bioprinting and decellularized, and scaffold-free methods such as self-assembly and cell sheet. In the following, several successful applications of artificial AC built by scaffold and scaffold-free techniques are introduced to demonstrate the clinical application value of artificial AC.
Collapse
Affiliation(s)
- Yifei Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenyue Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyong Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hexu Qi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Fang,
| |
Collapse
|
16
|
Nerve regeneration using the Bio 3D nerve conduit fabricated with spheroids. J Artif Organs 2022; 25:289-297. [PMID: 35970971 DOI: 10.1007/s10047-022-01358-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Autologous nerve grafting is the gold standard method for peripheral nerve injury with defects. Artificial nerve conduits have been developed to prevent morbidity at the harvest site. However, the artificial conduit regeneration capacity is not sufficient. A Bio 3D printer is technology that creates three-dimensional tissue using only cells. Using this technology, a three-dimensional nerve conduit (Bio 3D nerve conduit) was created from several cell spheroids. We reported the first application of the Bio 3D nerve conduit for peripheral nerve injury. A Bio 3D nerve conduit that was created from several cells promotes peripheral nerve regeneration. The Bio 3D nerve conduit may be useful clinically to treat peripheral nerve defects.
Collapse
|
17
|
Panja N, Maji S, Choudhuri S, Ali KA, Hossain CM. 3D Bioprinting of Human Hollow Organs. AAPS PharmSciTech 2022; 23:139. [PMID: 35536418 PMCID: PMC9088731 DOI: 10.1208/s12249-022-02279-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/09/2022] [Indexed: 01/12/2023] Open
Abstract
3D bioprinting is a rapidly evolving technique that has been found to have extensive applications in disease research, tissue engineering, and regenerative medicine. 3D bioprinting might be a solution to global organ shortages and the growing aversion to testing cell patterning for novel tissue fabrication and building superior disease models. It has the unrivaled capability of layer-by-layer deposition using different types of biomaterials, stem cells, and biomolecules with a perfectly regulated spatial distribution. The tissue regeneration of hollow organs has always been a challenge for medical science because of the complexities of their cell structures. In this mini review, we will address the status of the science behind tissue engineering and 3D bioprinting of epithelialized tubular hollow organs. This review will also cover the current challenges and prospects, as well as the application of these complicated 3D-printed organs.
Collapse
|
18
|
Adamo D, Galaverni G, Genna VG, Lococo F, Pellegrini G. The Growing Medical Need for Tracheal Replacement: Reconstructive Strategies Should Overcome Their Limits. Front Bioeng Biotechnol 2022; 10:846632. [PMID: 35646864 PMCID: PMC9132048 DOI: 10.3389/fbioe.2022.846632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Breathing, being predominantly an automatic action, is often taken for granted. However, respiratory diseases affect millions of people globally, emerging as one of the major causes of disability and death overall. Among the respiratory dysfunctions, tracheal alterations have always represented a primary challenge for clinicians, biologists, and engineers. Indeed, in the case of wide structural alterations involving more than 50% of the tracheal length in adults or 30% in children, the available medical treatments are ineffective or inapplicable. So far, a plethora of reconstructive approaches have been proposed and clinically applied to face this growing, unmet medical need. Unfortunately, none of them has become a well-established and routinely applied clinical procedure to date. This review summarizes the main clinical reconstructive attempts and classifies them as non-tissue engineering and tissue engineering strategies. The analysis of the achievements and the main difficulties that still hinder this field, together with the evaluation of the forefront preclinical experiences in tracheal repair/replacement, is functional to promote a safer and more effective clinical translation in the near future.
Collapse
Affiliation(s)
- Davide Adamo
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Galaverni
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Filippo Lococo
- Università Cattolica del Sacro Cuore, Rome, Italy
- Thoracic Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Graziella Pellegrini
- Interdepartmental Centre for Regenerative Medicine “Stefano Ferrari”, University of Modena and Reggio Emilia, Modena, Italy
- Holostem Terapie Avanzate S.r.l., Modena, Italy
| |
Collapse
|
19
|
Tang H, Sun W, Chen Y, She Y, Chen C. Future directions for research on tissue-engineered trachea. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Guedes F, Branquinho MV, Sousa AC, Alvites RD, Bugalho A, Maurício AC. Central airway obstruction: is it time to move forward? BMC Pulm Med 2022; 22:68. [PMID: 35183132 PMCID: PMC8858525 DOI: 10.1186/s12890-022-01862-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Central airway obstruction (CAO) represents a pathological condition that can lead to airflow limitation of the trachea, main stem bronchi, bronchus intermedius or lobar bronchus. MAIN BODY It is a common clinical situation consensually considered under-diagnosed. Management of patients with CAO can be difficult and deciding on the best treatment approach represents a medical challenge. This work intends to review CAO classifications, causes, treatments and its therapeutic limitations, approaching benign and malign presentations. Three illustrative cases are further presented, supporting the clinical problem under review. CONCLUSION Management of CAO still remains a challenge. The available options are not always effective nor free from complications. A new generation of costume-tailored airway stents, associated with stem cell-based therapy, could be an option in specific clinical situations.
Collapse
Affiliation(s)
- Fernando Guedes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401, Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
- Pulmonology Department, Bronchology Unit, Centre Hospitalier du Luxembourg, Luxembourg, Luxembourg
| | - Mariana V Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401, Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
| | - Ana C Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401, Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
| | - Rui D Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401, Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
| | - António Bugalho
- CUF Tejo Hospital e CUF Descobertas Hospital, Lisbon, Portugal
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School, Lisbon, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401, Porto, Portugal.
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
21
|
Xu Y, Dai J, Zhu X, Cao R, Song N, Liu M, Liu X, Zhu J, Pan F, Qin L, Jiang G, Wang H, Yang Y. Biomimetic Trachea Engineering via a Modular Ring Strategy Based on Bone-Marrow Stem Cells and Atelocollagen for Use in Extensive Tracheal Reconstruction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106755. [PMID: 34741771 DOI: 10.1002/adma.202106755] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The fabrication of biomimetic tracheas with a architecture of cartilaginous rings alternately interspersed between vascularized fibrous tissue (CRVFT) has the potential to perfectly recapitulate the normal tracheal structure and function. Herein, the development of a customized chondroitin-sulfate-incorporating type-II atelocollagen (COL II/CS) scaffold with excellent chondrogenic capacity and a type-I atelocollagen (COL I) scaffold to facilitate the formation of vascularized fibrous tissue is described. An efficient modular ring strategy is then adopted to develop a CRVFT-based biomimetic trachea. The in vitro engineering of cartilaginous rings is achieved via the recellularization of ring-shaped COL II/CS scaffolds using bone marrow stem cells as a mimetic for native cartilaginous ring tissue. A CRVFT-based trachea with biomimetic mechanical properties, composed of bionic biochemical components, is additionally successfully generated in vivo via the alternating stacking of cartilaginous rings and ring-shaped COL I scaffolds on a silicone pipe. The resultant biomimetic trachea with pedicled muscular flaps is used for extensive tracheal reconstruction and exhibits satisfactory therapeutic outcomes with structural and functional properties similar to those of native trachea. This is the first study to utilize stem cells for long-segmental tracheal cartilaginous regeneration and this represents a promising method for extensive tracheal reconstruction.
Collapse
Affiliation(s)
- Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jie Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Runfeng Cao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Nan Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ming Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xiaogang Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Haifeng Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
22
|
Liu C, Feng B, He S, Liu Y, Chen L, Chen Y, Yao Z, Jian M. Preparation and evaluation of a silk fibroin–polycaprolactone biodegradable biomimetic tracheal scaffold. J Biomed Mater Res B Appl Biomater 2022; 110:1292-1305. [PMID: 35061311 DOI: 10.1002/jbm.b.35000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Cai‐Sheng Liu
- School of Medicine South China University of Technology Guangzhou China
- Department of Neonatology, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Bo‐Wen Feng
- Department of Child Healthcare Guangzhou Women and Children's Medical Center Guangzhou China
| | - Shao‐Ru He
- School of Medicine South China University of Technology Guangzhou China
- Department of Neonatology, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Yu‐Mei Liu
- Department of Neonatology, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Liang Chen
- Department of Neonatology, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Yan‐Ling Chen
- Department of Neonatology, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Zhi‐Ye Yao
- Department of Neonatology, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Guangzhou China
| | - Min‐Qiao Jian
- Department of Pediatrics, Sun Yat‐Sen Memorial Hospital Sun Yat‐Sen University Guangzhou China
| |
Collapse
|
23
|
Chen Y, Wang Y, Luo SC, Zheng X, Kankala RK, Wang SB, Chen AZ. Advances in Engineered Three-Dimensional (3D) Body Articulation Unit Models. Drug Des Devel Ther 2022; 16:213-235. [PMID: 35087267 PMCID: PMC8789231 DOI: 10.2147/dddt.s344036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Indeed, the body articulation units, commonly referred to as body joints, play significant roles in the musculoskeletal system, enabling body flexibility. Nevertheless, these articulation units suffer from several pathological conditions, such as osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spondylitis, gout, and psoriatic arthritis. There exist several treatment modalities based on the utilization of anti-inflammatory and analgesic drugs, which can reduce or control the pathophysiological symptoms. Despite the success, these treatment modalities suffer from major shortcomings of enormous cost and poor recovery, limiting their applicability and requiring promising strategies. To address these limitations, several engineering strategies have been emerged as promising solutions in fabricating the body articulation as unit models towards local articulation repair for tissue regeneration and high-throughput screening for drug development. In this article, we present challenges related to the selection of biomaterials (natural and synthetic sources), construction of 3D articulation models (scaffold-free, scaffold-based, and organ-on-a-chip), architectural designs (microfluidics, bioprinting, electrospinning, and biomineralization), and the type of culture conditions (growth factors and active peptides). Then, we emphasize the applicability of these articulation units for emerging biomedical applications of drug screening and tissue repair/regeneration. In conclusion, we put forward the challenges and difficulties for the further clinical application of the in vitro 3D articulation unit models in terms of the long-term high activity of the models.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Ying Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, 510080, Guangdong, People’s Republic of China
| | - Sheng-Chang Luo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Xiang Zheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People’s Republic of China
| |
Collapse
|
24
|
Soriano L, Khalid T, Whelan D, O'Huallachain N, Redmond KC, O'Brien FJ, O'Leary C, Cryan SA. Development and clinical translation of tubular constructs for tracheal tissue engineering: a review. Eur Respir Rev 2021; 30:30/162/210154. [PMID: 34750116 DOI: 10.1183/16000617.0154-2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Effective restoration of extensive tracheal damage arising from cancer, stenosis, infection or congenital abnormalities remains an unmet clinical need in respiratory medicine. The trachea is a 10-11 cm long fibrocartilaginous tube of the lower respiratory tract, with 16-20 tracheal cartilages anterolaterally and a dynamic trachealis muscle posteriorly. Tracheal resection is commonly offered to patients suffering from short-length tracheal defects, but replacement is required when the trauma exceeds 50% of total length of the trachea in adults and 30% in children. Recently, tissue engineering (TE) has shown promise to fabricate biocompatible tissue-engineered tracheal implants for tracheal replacement and regeneration. However, its widespread use is hampered by inadequate re-epithelialisation, poor mechanical properties, insufficient revascularisation and unsatisfactory durability, leading to little success in the clinical use of tissue-engineered tracheal implants to date. Here, we describe in detail the historical attempts and the lessons learned for tracheal TE approaches by contextualising the clinical needs and essential requirements for a functional tracheal graft. TE manufacturing approaches explored to date and the clinical translation of both TE and non-TE strategies for tracheal regeneration are summarised to fully understand the big picture of tracheal TE and its impact on clinical treatment of extensive tracheal defects.
Collapse
Affiliation(s)
- Luis Soriano
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Joint first authors
| | - Tehreem Khalid
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.,Joint first authors
| | - Derek Whelan
- Dept of Mechanical, Biomedical and Manufacturing Engineering, Munster Technological University, Cork, Ireland
| | - Niall O'Huallachain
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Karen C Redmond
- National Cardio-thoracic Transplant Unit, Mater Misericordiae University Hospital and UCD School of Medicine, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Cian O'Leary
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Both authors contributed equally
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland .,Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Both authors contributed equally
| |
Collapse
|
25
|
Moriyama M, Matsumoto K, Taniguchi D, Machino R, Tsuchiya T, Nakayama K, Nagayasu T. Successful use of bio plugs for delayed bronchial closure after pneumonectomy in experimental settings. Interact Cardiovasc Thorac Surg 2021; 34:660-667. [PMID: 34738099 PMCID: PMC9026198 DOI: 10.1093/icvts/ivab306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Cell therapies, such as stem cell suspension injection, are used to treat bronchopleural fistula. Although it is safe and effective, injected cells cannot remain within the bronchioles of the fistula due to cell leakage into the thoracic cavity. Here, we inserted a 'bio plug' into the fistula, produced using cells and a bio-3D printer, to examine the effectiveness of bio plugs for the closure of bronchopleural fistulas, the optimal cell source and the closure mechanism. METHODS Bio plugs were made with mesenchymal stem (stromal) cells derived from bone marrow (MSCBM), fibroblasts and rat lung micro-vessel endothelial cells using a bio-3D printer with different cell mixing ratios. Six groups, according to the presence or absence and the type of bio plugs, were compared. The plugs were inserted into the bronchi of F344 rats. The obstruction ratio and histological and immunohistochemical findings were evaluated. RESULTS MSCBM+ rat lung micro-vessel endothelial cell group exhibited a higher obstruction ratio among all groups excluding the MSCBM group (P = 0.039). This group had fibrosis and CD31-positive cells and fewer CD68-positive cells than MSCBM and MSCBM+ fibroblast groups. CONCLUSIONS Bio plugs with mixed cells, including stem cells, contribute to bronchial closure in the current experimental setting. Endothelial cells effectively maintain the structure in this model. Although bronchial closure for bronchopleural fistula could not be described as clinical conditions were not reproduced, we collected essential data on bronchial closure; however, further experiments are warranted.
Collapse
Affiliation(s)
- Masaaki Moriyama
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Daisuke Taniguchi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Ryusuke Machino
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering Faculty of Medicine, Saga University, Saga, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
26
|
Yuan Z, Ren Y, Shafiq M, Chen Y, Tang H, Li B, El-Newehy M, El-Hamshary H, Morsi Y, Zheng H, Mo X. Converging 3D Printing and Electrospinning: Effect of Poly(l-lactide)/Gelatin Based Short Nanofibers Aerogels on Tracheal Regeneration. Macromol Biosci 2021; 22:e2100342. [PMID: 34706143 DOI: 10.1002/mabi.202100342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Indexed: 12/28/2022]
Abstract
Recently, various tissue engineering based strategies have been pursued for the regeneration of tracheal tissues. However, previously developed tracheal scaffolds do not accurately mimic the microstructure and mechanical behavior of the native trachea, which restrict their clinical translation. Here, tracheal scaffolds are fabricated by using 3D printing and short nanofibers (SF) dispersion of poly(l-lactide)/gelatin (0.5-1.5 wt%) to afford tracheal constructs. The results display that the scaffolds containing 1.0 wt % of SF exhibit low density, good water absorption capacity, reasonable degradation rate, and stable mechanical properties, which were comparable to the native trachea. Moreover, the designed scaffolds possess good biocompatibility and promote the growth and infiltration of chondrocytes in vitro. The biocompatibility of tracheal scaffolds is further assessed after subcutaneous implantation in mice for up to 4 and 8 weeks. Histological assessment of tracheal constructs explanted at week 4 shows that scaffolds can maintain their structural integrity and support the formation of neo-vessels. Furthermore, cell-scaffold constructs gradually form cartilage-like tissues, which mature with time. Collectively, these engineered tracheal scaffolds not only possess appropriate mechanical properties to afford a stabilized structure but also a biomimetic extracellular matrix-like structure to accomplish tissue regeneration, which may have broad implications for tracheal regeneration.
Collapse
Affiliation(s)
- Zhengchao Yuan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Muhammad Shafiq
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Yujie Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Baojie Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Boroondara, VIC, 3122, Australia
| | - Hui Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P. R. China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
27
|
Nakamura A, Murata D, Fujimoto R, Tamaki S, Nagata S, Ikeya M, Toguchida J, Nakayama K. Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration. Biofabrication 2021; 13. [PMID: 34380122 DOI: 10.1088/1758-5090/ac1c99] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/11/2021] [Indexed: 11/12/2022]
Abstract
Osteoarthritis is a leading cause of pain and joint immobility, the incidence of which is increasing worldwide. Currently, total joint replacement is the only treatment for end-stage disease. Scaffold-based tissue engineering is a promising alternative approach for joint repair but is subject to limitations such as poor cytocompatibility and degradation-associated toxicity. To overcome these limitations, a completely scaffold-free Kenzan method for bio-3D printing was used to fabricate cartilage constructs feasible for repairing large chondral defects. Human induced pluripotent stem cell (iPSC)-derived neural crest cells with high potential to undergo chondrogenesis through mesenchymal stem cell differentiation were used to fabricate the cartilage. Unified, self-sufficient, and functional cartilaginous constructs up to 6 cm2in size were assembled by optimizing fabrication time during chondrogenic induction. Maturation for 3 weeks facilitated the self-organisation of the cells, which improved the construct's mechanical strength (compressive and tensile properties) and induced changes in glycosaminoglycan and type II collagen expression, resulting in improved tissue function. The compressive modulus of the construct reached the native cartilage range of 0.88 MPa in the 5th week of maturation. This paper reports the fabrication of anatomically sized and shaped cartilage constructs, achieved by combining novel iPSCs and bio-3D printers using a Kenzan needle array technology, which may facilitate chondral resurfacing of articular cartilage defects.
Collapse
Affiliation(s)
- Anna Nakamura
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| | - Daiki Murata
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| | - Ryota Fujimoto
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| | - Sakura Tamaki
- Institute for Frontier Life and Medical Institute, Kyoto University, Kyoto, Japan
| | - Sanae Nagata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Makoto Ikeya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Junya Toguchida
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Institute for Frontier Life and Medical Institute, Kyoto University, Kyoto, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
28
|
Pien N, Palladino S, Copes F, Candiani G, Dubruel P, Van Vlierberghe S, Mantovani D. Tubular bioartificial organs: From physiological requirements to fabrication processes and resulting properties. A critical review. Cells Tissues Organs 2021; 211:420-446. [PMID: 34433163 DOI: 10.1159/000519207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Nele Pien
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Québec, Canada
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sara Palladino
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Québec, Canada
- GenT Lab, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Québec, Canada
| | - Gabriele Candiani
- GenT Lab, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, Québec, Canada
| |
Collapse
|
29
|
Gheorghe DC, Ilie A, Niculescu AG, Grumezescu AM. Preventing Biofilm Formation and Development on Ear, Nose and Throat Medical Devices. Biomedicines 2021; 9:1025. [PMID: 34440229 PMCID: PMC8394763 DOI: 10.3390/biomedicines9081025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/17/2022] Open
Abstract
Otorhinolaryngology is a vast domain that requires the aid of many resources for optimal performance. The medical devices utilized in this branch share common problems, such as the formation of biofilms. These structured communities of microbes encased in a 3D matrix can develop antimicrobial resistance (AMR), thus making it a problem with challenging solutions. Therefore, it is of concern the introduction in the medical practice involving biomaterials for ear, nose and throat (ENT) devices, such as implants for the trachea (stents), ear (cochlear implants), and voice recovery (voice prosthetics). The surface of these materials must be biocompatible and limit the development of biofilm while still promoting regeneration. In this respect, several surface modification techniques and functionalization procedures can be utilized to facilitate the success of the implants and ensure a long time of use. On this note, this review provides information on the intricate underlying mechanisms of biofilm formation, the large specter of implants and prosthetics that are susceptible to microbial colonization and subsequently related infections. Specifically, the discussion is particularized on biofilm development on ENT devices, ways to reduce it, and recent approaches that have emerged in this field.
Collapse
Affiliation(s)
- Dan Cristian Gheorghe
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- “M.S. Curie” Clinical Emergency Hospital for Children, 077120 Bucharest, Romania
| | - Andrei Ilie
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.I.); (A.-G.N.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
| |
Collapse
|
30
|
Jeon S, Lee SH, Ahmed SB, Han J, Heo SJ, Kang HW. 3D cell aggregate printing technology and its applications. Essays Biochem 2021; 65:467-480. [PMID: 34223609 PMCID: PMC11293493 DOI: 10.1042/ebc20200128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/14/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
Various cell aggregate culture technologies have been developed and actively applied to tissue engineering and organ-on-a-chip. However, the conventional culture technologies are labor-intensive, and their outcomes are highly user dependent. In addition, the technologies cannot be used to produce three-dimensional (3D) complex tissues. In this regard, 3D cell aggregate printing technology has attracted increased attention from many researchers owing to its 3D processability. The technology allows the fabrication of 3D freeform constructs using multiple types of cell aggregates in an automated manner. Technological advancement has resulted in the development of a printing technology with a high resolution of approximately 20 μm in 3D space. A high-speed printing technology that can print a cell aggregate in milliseconds has also been introduced. The developed aggregate printing technologies are being actively applied to produce various types of engineered tissues. Although various types of high-performance printing technologies have been developed, there are still some technical obstacles in the fabrication of engineered tissues that mimic the structure and function of native tissues. This review highlights the central importance and current technical level of 3D cell aggregate printing technology, and their applications to tissue/disease models, artificial tissues, and drug-screening platforms. The paper also discusses the remaining hurdles and future directions of the printing processes.
Collapse
Affiliation(s)
- Seunggyu Jeon
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun 44919, Ulsan, South Korea
| | - Se-Hwan Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun 44919, Ulsan, South Korea
- Department of Orthopaedic Surgery, University of Pennsylvania, 36 Street and Hamilton Walk, Philadelphia, PA 19104, U.S.A
| | - Saeed B. Ahmed
- Department of Orthopaedic Surgery, University of Pennsylvania, 36 Street and Hamilton Walk, Philadelphia, PA 19104, U.S.A
| | - Jonghyeuk Han
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun 44919, Ulsan, South Korea
| | - Su-Jin Heo
- Department of Orthopaedic Surgery, University of Pennsylvania, 36 Street and Hamilton Walk, Philadelphia, PA 19104, U.S.A
| | - Hyun-Wook Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun 44919, Ulsan, South Korea
| |
Collapse
|
31
|
Sun F, Lu Y, Wang Z, Shi H. Vascularization strategies for tissue engineering for tracheal reconstruction. Regen Med 2021; 16:549-566. [PMID: 34114475 DOI: 10.2217/rme-2020-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering technology provides effective alternative treatments for tracheal reconstruction. The formation of a functional microvascular network is essential to support cell metabolism and ensure the long-term survival of grafts. Although several tracheal replacement therapy strategies have been developed in the past, the critical significance of the formation of microvascular networks in 3D scaffolds has not attracted sufficient attention. Here, we review key technologies and related factors of microvascular network construction in tissue-engineered trachea and explore optimized preparation processes of vascularized functional tissues for clinical applications.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Zhihao Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|
32
|
Motility Improvement of Biomimetic Trachea Scaffold via Hybrid 3D-Bioprinting Technology. Polymers (Basel) 2021; 13:polym13060971. [PMID: 33810007 PMCID: PMC8004939 DOI: 10.3390/polym13060971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
A trachea has a structure capable of responding to various movements such as rotation of the neck and relaxation/contraction of the conduit due to the mucous membrane and cartilage tissue. However, current reported tubular implanting structures are difficult to impelement as replacements for original trachea movements. Therefore, in this study, we developed a new trachea implant with similar anatomical structure and mechanical properties to native tissue using 3D printing technology and evaluated its performance. A 250 µm-thick layer composed of polycaprolactone (PCL) nanofibers was fabricated on a rotating beam using electrospinning technology, and a scaffold with C-shaped cartilage grooves that mimics the human airway structure was printed to enable reconstruction of cartilage outside the airway. A cartilage type scaffold had a highest rotational angle (254°) among them and it showed up to 2.8 times compared to human average neck rotation angle. The cartilage type showed a maximum elongation of 8 times higher than that of the bellows type and it showed the elongation of 3 times higher than that of cylinder type. In cartilage type scaffold, gelatin hydrogel printed on the outside of the scaffold was remain 22.2% under the condition where no hydrogel was left in other type scaffolds. In addition, after 2 days of breathing test, the amount of gelatin remaining inside the scaffold was more than twice that of other scaffolds. This novel trachea scaffold with hydrogel inside and outside of the structure was well-preserved under external flow and is expected to be advantageous for soft tissue reconstruction of the trachea.
Collapse
|
33
|
Abstract
Tissue engineering is one of the most promising scientific breakthroughs of the late 20th century. Its objective is to produce in vitro tissues or organs to repair and replace damaged ones using various techniques, biomaterials, and cells. Tissue engineering emerged to substitute the use of native autologous tissues, whose quantities are sometimes insufficient to correct the most severe pathologies. Indeed, the patient’s health status, regulations, or fibrotic scars at the site of the initial biopsy limit their availability, especially to treat recurrence. This new technology relies on the use of biomaterials to create scaffolds on which the patient’s cells can be seeded. This review focuses on the reconstruction, by tissue engineering, of two types of tissue with tubular structures: vascular and urological grafts. The emphasis is on self-assembly methods which allow the production of tissue/organ substitute without the use of exogenous material, with the patient’s cells producing their own scaffold. These continuously improved techniques, which allow rapid graft integration without immune rejection in the treatment of severely burned patients, give hope that similar results will be observed in the vascular and urological fields.
Collapse
|
34
|
Recent advances in bioprinting technologies for engineering different cartilage-based tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112005. [PMID: 33812625 DOI: 10.1016/j.msec.2021.112005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Inadequate self-repair and regenerative efficiency of the cartilage tissues has motivated the researchers to devise advanced and effective strategies to resolve this issue. Introduction of bioprinting to tissue engineering has paved the way for fabricating complex biomimetic engineered constructs. In this context, the current review gears off with the discussion of standard and advanced 3D/4D printing technologies and their implications for the repair of different cartilage tissues, namely, articular, meniscal, nasoseptal, auricular, costal, and tracheal cartilage. The review is then directed towards highlighting the current stem cell opportunities. On a concluding note, associated critical issues and prospects for future developments, particularly in this sphere of personalized medicines have been discussed.
Collapse
|
35
|
Mahfouzi SH, Safiabadi Tali SH, Amoabediny G. 3D bioprinting for lung and tracheal tissue engineering: Criteria, advances, challenges, and future directions. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bprint.2020.e00124] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Hamada T, Nakamura A, Soyama A, Sakai Y, Miyoshi T, Yamaguchi S, Hidaka M, Hara T, Kugiyama T, Takatsuki M, Kamiya A, Nakayama K, Eguchi S. Bile duct reconstruction using scaffold-free tubular constructs created by Bio-3D printer. Regen Ther 2021; 16:81-89. [PMID: 33732817 PMCID: PMC7921183 DOI: 10.1016/j.reth.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/16/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Biliary strictures after bile duct injury or duct-to-duct biliary reconstruction are serious complications that markedly reduce patients’ quality of life because their treatment involves periodic stent replacements. This study aimed to create a scaffold-free tubular construct as an interposition graft to treat biliary complications. Methods Scaffold-free tubular constructs of allogeneic pig fibroblasts, that is, fibroblast tubes, were created using a Bio-3D Printer and implanted into pigs as interposition grafts for duct-to-duct biliary reconstruction. Results Although the fibroblast tube was weaker than the native bile duct, it was sufficiently strong to enable suturing. The pigs' serum hepatobiliary enzyme levels remained stable during the experimental period. Micro-computed tomography showed no biliary strictures, no biliary leakages, and no intrahepatic bile duct dilations. The tubular structure was retained in all resected specimens, and the fibroblasts persisted at the graft sites. Immunohistochemical analyses revealed angiogenesis in the fibroblast tube and absence of extensions of the biliary epithelium into the fibroblast tube's lumen. Conclusions This study's findings demonstrated successful reconstruction of the extrahepatic bile duct with a scaffold-free tubular construct created from pig fibroblasts using a novel Bio-3D Printer. This construct could provide a novel regenerative treatment for patients with hepatobiliary diseases.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Artificial bile duct
- Bio-3D printer
- Cr, creatinine
- DMEM, Dulbecco's Modified Eagle's Medium
- EDTA, trypsin-ethylenediaminetetraacetic acid
- FBS, fetal bovine serum
- IBDI, iatrogenic bile duct injury
- KCL, potassium chloride
- LDLT, living donor liver transplantation
- PBS, phosphate-buffered saline
- QOL, quality of life
- Reconstruction
- Scaffold-free tubular construct
- T-Bil, total bilirubin
- γ-GTP, γ-glutamyl transpeptidase
Collapse
Affiliation(s)
- Takashi Hamada
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Anna Nakamura
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Japan
| | - Takayuki Miyoshi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Shun Yamaguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Tota Kugiyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
37
|
Rodriguez-Salvador M, Perez-Benitez BE, Padilla-Aguirre KM. Discovering the Latest Scientific Pathways on Tissue Spheroids: Opportunities to Innovate. Int J Bioprint 2021; 7:331. [PMID: 33585717 PMCID: PMC7875053 DOI: 10.18063/ijb.v7i1.331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Tissue spheroids consist of a three-dimensional model of cells which is capable of imitating the complicated composition of healthy and unhealthy human tissue. Due to their unique properties, they can bring innovative solutions to tissue engineering and regenerative medicine, where they can be used as building blocks for the formation of organ and tissue models used in drug experimentation. Considering the rapid transformation of the health industry, it is crucial to assess the research dynamics of this field to support the development of innovative applications. In this research, a scientometric analysis was performed as part of a Competitive Technology Intelligence methodology, to determine the main applications of tissue spheroids. Papers from Scopus and Web of Science published between 2000 and 2019 were organized and analyzed. In total, 868 scientific publications were identified, and four main categories of application were determined. Main subject areas, countries, cities, authors, journals, and institutions were established. In addition, a cluster analysis was performed to determine networks of collaborations between institutions and authors. This article provides insights into the applications of cell aggregates and the research dynamics of this field, which can help in the decision-making process to incorporate emerging and innovative technologies in the health industry.
Collapse
|
38
|
She Y, Fan Z, Wang L, Li Y, Sun W, Tang H, Zhang L, Wu L, Zheng H, Chen C. 3D Printed Biomimetic PCL Scaffold as Framework Interspersed With Collagen for Long Segment Tracheal Replacement. Front Cell Dev Biol 2021; 9:629796. [PMID: 33553186 PMCID: PMC7859529 DOI: 10.3389/fcell.2021.629796] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
The rapid development of tissue engineering technology has provided new methods for tracheal replacement. However, none of the previously developed biomimetic tracheas exhibit both the anatomy (separated-ring structure) and mechanical behavior (radial rigidity and longitudinal flexibility) mimicking those of native trachea, which greatly restricts their clinical application. Herein, we proposed a biomimetic scaffold with a separated-ring structure: a polycaprolactone (PCL) scaffold with a ring-hollow alternating structure was three-dimensionally printed as a framework, and collagen sponge was embedded in the hollows amid the PCL rings by pouring followed by lyophilization. The biomimetic scaffold exhibited bionic radial rigidity based on compressive tests and longitudinal flexibility based on three-point bending tests. Furthermore, the biomimetic scaffold was recolonized by chondrocytes and developed tracheal cartilage in vitro. In vivo experiments showed substantial deposition of tracheal cartilage and formation of a biomimetic trachea mimicking the native trachea both structurally and mechanically. Finally, a long-segment tracheal replacement experiment in a rabbit model showed that the engineered biomimetic trachea elicited a satisfactory repair outcome. These results highlight the advantage of a biomimetic trachea with a separated-ring structure that mimics the native trachea both structurally and mechanically and demonstrates its promise in repairing long-segment tracheal defects.
Collapse
Affiliation(s)
- Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ziwen Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinze Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Boys AJ, Barron SL, Tilev D, Owens RM. Building Scaffolds for Tubular Tissue Engineering. Front Bioeng Biotechnol 2020; 8:589960. [PMID: 33363127 PMCID: PMC7758256 DOI: 10.3389/fbioe.2020.589960] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hollow organs and tissue systems drive various functions in the body. Many of these hollow or tubular systems, such as vasculature, the intestines, and the trachea, are common targets for tissue engineering, given their relevance to numerous diseases and body functions. As the field of tissue engineering has developed, numerous benchtop models have been produced as platforms for basic science and drug testing. Production of tubular scaffolds for different tissue engineering applications possesses many commonalities, such as the necessity for producing an intact tubular opening and for formation of semi-permeable epithelia or endothelia. As such, the field has converged on a series of manufacturing techniques for producing these structures. In this review, we discuss some of the most common tissue engineered applications within the context of tubular tissues and the methods by which these structures can be produced. We provide an overview of the general structure and anatomy for these tissue systems along with a series of general design criteria for tubular tissue engineering. We categorize methods for manufacturing tubular scaffolds as follows: casting, electrospinning, rolling, 3D printing, and decellularization. We discuss state-of-the-art models within the context of vascular, intestinal, and tracheal tissue engineering. Finally, we conclude with a discussion of the future for these fields.
Collapse
Affiliation(s)
| | | | | | - Roisin M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Townsend JM, Weatherly RA, Johnson JK, Detamore MS. Standardization of Microcomputed Tomography for Tracheal Tissue Engineering Analysis. Tissue Eng Part C Methods 2020; 26:590-595. [PMID: 33138726 DOI: 10.1089/ten.tec.2020.0211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tracheal tissue engineering has become an active area of interest among clinical and scientific communities; however, methods to evaluate success of in vivo tissue-engineered solutions remain primarily qualitative. These evaluation methods have generally relied on the use of photographs to qualitatively demonstrate tracheal patency, endoscopy to image healing over time, and histology to determine the quality of the regenerated extracellular matrix. Although those generally qualitative methods are valuable, they alone may be insufficient. Therefore, to quantitatively assess tracheal regeneration, we recommend the inclusion of microcomputed tomography (μCT) to quantify tracheal patency as a standard outcome analysis. To establish a standard of practice for quantitative μCT assessment for tracheal tissue engineering, we recommend selecting a constant length to quantify airway volume. Dividing airway volumes by a constant length provides an average cross-sectional area for comparing groups. We caution against selecting a length that is unjustifiably large, which may result in artificially inflating the average cross-sectional area and thereby diminishing the ability to detect actual differences between a test group and a healthy control. Therefore, we recommend selecting a length for μCT assessment that corresponds to the length of the defect region. We further recommend quantifying the minimum cross-sectional area, which does not depend on the length, but has functional implications for breathing. We present empirical data to elucidate the rationale for these recommendations. These empirical data may at first glance appear as expected and unsurprising. However, these standard methods for performing μCT and presentation of results do not yet exist in the literature, and are necessary to improve reporting within the field. Quantitative analyses will better enable comparisons between future publications within the tracheal tissue engineering community and empower a more rigorous assessment of results. Impact statement The current study argues for the standardization of microcomputed tomography (μCT) as a quantitative method for evaluating tracheal tissue-engineered solutions in vivo or ex vivo. The field of tracheal tissue engineering has generally relied on the use of qualitative methods for determining tracheal patency. A standardized quantitative evaluation method currently does not exist. The standardization of μCT for evaluation of in vivo studies would enable a more robust characterization and allow comparisons between groups within the field. The impact of standardized methods within the tracheal tissue engineering field as presented in the current study would greatly improve the quality of published work.
Collapse
Affiliation(s)
- Jakob M Townsend
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, USA
| | - Robert A Weatherly
- Section of Otolaryngology, Department of Surgery, Children's Mercy Hospital, Kansas City, Missouri, USA
| | | | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
41
|
Farhat W, Chatelain F, Marret A, Faivre L, Arakelian L, Cattan P, Fuchs A. Trends in 3D bioprinting for esophageal tissue repair and reconstruction. Biomaterials 2020; 267:120465. [PMID: 33129189 DOI: 10.1016/j.biomaterials.2020.120465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
In esophageal pathologies, such as esophageal atresia, cancers, caustic burns, or post-operative stenosis, esophageal replacement is performed by using parts of the gastrointestinal tract to restore nutritional autonomy. However, this surgical procedure most often does not lead to complete functional recovery and is instead associated with many complications resulting in a decrease in the quality of life and survival rate. Esophageal tissue engineering (ETE) aims at repairing the defective esophagus and is considered as a promising therapeutic alternative. Noteworthy progress has recently been made in the ETE research area but strong challenges remain to replicate the structural and functional integrity of the esophagus with the approaches currently being developed. Within this context, 3D bioprinting is emerging as a new technology to facilitate the patterning of both cellular and acellular bioinks into well-organized 3D functional structures. Here, we present a comprehensive overview of the recent advances in tissue engineering for esophageal reconstruction with a specific focus on 3D bioprinting approaches in ETE. Current biofabrication techniques and bioink features are highlighted, and these are discussed in view of the complexity of the native esophagus that the designed substitute needs to replace. Finally, perspectives on recent strategies for fabricating other tubular organ substitutes via 3D bioprinting are discussed briefly for their potential in ETE applications.
Collapse
Affiliation(s)
- Wissam Farhat
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - François Chatelain
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Auriane Marret
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Lionel Faivre
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; Assistance Publique - Hôpitaux de Paris, Unité de Thérapie Cellulaire, Hôpital Saint-Louis, Paris, France
| | - Lousineh Arakelian
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; Assistance Publique - Hôpitaux de Paris, Unité de Thérapie Cellulaire, Hôpital Saint-Louis, Paris, France
| | - Pierre Cattan
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; Assistance Publique - Hôpitaux de Paris, Service de Chirurgie Digestive, Hôpital Saint-Louis, Paris, France
| | - Alexandra Fuchs
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France.
| |
Collapse
|
42
|
Murata D, Arai K, Nakayama K. Scaffold-Free Bio-3D Printing Using Spheroids as "Bio-Inks" for Tissue (Re-)Construction and Drug Response Tests. Adv Healthc Mater 2020; 9:e1901831. [PMID: 32378363 DOI: 10.1002/adhm.201901831] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
In recent years, scaffold-free bio-3D printing using cell aggregates (spheroids) as "bio-inks" has attracted increasing attention as a method for 3D cell construction. Bio-3D printing uses a technique called the Kenzan method, wherein spheroids are placed one-by-one in a microneedle array (the "Kenzan") using a bio-3D printer. The bio-3D printer is a machine that was developed to perform bio-3D printing automatically. Recently, it has been reported that cell constructs can be produced by a bio-3D printer using spheroids composed of many types of cells and that this can contribute to tissue (re-)construction. This progress report summarizes the production and effectiveness of various cell constructs prepared using bio-3D printers. It also considers the future issues and prospects of various cell constructs obtained by using this method for further development of scaffold-free 3D cell constructions.
Collapse
Affiliation(s)
- Daiki Murata
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| | - Kenichi Arai
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| |
Collapse
|
43
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
44
|
Manning KL, Feder J, Kanellias M, Murphy J, Morgan JR. Toward Automated Additive Manufacturing of Living Bio-Tubes Using Ring-Shaped Building Units. SLAS Technol 2020; 25:608-620. [PMID: 32452278 DOI: 10.1177/2472630320920896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tissue engineering has been largely confined to academic research institutions with limited success in commercial settings. To help address this issue, more work is needed to develop new automated manufacturing processes for tissue-related technologies. In this article, we describe the automation of the funnel-guide, an additive manufacturing method that uses living tissue rings as building units to form bio-tubes. We developed a method based on 96-well plates and a modified off-the-shelf liquid-handling robot to retrieve, perform real-time quality control, and transfer tissue rings to the funnel-guide. Cells seeded into 96-well plates containing specially designed agarose micromolds self-assembled and formed ring-shaped microtissues that could be retrieved using a liquid-handling robot. We characterized the effects of time, cell type, and mold geometry on the morphology of the ring-shaped microtissues to inform optimal use of the building parts. We programmed and modified an off-the-shelf liquid-handling robot to retrieve ring-shaped microtissues from the 96-well plates, and we fabricated a custom illuminated pipette to visualize each ring-shaped microtissue prior to deposit in the funnel guide. Imaging at the liquid-air interface presented challenges that were overcome by controlling lighting conditions and liquid curvature. Based on these images, we incorporated into our workflow a real-time quality control step based on visual inspection and morphological criteria to assess each ring prior to use. We used this system to fabricate bio-tubes of endothelial cells with luminal alignment.
Collapse
Affiliation(s)
- Kali L Manning
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - Jacob Feder
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
| | - Marianne Kanellias
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - John Murphy
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
| | - Jeffrey R Morgan
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
45
|
Stramiello JA, Saddawi-Konefka R, Ryan J, Brigger MT. The role of 3D printing in pediatric airway obstruction: A systematic review. Int J Pediatr Otorhinolaryngol 2020; 132:109923. [PMID: 32035351 DOI: 10.1016/j.ijporl.2020.109923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Tracheomalacia and tracheal stenosis are complicated, patient-specific diseases that require a multidisciplinary approach to diagnose and treat. Surgical interventions such as aortopexy, slide tracheoplasty, and stents potentially have high rates of morbidity. Given the emergence of three-dimensional (3D) printing as a versatile adjunct in managing complex pathology, there is a growing body of evidence that there is a strong role for 3D printing in both surgical planning and implant creation for pediatric airway obstruction. METHODS A structured PubMed.gov literature search was utilized, and a two-researcher systematic review was performed following the PRISMA criteria. The following search query was utilized: (((((3D printing) OR three-dimensional printing) OR 3D printed) OR three-dimensional printed) AND trachea) OR airway. RESULTS Over 23,000 publications were screened. Eight literature reviews and thirty-seven original papers met inclusion criteria. Of the thirty-seven original papers, eleven discussed 3D printing for surgical planning and twenty-six discussed 3D printing implants for interventions. CONCLUSION The reported application of 3D printing for management of pediatric airway obstruction is emerging with positive and broad applications. 3D printing for surgical planning not only improves pre-operative assessment of surgical approach and stent customization, but also helps facilitate patient/family education. 3D printing for custom implantable interventions is focused on bioresorbable external airway splints and biological grafts, with both animal studies and human case reports showing good results in improving symptoms.
Collapse
Affiliation(s)
- Joshua A Stramiello
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of California San Diego, 200 W Arbor Dr. MC8895, San Diego, CA 92103, USA.
| | - Robert Saddawi-Konefka
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of California San Diego, 200 W Arbor Dr. MC8895, San Diego, CA 92103, USA
| | - Justin Ryan
- 3D Innovations Lab, Rady Children's Hospital, 3020 Children's Way MC5166, San Diego, CA, 92123, USA
| | - Matthew T Brigger
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of California San Diego, 200 W Arbor Dr. MC8895, San Diego, CA 92103, USA; Division of Pediatric Otolaryngology, Department of Surgery, Rady Children's Hospital, 3020 Children's Way, San Diego, CA, 92123, USA
| |
Collapse
|
46
|
Dhasmana A, Singh A, Rawal S. Biomedical grafts for tracheal tissue repairing and regeneration "Tracheal tissue engineering: an overview". J Tissue Eng Regen Med 2020; 14:653-672. [PMID: 32064791 DOI: 10.1002/term.3019] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Airway system is a vital part of the living being body. Trachea is the upper respiratory portion that connects nostril and lungs and has multiple functions such as breathing and entrapment of dust/pathogen particles. Tracheal reconstruction by artificial prosthesis, stents, and grafts are performed clinically for the repairing of damaged tissue. Although these (above-mentioned) methods repair the damaged parts, they have limited applicability like small area wounds and lack of functional tissue regeneration. Tissue engineering helps to overcome the above-mentioned problems by modifying the traditional used stents and grafts, not only repair but also regenerate the damaged area to functional tissue. Bioengineered tracheal replacements are biocompatible, nontoxic, porous, and having 3D biomimetic ultrastructure with good mechanical strength, which results in faster and better tissue regeneration. Till date, the bioengineered tracheal replacements studies have been going on preclinical and clinical levels. Besides that, still many researchers are working at advance level to make extracellular matrix-based acellular, 3D printed, cell-seeded grafts including living cells to overcome the demand of tissue or organ and making the ready to use tracheal reconstructs for clinical application. Thus, in this review, we summarized the tracheal tissue engineering aspects and their outcomes.
Collapse
Affiliation(s)
- Archna Dhasmana
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Atul Singh
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Sagar Rawal
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
47
|
Taniguchi D, Matsumoto K, Machino R, Takeoka Y, Elgalad A, Taura Y, Oyama S, Tetsuo T, Moriyama M, Takagi K, Kunizaki M, Tsuchiya T, Miyazaki T, Hatachi G, Matsuo N, Nakayama K, Nagayasu T. Human lung microvascular endothelial cells as potential alternatives to human umbilical vein endothelial cells in bio-3D-printed trachea-like structures. Tissue Cell 2019; 63:101321. [PMID: 32223949 DOI: 10.1016/j.tice.2019.101321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND We have been trying to produce scaffold-free structures for airway regeneration using a bio-3D-printer with spheroids, to avoid scaffold-associated risks such as infection. Previous studies have shown that human umbilical vein endothelial cells (HUVECs) play an important role in such structures, but HUVECs cannot be isolated from adult humans. The aim of this study was to identify alternatives to HUVECs for use in scaffold-free structures. METHODS Three types of structure were compared, made of chondrocytes and mesenchymal stem cells with HUVECs, human lung microvascular endothelial cells (HMVEC-Ls), and induced pluripotent stem cell (iPSC)-derived endothelial cells. RESULTS No significant difference in tensile strength was observed between the three groups. Histologically, some small capillary-like tube formations comprising CD31-positive cells were observed in all groups. The number and diameters of such formations were significantly lower in the iPSC-derived endothelial cell group than in other groups. Glycosaminoglycan content was significantly lower in the iPSC-derived endothelial cell group than in the HUVEC group, while no significant difference was observed between the HUVEC and HMVEC-L groups. CONCLUSIONS HMVEC-Ls can replace HUVECs as a cell source for scaffold-free trachea-like structures. However, some limitations were associated with iPSC-derived endothelial cells.
Collapse
Affiliation(s)
- D Taniguchi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - K Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - R Machino
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Y Takeoka
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - A Elgalad
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Y Taura
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - S Oyama
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - T Tetsuo
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - M Moriyama
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - K Takagi
- Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - M Kunizaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - T Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - T Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - G Hatachi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - N Matsuo
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - K Nakayama
- Department of Regenerative Medicine and Biomedical Engineering Faculty of Medicine, Saga University, 1 Honjocho, Saga, 840-8502, Japan
| | - T Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
48
|
Advances in bioprinting using additive manufacturing. Eur J Pharm Sci 2019; 143:105167. [PMID: 31778785 DOI: 10.1016/j.ejps.2019.105167] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 01/27/2023]
Abstract
Since its conception in the 1980's, several advances in the field of additive manufacturing have led to exploration of alternate as well as combination biomaterials. These progresses have directed the use of 3D printing in wider applications such as printing of dermal layers, cartilage, bone defects, and surgical implants. Furthermore, the incorporation of live and functional cells with or atop biomaterials has laid the foundation for its use in tissue engineering. The purpose of this review is to summarize the advances in 3D printing and bioprinting of several types of tissues such as skin, cartilage, bones, and cardiac valves. This review will address the current 3D technologies used in tissue construction and study the biomaterials being investigated. There are several requirements that need to be addressed, in order to reconstruct functional tissue such as mechanical strength, porosity of the replicate and cellular incorporation. Researchers have focused their studies to answer questions regarding these requirements.
Collapse
|
49
|
Galliger Z, Vogt CD, Panoskaltsis-Mortari A. 3D bioprinting for lungs and hollow organs. Transl Res 2019; 211:19-34. [PMID: 31150600 PMCID: PMC6702089 DOI: 10.1016/j.trsl.2019.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Three-dimensional bioprinting has been gaining attention as a potential method for creating biological tissues, supplementing the current arsenal of tissue engineering techniques. 3D bioprinting raises the possibility of reproducibly creating complex macro- and microscale architectures using multiple different cell types. This is promising for creation of multilayered hollow organs, which has been challenging using more traditional tissue engineering techniques. In this review, the state of the field in bioprinting of epithelialized hollow and tubular organs is discussed. Most of the progress for the pulmonary system has been restricted to the trachea. Due to the gross structural similarities and common engineering challenges when creating any epithelialized hollow organ, this review also covers current progress in printing within the gastrointestinal and genitourinary systems, as well as applications of traditional plastic printing in engineering these tissues.
Collapse
Affiliation(s)
- Zachary Galliger
- University of Minnesota, Department of Pediatrics, Minneapolis, Minnesota
| | - Caleb D Vogt
- University of Minnesota, Department of Pediatrics, Minneapolis, Minnesota
| | | |
Collapse
|