1
|
Modarelli MJC, Kot-Thompson DM, Hoshino K. 5-Axis CNC micro-milling machine for three-dimensional microfluidics. LAB ON A CHIP 2025; 25:127-142. [PMID: 39676609 DOI: 10.1039/d4lc00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The gold standard of microfluidic fabrication techniques, SU-8 patterning, requires photolithography equipment and facilities and is not suitable for 3D microfluidics. A 3D printer is more convenient and may achieve high resolutions comparable to conventional photolithography, but only with select materials. Alternatively, 5-axis computer numerical control (CNC) micro-milling machines can efficiently prototype structures with high resolutions, high aspect ratios, and non-planar geometries from a variety of materials. These machines, however, have not been catered for laboratory-based, small-batch microfluidics development and are largely inaccessible to researchers. In this paper, we present a new 5-axis CNC micro-milling machine specifically designed for prototyping 3D microfluidic channels, made affordable for research and laboratories. The machine is assembled from commercially available products and custom-build parts, occupying 0.72 cubic meters, and operating entirely from computer aided design (CAD) and manufacturing (CAM) software. The 5-axis CNC micro-milling machine achieves sub-μm bidirectional repeatability (≤0.23 μm), machinable features <20 μm, and a work volume of 50 × 50 × 68 mm. The tool compatibility and milling parameters were designed to enable fabrication of virtually any mill-able material including metals like aluminum, brass, stainless steel, and titanium alloys. To demonstrate milling high resolution and high aspect ratios, we milled a thin wall from 360 brass with a width of 18.1 μm and an aspect ratio of ∼50 : 1. We also demonstrated fabricating molds from 360 brass with non-planar geometries to create polydimethylsiloxane (PDMS) microfluidic channels. These included a channel on a 90° edge and a channel on a rounded edge with a 250 μm radius of curvature. Our 5-axis CNC micro-milling machine offers the most versatility in prototyping microfluidics by enabling high resolutions, geometric complexity, a large work volume, and broad material compatibility, all within a user-friendly benchtop system.
Collapse
Affiliation(s)
- Mitchell J C Modarelli
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT 06269 USA.
| | - Devin M Kot-Thompson
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT 06269 USA.
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT 06269 USA.
| |
Collapse
|
2
|
Mallineni SK, Sethi M, Punugoti D, Kotha SB, Alkhayal Z, Mubaraki S, Almotawah FN, Kotha SL, Sajja R, Nettam V, Thakare AA, Sakhamuri S. Artificial Intelligence in Dentistry: A Descriptive Review. Bioengineering (Basel) 2024; 11:1267. [PMID: 39768085 PMCID: PMC11673909 DOI: 10.3390/bioengineering11121267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
Artificial intelligence (AI) is an area of computer science that focuses on designing machines or systems that can perform operations that would typically need human intelligence. AI is a rapidly developing technology that has grabbed the interest of researchers from all across the globe in the healthcare industry. Advancements in machine learning and data analysis have revolutionized oral health diagnosis, treatment, and management, making it a transformative force in healthcare, particularly in dentistry. Particularly in dentistry, AI is becoming increasingly prevalent as it contributes to the diagnosis of oro-facial diseases, offers treatment modalities, and manages practice in the dental operatory. All dental disciplines, including oral medicine, operative dentistry, pediatric dentistry, periodontology, orthodontics, oral and maxillofacial surgery, prosthodontics, and forensic odontology, have adopted AI. The majority of AI applications in dentistry are for diagnoses based on radiographic or optical images, while other tasks are less applicable due to constraints such as data availability, uniformity, and computational power. Evidence-based dentistry is considered the gold standard for decision making by dental professionals, while AI machine learning models learn from human expertise. Dentistry AI and technology systems can provide numerous benefits, such as improved diagnosis accuracy and increased administrative task efficiency. Dental practices are already implementing various AI applications, such as imaging and diagnosis, treatment planning, robotics and automation, augmented and virtual reality, data analysis and predictive analytics, and administrative support. The dentistry field has extensively used artificial intelligence to assist less-skilled practitioners in reaching a more precise diagnosis. These AI models effectively recognize and classify patients with various oro-facial problems into different risk categories, both individually and on a group basis. The objective of this descriptive review is to review the most recent developments of AI in the field of dentistry.
Collapse
Affiliation(s)
- Sreekanth Kumar Mallineni
- Pediatric Dentistry, Dr. Sulaiman Alhabib Medical Group, Rayyan, Riyadh 14212, Saudi Arabia
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Mallika Sethi
- Department of Periodontics, Inderprastha Dental College and Hospital, Ghaziabad 201010, Uttar Pradesh, India
| | - Dedeepya Punugoti
- Pediatric Dentistry, Sri Vydya Dental Hospital, Ongole 52300, Andhra Pradesh, India
| | - Sunil Babu Kotha
- Preventive Dentistry Department, Pediatric Dentistry Division, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
- Department of Pediatric and Preventive Dentistry, Datta Meghe Institute of Medical Sciences, Wardha 442004, Maharashtra, India
| | - Zikra Alkhayal
- Therapeutics & Biomarker Discovery for Clinical Applications, Cell Therapy & Immunobiology Department, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Department of Dentistry, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Sarah Mubaraki
- Preventive Dentistry Department, Pediatric Dentistry Division, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Fatmah Nasser Almotawah
- Preventive Dentistry Department, Pediatric Dentistry Division, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Sree Lalita Kotha
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rishitha Sajja
- Clinical Data Management, Global Data Management and Centralized Monitoring, Global Development Operations, Bristol Myers Squibb, Pennington, NJ 07922, USA
| | - Venkatesh Nettam
- Department of Orthodontics, Narayana Dental College and Hospital, Nellore 523004, Andhra Pradesh, India
| | - Amar Ashok Thakare
- Department of Restorative Dentistry and Prosthodontics, College of Dentistry, Majmaah University, Al-Zulfi 11952, Saudi Arabia
| | - Srinivasulu Sakhamuri
- Department of Conservative Dentistry & Endodontics, Narayana Dental College and Hospital, Nellore 523004, Andhra Pradesh, India
| |
Collapse
|
3
|
Malaguez GG, Artuzi FE, Quevedo AS, Puricelli E, Ponzoni D. Can treatment with chondroitin and glucosamine sulphate prevent changes in the articular disc caused by temporomandibular joint osteoarthritis? J Oral Rehabil 2024; 51:2289-2296. [PMID: 39092654 DOI: 10.1111/joor.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Chondroitin and glucosamine sulphates (CGS) are considered structure-modifying drugs and have been studied in the prevention, delay or reversal of structural morphological changes in joints caused by osteoarthritis. OBJECTIVE The aim of the present study was to investigate the action of CGS on the progression of chemically induced osteoarthritis in the temporomandibular joint (TMJ) of rabbits by evaluating the serum levels of tumour necrosis factor (TNF-α) and collagen in the articular discs. MATERIALS AND METHODS A sample of 36 male rabbits was divided into three groups: control (CG), osteoarthritis (OG) and treatment (TG). The disease was induced by intra-articular injection of sodium monoiodoacetate (10 mg/mL) in the OG and TG groups bilaterally. After 10 days, the TG animals received subcutaneous injection of chondroitin sulphates and glucosamine (7.5 mg/kg) and the OG and CG received saline solution (50 μL). Euthanasia times were subdivided into 40 and 100 days. Collagen quantification was performed by biochemical and histological analysis and for the quantification of serum levels of TNF-α, an enzyme immunoassay was used. RESULTS The TG showed an increase in the collagen area of the articular disc when compared to the CG and the OG. The increase collagen concentration in the discs did not show a statistically significant difference between the groups. Post-treatment TNF-α levels were significantly lower in TG compared to OG. CONCLUSIONS The results indicate that CGS treatment delayed the degeneration of the collagen in the TMJ articular disc and reduced serum TNF-α levels, indicating a preventive effect on OA progression.
Collapse
Affiliation(s)
- Giulia Giacomini Malaguez
- School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Ernesto Artuzi
- School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre Silva Quevedo
- School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Edela Puricelli
- School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departament of Oral and Maxillofacial Surgery, HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Deise Ponzoni
- School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departament of Oral and Maxillofacial Surgery, HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Yan Q, Liao L, He D. Risk factors associated with temporomandibular joint disorder: A mendelian randomization analysis. J Oral Rehabil 2024; 51:2239-2247. [PMID: 39041331 DOI: 10.1111/joor.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Temporomandibular joint disorder (TMD), a prevalent orofacial disorder with complex aetiologies and considerable socioeconomic costs. This underscores the critical importance of developing a comprehensive understanding of the risk factors associated with TMD, as existing research is hindered by deficiencies in establishing causal relationships and the limitations of traditional research methodologies. OBJECTIVES This research explores the causal link between certain risk factors and temporomandibular joint disorder (TMD) through Mendelian randomization (MR), providing multidimensional perspectives in addressing this worldwide health issue. METHODS Utilizing instrumental variables, we applied advanced statistical methods, including the weighted median, inverse variance weighted (IVW) and MR-Egger, to evaluate the impact of twelve potential risk factors on TMD. RESULTS Our results identified a significant positive association of TMD with malocclusion (p < .001), sleeping disorders (p = .006), anxiety (p = .002), major depression (p = .0002), daily cigarettes consumption (p = .029) and autoimmune diseases (p = .039). Conversely, a negative association was observed with educational attainment (p = .003). CONCLUSION These findings suggest that malocclusion, sleeping disorders, anxiety, major depression, daily cigarettes consumption and autoimmune diseases, could potentially increase TMD risk while educational attainment might mitigate its increase. No direct causal relationships were established between serum 25-hydroxyvitamin D levels, menopause, frequent alcohol consumption, coffee intake and severely worn dentition and TMD.
Collapse
Affiliation(s)
- Qinghan Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lingzi Liao
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou, China
| | - Dengqi He
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou, China
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Chandrasekaran P, Alanazi A, Kwok B, Li Q, Viraraghavan G, Balasubramanian S, Frank DB, Lu XL, Birk DE, Mauck RL, Dyment NA, Koyama E, Han L. Type V collagen exhibits distinct regulatory activities in TMJ articular disc versus condylar cartilage during postnatal growth and remodeling. Acta Biomater 2024; 189:192-207. [PMID: 39362448 PMCID: PMC11640222 DOI: 10.1016/j.actbio.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Understanding matrix molecular activities that regulate the postnatal growth and remodeling of the temporomandibular joint (TMJ) articular disc and condylar cartilage will enable the development of effective regenerative strategies targeting TMJ disorders. This study elucidated the distinct roles of type V collagen (collagen V) in regulating these two units. Studying the TMJ of young adult Col5a1+/- mice, we found that loss of collagen V resulted in substantial changes in the proliferation, clustering and density of progenitors in condylar cartilage, but did not have a major impact on disc cells that are more fibroblast-like. Although loss of collagen V led to thickened collagen fibrils with increased heterogeneity in the disc, there were no significant changes in local micromodulus, except for a reduction at the posterior end of the inferior side. Following the induction of aberrant occlusal loading by the unilateral anterior crossbite (UAC) procedure, both wild-type (WT) and Col5a1+/- condylar cartilage exhibited salient remodeling, and Col5a1+/- condyle developed more pronounced degeneration and tissue hypertrophy at the posterior end than the WT. In contrast, neither UAC nor collagen V deficiency induced marked changes in the morphology or biomechanical properties of the disc. Together, our findings highlight the distinct roles of collagen V in regulating these two units during postnatal growth and remodeling, emphasizing its more crucial role in condylar cartilage due to its impact on the highly mechanosensitive progenitors. These results provide the foundation for using collagen V to improve the regeneration of TMJ and the care of patients with TMJ disorders. STATEMENT OF SIGNIFICANCE: Successful regeneration of the temporomandibular joint (TMJ) articular disc and condylar cartilage remains a significant challenge due to the limited understanding of matrix molecular activities that regulate the formation and remodeling of these tissues. This study demonstrates that collagen V plays distinct and critical roles in these processes. In condylar cartilage, collagen V is essential for regulating progenitor cell fate and maintaining matrix integrity. In the disc, collagen V also regulates fibril structure and local micromechanics, but has a limited impact on cell phenotype or its remodeling response. Our findings establish collagen V as a key component in maintaining the integrity of these two units, with a more crucial role in condylar cartilage due to its impact on progenitor cell activities.
Collapse
Affiliation(s)
- Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Abdulaziz Alanazi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Girish Viraraghavan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Sriram Balasubramanian
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Eiki Koyama
- Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
6
|
Liu L, He G, Li Y, Xian Y, He G, Hong Y, Zhang C, Wu D. Hyaluronic Acid-Based Microparticles with Lubrication and Anti-Inflammation for Alleviating Temporomandibular Joint Osteoarthritis. Biomater Res 2024; 28:0073. [PMID: 39247653 PMCID: PMC11377958 DOI: 10.34133/bmr.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
The pathogenesis of temporomandibular joint osteoarthritis (TMJOA) is closely associated with mechanical friction, which leads to the up-regulation of inflammatory mediators and the degradation of articular cartilage. Injectable drug-loaded microparticles have attracted widespread interest in intra-articular treatment of TMJOA by providing lubrication and facilitating localized drug delivery. Herein, a hyaluronic acid-based microparticle is developed with excellent lubrication properties, drug loading capacity, antioxidant activity, and anti-inflammatory effect for the treatment of TMJOA. The microparticles are facilely prepared by the self-assembly of 3-aminophenylboronic acid-modified hyaluronic acid (HP) through hydrophobic interaction in an aqueous solution, which can further encapsulate diol-containing drugs through dynamic boronate ester bonds. The resulting microparticles demonstrate excellent injectability, lubrication properties, radical scavenging efficiency, and antibacterial activity. Additionally, the drug-loaded microparticles exhibit a favorable cytoprotective effect on chondrocyte cells in vitro under an oxidative stress microenvironment. In vivo experiments validate that intra-articular injection of drug-loaded microparticles effectively alleviates osteoporosis-like damage, suppresses inflammatory response, and facilitates matrix regeneration in the treatment of TMJOA. The HP microparticles demonstrate excellent injectability and encapsulation capacity for diol-containing drugs, highlighting its potential as a versatile drug delivery vehicle in the intra-articular treatment of TMJOA.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guixian He
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Yonglong Hong
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Chong Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Kim SB, Bae H, Lee KW, Hu KS, Abe S, Kim HJ. Anatomical consideration of ultrasonography-guided intraoral injection for temporal tendinitis. Clin Anat 2024; 37:628-634. [PMID: 38146193 DOI: 10.1002/ca.24130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/27/2023]
Abstract
Temporal tendinitis is characterized by acute inflammation often resulting from mechanical stress, such as repetitive jaw movements associated with jaw opening and closing and teeth clenching. Treatment for temporal tendinitis typically involves the administration of local anesthetic or corticosteroid injections. However, the complex anatomical structure of the coronoid process, to which the temporalis tendon attaches, located deep within the zygomatic arch, poses challenges for accurate injections. In this study, we aimed to establish guidelines for the safe and effective treatment of temporal tendinitis by using intraoral ultrasonography (US) to identify the anatomical structures surrounding the temporalis tendon and coronoid process. US was performed using an intraoral transducer on 58 volunteers without temporomandibular joint disease. The procedure involved placing the transducer below the occlusal plane of the maxillary second molar. Measurements were taken for the horizontal distance from the anterior border of the coronoid process, observed at the midpoint (MP) of the US images, and the depth of the coronoid process and temporalis muscle from the oral mucosa. The anterior border of the coronoid process was visualized on all US images and classified into three observed patterns at the MP: type A (anterior to the MP, 56.2%), type B (at the MP, 16.1%), and type C (posterior to the MP, 27.7%). The temporalis muscle was located at a mean depth of 3.12 ± 0.68 mm from the oral mucosa. The maxillary second molar is an intraoral landmark for visualizing the anterior border of the coronoid process. The new location information obtained using intraoral US could help identify the safest and most effective injection sites for the treatment of temporal tendinitis.
Collapse
Affiliation(s)
- Soo-Bin Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hyungkyu Bae
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Kang-Woo Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Kyung-Seok Hu
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Shinichi Abe
- Department of Anatomy, 2-9-18 Kandamisaki-cho, Chiyoda-ku, 101-0061, Tokyo Dental College, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Hee-Jin Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Materials Science & Engineering, College of Engineering, Yonsei University, Seoul, South Korea
| |
Collapse
|
8
|
Guastaldi FPS, Matheus HR, Hadad H, Randolph MA, Redmond RW. A regenerative approach for temporomandibular joint repair: An in vitro and ex vivo study. J Oral Rehabil 2024; 51:1521-1529. [PMID: 38717007 DOI: 10.1111/joor.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Current clinical approaches to regenerate temporomandibular joint (TMJ) articulating cartilage defects only treat the symptoms (i.e. pain and dysfunction) and do not seek to restore joint integrity for long-term relief. Therefore, we investigated a novel self-assembling tissue-engineered cartilage to overcome this significant clinical issue for TMJ regenerative purposes. OBJECTIVES Examine the maturation of dynamic self-regenerating cartilage (dSRC) using auricular chondrocytes and evaluate a novel combinatorial approach with fractional laser treatment and dSRC implantation for TMJ cartilage repair. MATERIALS AND METHODS A suspension of 107 freshly harvested rabbit ear chondrocytes was cultured under a continuous reciprocating motion to form the dSRC. After 2, 4 and 8 weeks of culture, dSRC samples were stained with H&E, Safranin-O and Toluidine Blue. Immunohistochemistry (IHC) was performed for collagens type I and II. Channels (300-500 μm diameter and 1.2-1.5 mm depth) were created in six freshly harvested condyles using a fractional Erbium laser. Two groups were tested: dSRC in a laser-ablated lesion (experimental) and an empty laser-ablated channel (control). TMJ condyles were cultured for up to 8 weeks and analysed as described above. RESULTS H&E staining showed a high cell density in dSRC compared to native cartilage. All dSRC groups demonstrated intense Safranin-O staining, indicating high glycosaminoglycan (GAG) production and intense Toluidine Blue staining showed high proteoglycan content. IHC confirmed that dSRC consisted predominantly of collagen type II. The experimental group showed improved cartilage repair at both time points compared to the empty channels. CONCLUSION dSRC viability and successful matrix formation were demonstrated in vitro. The combination of fractional laser ablation and dSRC implantation enhanced cartilage repair.
Collapse
Affiliation(s)
- Fernando P S Guastaldi
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Henrique R Matheus
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Diagnosis and Surgery, Division of Periodontics, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Henrique Hadad
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Diagnosis and Surgery, Oral & Maxillofacial Surgery Division, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Mark A Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert W Redmond
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Maria OM, Heram A, Tran SD. Bioengineering from the laboratory to clinical translation in oral and maxillofacial reconstruction. Saudi Dent J 2024; 36:955-962. [PMID: 39035556 PMCID: PMC11255950 DOI: 10.1016/j.sdentj.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 07/23/2024] Open
Abstract
Background Conventional techniques used in oral and maxillofacial reconstruction focus mainly on utilizing autologous tissues that have unquestionably improved function and esthetics for many patients, worldwide. However, the success depends on countless factors such as: donor and recipient sites conditions, patient's medical history, surgeon's experience, restricted availability of high-quality autogenous tissues or stem cells, and increased surgical cost and time. Materials and Methods Lately, teaming researchers, scientists, surgeons, and engineers, to address these limitations, have allowed tremendous progress in recombinant protein therapy, cell-based therapy, and gene therapy. Results Over the past few years, biomedical engineering has been evolving from the laboratory to clinical applications, for replacement of damaged body tissues due to trauma, cancer, congenital or acquired disorders. Conclusions This review provides an outlook on the content, benefits, recent advances, limitations, and future expectations of biomedical engineering for salivary glands, oral mucosa, dental structures, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Ola M. Maria
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ashraf Heram
- Grand Strand Facial and Jaw Surgery, Myrtle Beach, SC, United States
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Monje Gil F, Martínez Artal P, Cuevas Queipo de Llano A, Muñoz Guerra M, González Ballester D, López Arcas JM, López Cedrún JL, Gutiérrez Pérez JL, Martín-Granizo R, del Castillo Pardo de Vera JL, García Medina B, González-García R, Moreno Sánchez M, Rodríguez EV, Fernández Sanromán J, López Martos R, Peral Cagigal B, Redondo Alamillos M, Morey Mas M, Salcedo Gil C, Ramos Medina B, Valls Ontañón A, Masià Gridilla J, Dean Ferrer A. Consensus Report and Recommendations on the Management of Late-stage Internal Derangement of the Temporomandibular Joint. J Clin Med 2024; 13:3319. [PMID: 38893029 PMCID: PMC11173044 DOI: 10.3390/jcm13113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction: This report investigates late-stage internal derangement (ID) of the temporomandibular joint (TMJ) with the aim of establishing a more effective and personalized treatment protocol to improve patients' quality of life (QoL). Material and methods: A consensus was reached among maxillofacial surgeons specializing in LSID, based on a literature research and collective expert experience following the Delphi method. Consensus was considered to be achieved when a response received at least 80% of votes. Results: Four expert groups were established, respectively, focusing on diagnosis, minimally invasive surgery (MIS), open surgery and joint replacement. A comprehensive approach to late-stage ID of the TMJ requires a consensus report. This underscores the need for a personalized treatment plan, considering the variability in clinical presentations and progression of this pathology. Our recommendations aim to optimize clinical outcomes and enhance patient QoL.
Collapse
Affiliation(s)
- Florencio Monje Gil
- Oral and Maxillofacial Surgery Department, University Hospital Badajoz, 06080 Badajoz, Spain; (A.C.Q.d.L.); (D.G.B.); (M.M.S.)
| | - Patricia Martínez Artal
- Oral and Maxillofacial Surgery Department, University Hospital Badajoz, 06080 Badajoz, Spain; (A.C.Q.d.L.); (D.G.B.); (M.M.S.)
| | - Alberto Cuevas Queipo de Llano
- Oral and Maxillofacial Surgery Department, University Hospital Badajoz, 06080 Badajoz, Spain; (A.C.Q.d.L.); (D.G.B.); (M.M.S.)
| | - Mario Muñoz Guerra
- Oral and Maxillofacial Surgery Department, La Princesa University Hospital, 28006 Madrid, Spain; (M.M.G.); (R.G.-G.)
| | - David González Ballester
- Oral and Maxillofacial Surgery Department, University Hospital Badajoz, 06080 Badajoz, Spain; (A.C.Q.d.L.); (D.G.B.); (M.M.S.)
| | | | - José Luis López Cedrún
- Oral and Maxillofacial Surgery Department, University Hospital A Coruña, 15008 A Coruña, Spain;
| | - José Luis Gutiérrez Pérez
- Oral and Maxillofacial Surgery Department, University Hospital Virgen del Rocío, 41013 Sevilla, Spain; (J.L.G.P.); (R.L.M.)
| | - Rafael Martín-Granizo
- Oral and Maxillofacial Surgery Department, Hospital Clínico San Carlos, 28040 Madrid, Spain;
| | | | - Blas García Medina
- Oral and Maxillofacial Surgery Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - Raúl González-García
- Oral and Maxillofacial Surgery Department, La Princesa University Hospital, 28006 Madrid, Spain; (M.M.G.); (R.G.-G.)
| | - Manuel Moreno Sánchez
- Oral and Maxillofacial Surgery Department, University Hospital Badajoz, 06080 Badajoz, Spain; (A.C.Q.d.L.); (D.G.B.); (M.M.S.)
| | - Ekaitz Valle Rodríguez
- Oral and Maxillofacial Surgery Department, University Hospital Reina Sofía, 30003 Murcia, Spain;
| | | | - Ricardo López Martos
- Oral and Maxillofacial Surgery Department, University Hospital Virgen del Rocío, 41013 Sevilla, Spain; (J.L.G.P.); (R.L.M.)
| | - Beatriz Peral Cagigal
- Oral and Maxillofacial Surgery Department, University Hospital Río Hortega, 47012 Valladolid, Spain;
| | - Marta Redondo Alamillos
- Oral and Maxillofacial Surgery Department, University Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Miguel Morey Mas
- GBCOM Dental and Maxillofacial Clinic, 07014 Palma de Mallorca, Spain;
| | - Carlos Salcedo Gil
- Oral and Maxillofacial Surgery Department, University Hospital Son Espases, 07120 Palma de Mallorca, Spain
| | - Benito Ramos Medina
- Oral and Maxillofacial Surgery Department, University Hospital Santa Lucía, 30202 Cartagena, Spain;
| | - Adaia Valls Ontañón
- Oral and Maxillofacial Surgery Department, Hospital Sant Joan de Déu, 08950 Barcelona, Spain;
| | - Jorge Masià Gridilla
- Oral and Maxillofacial Surgery Department, University Hospital Vall d’Hebron, 08035 Barcelona, Spain;
| | - Alicia Dean Ferrer
- Oral and Maxillofacial Surgery Department, Hospital Reina Sofía, 14004 Córdoba, Spain;
| |
Collapse
|
11
|
Min Z, Li Y, Xiong Y, Wang H, Jiang N. Specific tissue engineering for temporomandibular joint disc perforation. Cytotherapy 2024; 26:231-241. [PMID: 38099894 DOI: 10.1016/j.jcyt.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/28/2023] [Accepted: 11/15/2023] [Indexed: 02/26/2024]
Abstract
BACKGROUND The temporomandibular joint (TMJ) disc is a critical fibrocartilaginous structure with limited regenerative capacity in the oral system. Perforation of the TMJ disc can lead to osteoarthritis and ankylosis of the TMJ because of the lack of disc protection. Clinical treatments for TMJ disc perforation, such as discectomy, hyaluronic acid injection, endoscopic surgery and high position arthroplasty of TMJ, are questionable with regard to long-term outcomes, and only three fourths of TMJ disc perforations are repairable by surgery, even in the short-term. Tissue engineering offers the potential for cure of repairable TMJ disc perforations and regeneration of unrepairable ones. OBJECTIVES This review discusses the classification of TMJ disc perforation and defines typical TMJ disc perforation. Advancements in the engineering-based repair of TMJ disc perforation by stem cell therapy, construction of a disc-like scaffold and functionalization by offering bioactive stimuli are also summarized in the review, and the barriers developing engineering technologies need to overcome to be popularized are discussed.
Collapse
Affiliation(s)
- Ziyang Min
- West China School/Hospital of Stomatology, Chengdu, China
| | - Yibo Li
- West China School/Hospital of Stomatology, Chengdu, China
| | - Yichen Xiong
- West China School/Hospital of Stomatology, Chengdu, China
| | - Huayu Wang
- West China School/Hospital of Stomatology, Chengdu, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and West China Hospital of Stomatology, Chengdu, China.
| |
Collapse
|
12
|
Zhao Y, Li C, Hu S, Wang C, Bian X, Kang H, Zhou P, Bao G. In vitro differentiation of human induced pluripotent stem cells into temporomandibular joint disc like cells. Heliyon 2024; 10:e23937. [PMID: 38192844 PMCID: PMC10772246 DOI: 10.1016/j.heliyon.2023.e23937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
Temporomandibular joint discs (TMJ discs) are unable to repair themselves in disease states, while induced stem cell differentiation is a common method to repair tissue defects. Nowadays, kinds of stem cells are attempted for tissue regeneration of TMJ disc, but these methods have several downsides, which limit their wide application. The proliferation and differentiation ability of human induced pluripotent stem cells (hiPSC) provides a new research direction for TMJ disc tissue regeneration. In this study, we investigated the feasibility of induced differentiation of hiPSC into TMJ disc cells in vitro and the differentiation efficiency of different methods to clarify the possibility and conditions of hiPSC application in TMJ disc tissue engineering. We collected sheep TMJ disc cells cultures for adding in hiPSC culture environment and treated hiPSC by both direct induction and Transwell co-culture for 7 days, 14 days and 21 days. The secretion of extracellular matrix in TMJ disc cells was detected by Sirius Red and Safranin O staining. Collagen Ⅰ and Collagen Ⅱ were qualitatively detected by immunohistochemical staining. The expression of extracellular matrix genes (type I collagen (COL1A1), type II collagen(COL2), glycosaminoglycan (GAG)), chondrogenic differentiation gene SOX9 and pluripotency gene OCT4 were detected by RT-qPCR. Our results showed that hiPSC had the ability to differentiate to TMJ disc cells by direct induction in TMJ disc cell culture medium and by Transwell co-culture method. The highest degree of differentiation was observed after 14 days of direct induction, while Transwell co-culture showed significant differentiation at different times and with different major directions. Meanwhile, Transwell co-culture not only differentiates hiPSC but also promotes the growth and proliferation of TMJ disc cells. Our study is valuable to investigate the possibility of differentiation of hiPSC toward TMJ disc cells and to determine the time of differentiation. It provides new ideas for the selection of seed cells for TMJ disc tissue engineering.
Collapse
Affiliation(s)
- Yiqing Zhao
- School of Stomatology, Lanzhou University, No.199 Donggang West Road,Chengguan District, Lanzhou, 730000, China
| | - Ce Li
- School of Stomatology, Lanzhou University, No.199 Donggang West Road,Chengguan District, Lanzhou, 730000, China
| | - Siyang Hu
- School of Stomatology, Lanzhou University, No.199 Donggang West Road,Chengguan District, Lanzhou, 730000, China
| | - Chunya Wang
- School of Stomatology, Lanzhou University, No.199 Donggang West Road,Chengguan District, Lanzhou, 730000, China
| | - Xueru Bian
- School of Stomatology, Lanzhou University, No.199 Donggang West Road,Chengguan District, Lanzhou, 730000, China
| | - Hong Kang
- School of Stomatology, Lanzhou University, No.199 Donggang West Road,Chengguan District, Lanzhou, 730000, China
| | - Ping Zhou
- School of Stomatology, Lanzhou University, No.199 Donggang West Road,Chengguan District, Lanzhou, 730000, China
| | - Guangjie Bao
- Key Lab of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, No.1 Northwest Xin Cun, Chengguan District, Lanzhou, 7300030, China
| |
Collapse
|
13
|
Su Z, Tan P, Zhang J, Wang P, Zhu S, Jiang N. Understanding the Mechanics of the Temporomandibular Joint Osteochondral Interface from Micro- and Nanoscopic Perspectives. NANO LETTERS 2023; 23:11702-11709. [PMID: 38060440 DOI: 10.1021/acs.nanolett.3c03564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The condylar cartilage of the temporomandibular joint (TMJ) is connected to the subchondral bone by an osteochondral interface that transmits loads without causing fatigue damage. However, the microstructure, composition, and mechanical properties of this interface remain elusive. In this study, we found that structurally, a spatial gradient assembly of hydroxyapatite (HAP) particles exists in the osteochondral interface, with increasing volume of apatite crystals with depth and a tendency to form denser and stacked structures. Combined with nanoindentation, this complex assembly of nanoscale structures and components enhanced energy dissipation at the osteochondral interface, achieving a smooth stress transition between soft and hard tissues. This study comprehensively demonstrates the elemental composition and complex nanogradient spatial assembly of the osteochondral interface at the ultramicroscopic scale, providing a basis for exploring the construction of complex mechanical models of the interfacial region.
Collapse
Affiliation(s)
- Zhan Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peijie Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
14
|
Orieshyna A, Puetzer JL, Amdursky N. Proton Transport Across Collagen Fibrils and Scaffolds: The Role of Hydroxyproline. Biomacromolecules 2023; 24:4653-4662. [PMID: 37656903 DOI: 10.1021/acs.biomac.3c00326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Collagen is one of the most studied proteins due to its fundamental role in creating fibrillar structures and supporting tissues in our bodies. Accordingly, collagen is also one of the most used proteins for making tissue-engineered scaffolds for various types of tissues. To date, the high abundance of hydroxyproline (Hyp) within collagen is commonly ascribed to the structure and stability of collagen. Here, we hypothesize a new role for the presence of Hyp within collagen, which is to support proton transport (PT) across collagen fibrils. For this purpose, we explore here three different collagen-based hydrogels: the first is prepared by the self-assembly of natural collagen fibrils, and the second and third are based on covalently linking between collagen via either a self-coupling method or with an additional cross-linker. Following the formation of the hydrogel, we introduce here a two-step reaction, involving (1) attaching methanesulfonyl to the -OH group of Hyp, followed by (2) removing the methanesulfonyl, thus reverting Hyp to proline (Pro). We explore the PT efficiency at each step of the reaction using electrical measurements and show that adding the methanesulfonyl group vastly enhances PT, while reverting Hyp to Pro significantly reduces PT efficiency (compared with the initial point) with different efficiencies for the various collagen-based hydrogels. The role of Hyp in supporting the PT can assist in our understanding of the physiological roles of collagen. Furthermore, the capacity to modulate conductivity across collagen is very important to the use of collagen in regenerative medicine.
Collapse
Affiliation(s)
- Anna Orieshyna
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
15
|
Du Y, Chen M, Jiang J, Wang L, Wu G, Feng J. Hst1/Gel-MA Scaffold Significantly Promotes the Quality of Osteochondral Regeneration in the Temporomandibular Joint. J Funct Biomater 2023; 14:513. [PMID: 37888178 PMCID: PMC10607535 DOI: 10.3390/jfb14100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE Our aim was to evaluate the capacity of the human salivary histatin-1-functionalized methacrylic gelatin scaffold to control osteochondral tissue regeneration and repair in vivo in rabbits with major temporomandibular joint dimensional abnormalities. MATERIALS AND METHODS In order to compare human salivary histatin-1-functionalized methacrylic gelatin scaffolds to the Blank and Gel-MA hydrogel groups, scaffolds were implanted into osteochondral lesions of a critical size (3 × 3 mm) in the anterior region of the condyle of the temporomandibular joint in New Zealand white rabbits. At 4 weeks after implantation, the repair was evaluated using macroscopic examination, histology, and micro-CT analysis. RESULTS In the comparison of the composite scaffold group with the Blank and Gel-MA groups, analysis of the healed tissue revealed an improved macroscopic appearance in the composite scaffold group. Regeneration was induced by host cell migration in the Hst1/Gel-MA scaffold group. CONCLUSIONS The current study offers a viable method for in vivo cartilage repair that does not require cell transplantation. Future clinical applications of this strategy's optimization have many potential advantages.
Collapse
Affiliation(s)
- Yiyang Du
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.D.); (M.C.); (J.J.)
| | - Menghan Chen
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.D.); (M.C.); (J.J.)
| | - Jing Jiang
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.D.); (M.C.); (J.J.)
| | - Lei Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), 1081 LA Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science, 1081 LA Amsterdam, The Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), 1081 LA Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science, 1081 LA Amsterdam, The Netherlands
| | - Jianying Feng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.D.); (M.C.); (J.J.)
| |
Collapse
|
16
|
Zhang D, Zhang Y, Xia S, Chen L, Xu W, Huo L, Huang D, Shen P, Yang C. Single-cell RNA sequencing reveals neurovascular-osteochondral network crosstalk during temporomandibular joint osteoarthritis: Pilot study in a human condylar cartilage. Heliyon 2023; 9:e20749. [PMID: 37867837 PMCID: PMC10589861 DOI: 10.1016/j.heliyon.2023.e20749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Temporomandibular joint osteoarthritis (TMJ-OA) is one of the most complex temporomandibular disorders, causing pain and dysfunction. The main pathological feature of TMJ-OA is neurovascular invasion from the subchondral bone to the condylar cartilage. This study aimed to discover the cells and genes that play an important role in the neurovascular-osteochondral network crosstalk in human TMJ-OA. Materials and methods Condylar cartilages from patient with TMJ-OA were divided into OA group, and others from patients with benign condylar hyperplasia (CH) were used as control for further single-cell RNA-sequencing (scRNA-seq). Hematoxylin and eosin staining were performed. The cells and genes in the condylar cartilage were identified and analyzed by scRNA-seq. Results Histological analysis revealed blood vessel invasion and ossification in the TMJ-OA condylar cartilage. The scRNA-seq identified immune cells, endothelial cells, and chondrocytes in the TMJ-OA condylar cartilage. Macrophages, especially M1-like macrophages, contributed to the inflammation, angiogenesis, and innervation. CD31+ endothelial cells contributed to the bone mineralization. The TMJ-OA cartilage chondrocytes highly expressed genes related to inflammation, angiogenesis, innervation, and ossification. The hub genes contributing to these processes in the TMJ-OA chondrocytes included CTGF, FBN1, FN1, EGFR, and ITGA5. Conclusion Our study marks the first time scRNA-seq was used to identify the cells and genes in a human TMJ-OA condylar cartilage, and neurovascular-osteochondral network crosstalk during the human TMJ-OA process was demonstrated. Targeting the crosstalk of these processes may be a potential comprehensive and effective therapeutic strategy for human TMJ-OA.
Collapse
Affiliation(s)
| | | | - Simo Xia
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| | - Lu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| | - Weifeng Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| | - Liang Huo
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| | - Dong Huang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| | - Pei Shen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, PR China
| |
Collapse
|
17
|
Zhou J, Ren R, Li Z, Zhu S, Jiang N. Temporomandibular joint osteoarthritis: A review of animal models induced by surgical interventions. Oral Dis 2023; 29:2521-2528. [PMID: 35615772 DOI: 10.1111/odi.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The pathological mechanism of temporomandibular joint osteoarthritis (TMJOA) is still unclear. Animal models induced by surgical interventions are one of the most ideal tools to imitate human pathological conditions. This review aims to define the similarities and differences of different surgical animal models. METHODS Articles of TMJOA surgical animal models were collected including anterior disc displacement, disc perforation, and discectomy. We analyzed their experiments strategies based on comparing preoperative selection, intraoperative methodology, and postoperative manifestations. RESULTS No matter which surgical intervention is selected, abnormal stress forces the whole joint to remodel its structure so that it could adapt to functional requirements, resulting in TMJOA eventually. However, anterior disc displacement needs more than 16 weeks to obtain typical manifestations, where the methodology is complicated. The course of perforation and discectomy is around 12-16 weeks, but they could cause excessive damage to the TMJ structure. CONCLUSIONS All surgical interventions can cause TMJOA, but the extent of pathology varies from each other. This review will assist future experiments to better understand the pathogenesis of TMJOA and choose the most appropriate model.
Collapse
Affiliation(s)
- Jiahao Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong Ren
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Atia GA, Shalaby HK, Roomi AB, Ghobashy MM, Attia HA, Mohamed SZ, Abdeen A, Abdo M, Fericean L, Bănățean Dunea I, Atwa AM, Hasan T, Mady W, Abdelkader A, Ali SA, Habotta OA, Azouz RA, Malhat F, Shukry M, Foda T, Dinu S. Macro, Micro, and Nano-Inspired Bioactive Polymeric Biomaterials in Therapeutic, and Regenerative Orofacial Applications. Drug Des Devel Ther 2023; 17:2985-3021. [PMID: 37789970 PMCID: PMC10543943 DOI: 10.2147/dddt.s419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/12/2023] [Indexed: 10/05/2023] Open
Abstract
Introducing dental polymers has accelerated biotechnological research, advancing tissue engineering, biomaterials development, and drug delivery. Polymers have been utilized effectively in dentistry to build dentures and orthodontic equipment and are key components in the composition of numerous restorative materials. Furthermore, dental polymers have the potential to be employed for medication administration and tissue regeneration. To analyze the influence of polymer-based investigations on practical medical trials, it is required to evaluate the research undertaken in this sector. The present review aims to gather evidence on polymer applications in dental, oral, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, Egypt
| | - Ali B Roomi
- Department of Quality Assurance, University of Thi-Qar, Thi-Qar, Iraq
- Department of Medical Laboratory, College of Health and Medical Technology, National University of Science and Technology, Thi-Qar, Iraq
| | - Mohamed M Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Hager A Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sara Z Mohamed
- Department of Removable Prosthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ioan Bănățean Dunea
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Tabinda Hasan
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wessam Mady
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Susan A Ali
- Department of Radiodiagnosis, Faculty of Medicine, Ain Shams University, Abbassia, 1181, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab A Azouz
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Farag Malhat
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
| |
Collapse
|
19
|
Wu L, Liu Z, Xiao L, Ai M, Cao Y, Mao J, Song K. The Role of Gli1 + Mesenchymal Stem Cells in Osteogenesis of Craniofacial Bone. Biomolecules 2023; 13:1351. [PMID: 37759749 PMCID: PMC10526808 DOI: 10.3390/biom13091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma-associated oncogene homolog 1 (Gli1) is a transcriptional activator of hedgehog (Hh) signaling that regulates target gene expression and several cellular biological processes. Cell lineage tracing techniques have highlighted Gli1 as an ideal marker for mesenchymal stem cells (MSCs) in vivo. Gli1+ MSCs are critical for the osteogenesis of the craniofacial bone; however, the regulatory mechanism by which Gli1+ MSCs mediate the bone development and tissue regeneration of craniofacial bone has not been systematically outlined. This review comprehensively elucidates the specific roles of Gli1+ MSCs in craniofacial bone osteogenesis. In addition to governing craniofacial bone development, Gli1+ MSCs are associated with the tissue repair of craniofacial bone under pathological conditions. Gli1+ MSCs promote intramembranous and endochondral ossification of the craniofacial bones, and assist the osteogenesis of the craniofacial bone by improving angiopoiesis. This review summarizes the novel role of Gli1+ MSCs in bone development and tissue repair in craniofacial bones, which offers new insights into bone regeneration therapy.
Collapse
Affiliation(s)
- Laidi Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Zhixin Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Li Xiao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Mi Ai
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regen-Eration, Wuhan 430022, China
| |
Collapse
|
20
|
Shi W, Gao Y, Wu Y, Tang Y, Bian L, Que Y, Lv L, Xu B, Tang H, Lu X, Wang Q. Human nasal mucosa ectomesenchymal stem cells derived extracellular vesicles loaded omentum/chitosan composite scaffolds enhance skull defects regeneration. Int J Biol Macromol 2023; 248:125924. [PMID: 37481184 DOI: 10.1016/j.ijbiomac.2023.125924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Engineered bone tissue that can promote osteogenic differentiation is considered an ideal substitute for materials to heal bone defects. Extracellular vesicle (EV)-based cell-free regenerative therapies represent an emerging promising alternative for bone tissue engineering. We hypothesized that EVs derived from human nasal mucosa-derived ectomesenchymal stem cells (hEMSCs) can promote bone tissue regeneration. Herein, hEMSCs were cultured with osteogenic induction medium or normal medium to generate two types of EVs. We first demonstrated that the two EVs exhibited strong potential to promote rat suture mesenchymal stem cell (SMSC) osteogenesis by transferring TG2 to SMSCs and regulating extracellular matrix (ECM) synthesis. Next, we developed a composite hydrogel made of porcine omentum and chitosan into which EVs were adsorbed to enable the effective delivery of EVs with sustained release kinetics. Implantation of the EV-loaded hydrogels in a critical-size rat cranial defect model significantly promoted bone regeneration. Therefore, we suggest that our hEMSC-derived EV-loading system can serve as a new therapeutic paradigm for promoting bone tissue regeneration in the clinic.
Collapse
Affiliation(s)
- Wentao Shi
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Central laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu Province 211300, PR China.
| | - Yan Gao
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Yiqing Wu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Yushi Tang
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China
| | - Lu Bian
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Central laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu Province 211300, PR China
| | - Yunduan Que
- Central laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu Province 211300, PR China
| | - Long Lv
- Central laboratory, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu Province 211300, PR China
| | - Bai Xu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Hong Tang
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province 214122, PR China
| | - Xiaojie Lu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province 214122, PR China.
| | - Qing Wang
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu Province 214122, PR China; Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
21
|
Jiang N, Su Z, Sun Y, Ren R, Zhou J, Bi R, Zhu S. Spatial Heterogeneity Directs Energy Dissipation in Condylar Fibrocartilage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301051. [PMID: 37156747 DOI: 10.1002/smll.202301051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Condylar fibrocartilage with structural and compositional heterogeneity can efficiently orchestrate load-bearing and energy dissipation, making the temporomandibular joint (TMJ) survive high occlusion loads for a prolonged lifetime. How the thin condylar fibrocartilage can achieve efficient energy dissipation to cushion enormous stresses remains an open question in biology and tissue engineering. Here, three distinct zones in the condylar fibrocartilage are identified by analyzing the components and structure from the macro-and microscale to the nanoscale. Specific proteins are highly expressed in each zone related to its mechanics. The heterogeneity of condylar fibrocartilage can direct energy dissipation through the nano-micron-macro gradient spatial scale, by atomic force microscope (AFM), nanoindentation, dynamic mechanical analyzer assay (DMA), and the corresponding energy dissipation mechanisms are exclusive for each distinct zone. This study reveals the significance of the heterogeneity of condylar fibrocartilage in mechanical behavior and provides new insights into the research methods for cartilage biomechanics and the design of energy-dissipative materials.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhan Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yixin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rong Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahao Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
22
|
Xiong X, Gao X, Zhong J, Hu S, Li Y, Zheng Y, Liu Y. Bibliometric Analysis of Research on Temporomandibular Joint and Occlusion from 2000 to 2022. J Pain Res 2023; 16:2847-2860. [PMID: 37605745 PMCID: PMC10440111 DOI: 10.2147/jpr.s418362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Purpose This study conducted a bibliometric analysis that comprehensively described publications on temporomandibular joint and occlusion from 1 January 2000 to 31 October 2022, aiming to reveal hotspots and predict future research trends. Methods A total of 2985 articles and reviews were retrieved from Web of Science Core Collection (WoSCC). Excel 2019, VOSviewer and CiteSpace software were used for visualizing analysis of research trends, authors, journals, institutions, countries, keywords and cited references. Results Both the annual publication counts and citation times increased significantly. Wang MQ was the most active author. Moreover, Manfredini D and Okeson JP were the most influential two. Journal of Oral Rehabilitation was the core journal. University of Sao Paulo was the most productive institutions. "Temporomandibular disorders" (TMDs), "temporomandibular joint" and "occlusion" were the top 3 keywords with the most frequencies. Keywords and references with burst showed that the causes of TMDs, diagnosis and treatments for TMDs as well as bruxism may be hotspots currently and in the future. Conclusion In this study, the research trends, the most productive and influential authors, journals, institutions, countries, in addition to keywords and cited references with burst in the field of temporomandibular joint and occlusion were revealed by a bibliometric analysis, which could help scholars to understand recent hotspots and future trends.
Collapse
Affiliation(s)
- Xin Xiong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xinlin Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Jiawei Zhong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Shoushan Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yijun Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yunhao Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
23
|
Chen K, Zhang Z, Jiang J, Wang J, Wang J, Sun Y, Xu X, Guo C. Prediction of condylar movement envelope surface based on facial morphology. Heliyon 2023; 9:e17769. [PMID: 37483714 PMCID: PMC10362184 DOI: 10.1016/j.heliyon.2023.e17769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
The present study aimed to predict the envelope surfaces from facial morphology. Condylar envelope surfaces for 34 healthy adults were formed and simplified as sagittal section curves. Cephalometric and maximum mandibular moving distances measurement were performed on the participants. There was no statistically significant difference (p = 0.763) between the left and right maximum lateral movements. There was a statistically significant difference in the mandibular body length between the sexes. The envelope surfaces were divided into type 1 with Hp2 ≥ 1/3 Hp1 and type 2 with Hp2 < 1/3 × Hp1. SNA and SNB for type 2 were significantly greater than those for type 1 (p < 0.001). Therefore, the participants were divided into four groups based on gender and envelope surface morphology. The curves could be fitted using the second-order Fourier function (R-square ≥0.95). Six facial parameters were selected and a matrix was used to map facial morphology to the envelope surface. Individual sagittal curves were predicted using the matrix and facial parameters, and the envelope surface was predicted using the curve and the condyle model. Deviation analysis for the predicted envelope surface using the actual envelope as a reference was carried out (root mean square = 0.9970 mm ± 0.2918 mm). This method may lay a foundation for the geometric design of artificial fossa components of temporomandibular joint replacement systems. It may improve prosthesis design without flexible tissue repair and guide the movement of the artificial joint head.
Collapse
Affiliation(s)
- Kenan Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Zhehao Zhang
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, PR China
| | - Junqi Jiang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Junlin Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Jing Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Yuchun Sun
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory for Dental Materials, Beijing, PR China
| | - Xiangliang Xu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, PR China
| |
Collapse
|
24
|
Olate S, Ravelo V, Huentequeo C, Parra M, Unibazo A. An Overview of Clinical Conditions and a Systematic Review of Personalized TMJ Replacement. J Pers Med 2023; 13:533. [PMID: 36983715 PMCID: PMC10053320 DOI: 10.3390/jpm13030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
The temporomandibular joint (TMJ) is a complex structure in the cranio-maxillomandibular region. The pathological changes of the joint cause deficiencies at different levels, making its replacement necessary in some cases. The aim of this article is to analyze the current indications, treatment and criteria, and follow-up using a systematic review and case series. A systematic review was carried out, identifying the indications for the use of a customized TMJ prosthesis and evaluating criteria and validation in the international literature. After review and exclusion, 8 articles were included with a minimum follow-up of 12 months. The age of the subjects was between 18 and 47 years old. In 226 patients, 310 TMJ prostheses were installed, 168 bilaterally and 142 unilaterally. In most of the articles, a good condition in the follow-up was observed, with a reduction in pain and better conditions of mandibular movement and function. TMJ prosthesis and replacement is a protocolized, defined, stable, and predictable procedure. Indications and criteria must be evaluated by specialists and patients related to the pathology involved in TMJ deformity or degeneration. Randomized research with an accurate diagnosis and follow-up is necessary to obtain the best indication for this treatment.
Collapse
Affiliation(s)
- Sergio Olate
- Division of Oral and Maxillofacial Surgery, Hospital A.G.P., Lautaro 4811230, Chile
- Center for Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco 4811230, Chile
- Division of Oral, Facial and Maxillofacial Surgery, Universidad de La Frontera, Temuco 4811230, Chile
| | - Víctor Ravelo
- Center for Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudio Huentequeo
- Division of Oral and Maxillofacial Surgery, Hospital A.G.P., Lautaro 4811230, Chile
| | - Marcelo Parra
- Center for Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco 4811230, Chile
- Division of Oral, Facial and Maxillofacial Surgery, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro Unibazo
- Division of Oral and Maxillofacial Surgery, Hospital A.G.P., Lautaro 4811230, Chile
| |
Collapse
|
25
|
Arthroscopic Disk Repositioning After Failed Open Disk Repositioning. J Craniofac Surg 2023; 34:e129-e134. [PMID: 35949030 DOI: 10.1097/scs.0000000000008867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 10/15/2022] Open
Abstract
PURPOSE Open disk repositioning has been long achieving excellent functional and stability outcomes. However, still remains some relapses for whom a second open surgery is often challenging. This study aimed to evaluate the effectiveness of arthroscopic disk reposition as an alternative surgery for unsuccessful cases of anterior disk displacement (ADD) after an initial open disk repositioning. MATERIALS AND METHODS This retrospective study included all patients who underwent secondary arthroscopy for disk repositioning of the relapsed ADD after an initial open surgery between January 2012 to June 2017. The redo arthroscopic disk repositioning and suturing procedure was the primary predictor input variable in this study. Outcome evaluation was based on both clinical (visual analog scale and maximal interincisal opening) and magnetic resonance imaging data. RESULTS Twenty-seven joints fulfilling the inclusion criteria were included. A significant improvement was detected at 24-month postoperatively compared with the baseline visual analog scale. The maximal interincisal opening showed a statistical improvement from 25.07 mm preoperatively to 38.44 mm at 24-month postoperatively. Twenty-six joints maintained a stable disk position with only 1 joint relapsed to ADD without reduction. CONCLUSION Arthroscopic disk reposition and suturing technique is a reliable and effective repeat surgery after failed initial open disk repositioning for management of ADD.
Collapse
|
26
|
Wang D, Qi Y, Wang Z, Guo A, Xu Y, Zhang Y. Recent Advances in Animal Models, Diagnosis, and Treatment of Temporomandibular Joint Osteoarthritis. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:62-77. [PMID: 35994388 DOI: 10.1089/ten.teb.2022.0065] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a gradual degenerative jaw joint condition. Until recent years, TMJOA is still relatively unrecognized and ineffective to be treated. Appropriate animal models with reliable detection methods can help researchers understand the pathophysiology of TMJOA and find therapeutic options. In this study, we summarized common animal models of TMJOA created by chemical, surgical, mechanical, and genetical approaches. The relevant pathological symptoms and induction mechanisms were outlined. In addition, different pathological indicators, furthermore, emerging therapeutic regimens, such as intra-articular drug delivery and tissue engineering-based approaches to treat TMJOA based on these animal models, were summarized and updated. Understanding the physiology and pathogenesis of the TMJOA, together using various ways to diagnose the TMJOA, were elaborated, including imaging techniques, molecular techniques for detecting inflammatory cytokines, histochemical staining, and histomorphometry measures. A more reliable diagnosis will enable the development of new prevention and more effective treatment strategies and thereby improve the quality of life of TMJOA patients. Impact statement Temporomandibular joint osteoarthritis (TMJOA) affects 8 to 16 percent of the population worldwide. However, TMJOA is still relatively unrecognized and ineffective to be treated in the clinic. Appropriate animal models with reliable diagnostic methods can help researchers understand the pathophysiology of TMJOA and find therapeutic options. We herein summarized common animal models of TMJOA and various ways to diagnose the TMJOA. More importantly, emerging therapeutic regimens to treat TMJOA based on these animal models were summarized. With the aid of strategies listed, more effective treatment strategies will be developed and thereby improve the life quality of TMJOA patients.
Collapse
Affiliation(s)
- Dongyun Wang
- Stomatological Center of Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, China
| | - Yajie Qi
- Stomatological Center of Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, China.,Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Zhubing Wang
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, China
| | - Anyun Guo
- Department of Joint Surgery, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Yingxin Xu
- Stomatological Center of Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, China
| | - Yang Zhang
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
27
|
Mélou C, Pellen-Mussi P, Jeanne S, Novella A, Tricot-Doleux S, Chauvel-Lebret D. Osteoarthritis of the Temporomandibular Joint: A Narrative Overview. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010008. [PMID: 36676632 PMCID: PMC9866170 DOI: 10.3390/medicina59010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Background and Objectives: This study reviewed the literature to summarize the current and recent knowledge of temporomandibular joint osteoarthritis (TMJOA). Methods: Through a literature review, this work summarizes many concepts related to TMJOA. Results: Although many signaling pathways have been investigated, the etiopathogenesis of TMJOA remains unclear. Some clinical signs are suggestive of TMJOA; however, diagnosis is mainly based on radiological findings. Treatment options include noninvasive, minimally invasive, and surgical techniques. Several study models have been used in TMJOA studies because there is no gold standard model. Conclusion: More research is needed to develop curative treatments for TMJOA, which could be tested with reliable in vitro models, and to explore tissue engineering to regenerate damaged temporomandibular joints.
Collapse
Affiliation(s)
- Caroline Mélou
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Pascal Pellen-Mussi
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Jeanne
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Agnès Novella
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Tricot-Doleux
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Dominique Chauvel-Lebret
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
- Correspondence: ; Tel.: +33-2-23-23-43-64; Fax: +33-2-23-23-43-93
| |
Collapse
|
28
|
Ma Z, Wang Y, Xue Y, Zhang W, Li D, Li Y, Li G, Zhou H, Hu X, Deng T, Hu K. Traumatic temporomandibular joint bony ankylosis in growing rats. BMC Oral Health 2022; 22:585. [PMID: 36494653 PMCID: PMC9733295 DOI: 10.1186/s12903-022-02560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The pathogenesis of traumatic temporomandibular joint (TMJ) bony ankylosis remains unknown. This study aimed to explore the pathogenesis of traumatic TMJ bony ankylosis in a rat model. METHODS Twenty-four 3-week-old male Sprague-Dawley rats were used in this study. Excision of the whole disc, the fibrocartilage damage of the condyle and glenoid fossa, and narrowed joint space were performed in the left TMJ of the operation group to induce TMJ bony ankylosis (experimental side). The right TMJ underwent a sham operation (sham side). The control group did not undergo any operations. At 1, 4, and 8 weeks postoperatively, rats of the operation group were sacrificed and TMJ complexes were evaluated by gross observation, Micro-CT, histological examinations, and immunofluorescence microscopy. Total RNA of TMJ complexes in the operation group were analyzed using RNA-seq. RESULTS Gross observations revealed TMJ bony ankylosis on the experimental side. Micro-CT analysis demonstrated that compared to the sham side, the experimental side showed a larger volume of growth, and a considerable calcified bone callus formation in the narrowed joint space and on the rougher articular surfaces. Histological examinations indicated that endochondral ossification was observed on the experimental side, but not on the sham side. RNA-seq analysis and immunofluorescence revealed that Matrix metallopeptidase 13 (MMP13) and Runt-related transcription factor 2 (RUNX2) genes of endochondral ossification were significantly more downregulated on the experimental side than on the sham side. The primary pathways related to endochondral ossification were Parathyroid hormone synthesis, secretion and action, Relaxin signaling pathway, and IL-17 signaling pathway. CONCLUSIONS The present study provided an innovative and reliable rat model of TMJ bony ankylosis by compound trauma and narrowed joint space. Furthermore, we demonstrated the downregulation of MMP13 and RUNX2 in the process of endochondral ossification in TMJ bony ankylosis.
Collapse
Affiliation(s)
- Zhen Ma
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Yiming Wang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Yang Xue
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Wuyang Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Dengke Li
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Yuan Li
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Guowei Li
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Hongzhi Zhou
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Xiangxiang Hu
- grid.410711.20000 0001 1034 1720Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC 27514 USA
| | - Tiange Deng
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| | - Kaijin Hu
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology, National Clinical Research and Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases and Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi’an, 710032 China
| |
Collapse
|
29
|
Chandran Kana Veettil A, Mariyappa Shantha A, Timmasandra Ashwathappa D, Sailaja Choudary A, Lingaiah U. Assessment of thickness of roof of the glenoid fossa in dentate, edentulous, and partially edentulous subjects using cone beam computed tomography (CBCT) - a retrospective study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e279-e284. [PMID: 35545193 DOI: 10.1016/j.jormas.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Studies have inferred a direct association between Temporomandibular joint disorders (TMD) and the integrity of the structures associated with it such as the Glenoid fossa thereby necessitating the requirement to measure the thickness of this oft ignored entity. This study was carried out to assess the thickness of the glenoid fossa roof in dentulous, edentulous, and partially edentulous subjects using archival Cone beam computed tomography (CBCT) images. METHOD Analysis of CBCT data of 120 joints from 60 adult subjects without signs and symptoms of TMD was carried out. The scans were grouped based on the dental status as dentulous, edentulous, and partially edentulous and additionally into two sets as those below and above 40 years of age. The distance between the superior and inferior cortices of the glenoid fossa was measured indicating the thickness of the roof of the glenoid fossa in the coronal and sagittal planes, by three independent observers. Analysis of Variance (ANOVA) and Tukey's post hoc test were used to compare the association between the mean thickness of the glenoid fossa and the dentition status. A p ≤ 0.05 was considered to be significant. RESULTS There was no significant association between the mean thickness of the glenoid fossa and the dentition of the study participants of all three groups, when assessed by the three observers, except the mean thickness on the right side in the sagittal section as measured by one observer. A thicker fossa was observed in edentulous subjects when compared to dentulous participants, and the difference was statistically significant (p = 0.035). CONCLUSION The thickness of the roof of the glenoid fossa demonstrated no association with the dental status of the study participants and no age or sex related differences were noted.
Collapse
Affiliation(s)
| | | | | | | | - Upasana Lingaiah
- V S Dental College and Hospital, Rajiv Gandhi University of Health Sciences, Bangalore, India
| |
Collapse
|
30
|
Stem Cells in Temporomandibular Joint Engineering: State of Art and Future Persectives. J Craniofac Surg 2022; 33:2181-2187. [DOI: 10.1097/scs.0000000000008771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 01/15/2023] Open
|
31
|
Yang Y, Huang C, Zheng H, Meng Z, Heng BC, Zhou T, Jiang S, Wei Y. Superwettable and injectable GelMA-MSC microspheres promote cartilage repair in temporomandibular joints. Front Bioeng Biotechnol 2022; 10:1026911. [PMID: 36225601 PMCID: PMC9549523 DOI: 10.3389/fbioe.2022.1026911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Abstract
Temporomandibular disorders (TMD) can be treated by promoting cartilage regeneration with biomaterials. However, there are deficiencies in the infiltration function of bone filler biological materials. In this study, stems cells were loaded onto gelatin methacryloyl (GelMA) hydrogel microspheres endowed with superwettable properties and TGF-β sustained-release function, which can quickly infiltrate the irregular surface of the temporomandibular joint (TMJ) bone defect area and accelerate cartilage healing. First, to improve cell adhesion and spreading function, the BMSCs-coated GelMA microspheres were endowed with superwetting property. At the same time, the swelling adsorption characteristics of gelatin microspheres could be used to load recombinant TGF-β within the microspheres, which could in turn promote the chondrogenic differentiation of multi-potent bone marrow mesenchymal stem cells. The SEM imaging demonstrated that BMSCs-coated GelMA microsphere has superwettable and superhydrophilic property, which enabled rapid adaptation to the bone defect surface morphology, which is conducive to tissue repair. Furthermore, the cartilage defect model showed that rBMSCs-coated GelMA microspheres promote temporomandibular joint arthritis repair. In conclusion, our study established that BMSC-coated GelMA microspheres endowed with superwetting properties, can colonize the bone defect repair site better with sustained release of growth factors, thus providing an innovative strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Yue Yang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chenyan Huang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Huimin Zheng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhaoqiang Meng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon Chin Heng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tuanfeng Zhou
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shengjie Jiang
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Shengjie Jiang, ; Yan Wei,
| | - Yan Wei
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Shengjie Jiang, ; Yan Wei,
| |
Collapse
|
32
|
Zhao W, Yu Y, Zhang Z, He D, Zhang H. Bioinspired Nanospheres as Anti-inflammation and Antisenescence Interfacial Biolubricant for Treating Temporomandibular Joint Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35409-35422. [PMID: 35894784 DOI: 10.1021/acsami.2c09120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of temporomandibular joint (TMJ) osteoarthritis is highly associated with mechanical overloading, which can result in accelerated cartilage degradation and damage due to increased interfacial friction and the release of inflammatory factors and catabolic enzymes. In the present study, we for the first time developed self-assembled drug-free nanospheres with pharmaceutical-active functions, which could be used as an intra-articularly injected biolubricant for the treatment of TMJ osteoarthritis based on a synergistic therapy of enhanced lubrication, anti-inflammation, and antisenescence. The nanospheres possessed the hydrophobic core of dopamine methacrylamide and the hydrophilic shell of sulfobetaine methacrylate, which formed into spherical aggregates in aqueous solution by specific interactions following reversible addition-fragmentation chain transfer polymerization. The biodegradation test, tribological test, and free radical scavenging test showed that the nanospheres were endowed with physiological stability, lubrication enhancement, and free radical scavenging capability. In addition, the in vitro cell test revealed that the nanospheres alleviated inflammatory and senescent phenotype for inflammation and oxidative stress stimulated chondrocytes. Furthermore, the in vivo animal test indicated that the nanospheres, after intra-articular injection into TMJ with an osteoarthritis environment, effectively protected condylar cartilage and subchondral bone from structural damage and attenuated cartilage matrix degradation and aging. In summary, the self-assembled nanospheres might be used as a promising biolubricant for achieving anti-inflammatory and antisenescent treatment of TMJ osteoarthritis.
Collapse
Affiliation(s)
- Weiwei Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yeke Yu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Zhiyuan Zhang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Dongmei He
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Clinical Manifestations, Imaging Features, and Pathogenic/Prognostic Risk Factors for Temporomandibular Disorders (TMD): A Case-Control Study Based on Psychogenic Factors of Patients. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8279357. [PMID: 35924116 PMCID: PMC9343186 DOI: 10.1155/2022/8279357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Objective. To survey the clinical manifestations and imaging features of temporomandibular disorders (TMD) and analyze the risk factors for pathogenesis/prognosis through a case-control study based on psychogenic factors of patients. Methods. According to the inclusion criteria, 200 adult patients were randomly enrolled from the maxillofacial department of our hospital from January 2020 to May 2021, including 100 patients with TMD as the study group and 100 healthy patients as the control group. The study group can be assigned into four subgroups according to their clinical manifestations: (1) articular area or/and masticatory muscle pain group, (2) mandibular movement abnormality group, (3) joint murmur group, and (4) two or more symptom groups. Based on the study of psychogenic factors of patients, the clinical manifestations and imaging features of TMD were determined, and the risk factors for pathogenesis/prognosis were analyzed. Results. The distribution of psychological status in the TMD group was higher than that in the control group (
). The distribution of anxiety, depression, and somatic symptoms in the TMD group was significantly different from that in the control group (
). Anxiety, depression, and somatic symptoms were the risk factors for TMD. Compared with the control group, the incidence of abnormal MRI images in patients with temporomandibular disorders was significantly different (
). There were significant differences in psychological status (anxiety, depression, and somatic symptoms) among the three groups (
). Anxiety, depression, and somatic symptoms were the risk factors for abnormal mandibular movement and joint tremor and murmur (
). Somatic symptoms were the risk factors for various clinical symptoms of TMD (
). Depression was the risk factor for pain (
). Conclusion. In patients with TMD, MRI can early identify disc abnormalities and other related imaging features, which is helpful for more comprehensive clinical evaluation and treatment of TMD patients. There exhibits no significant difference in psychological status (anxiety, depression, and somatic symptoms) of patients with different clinical symptoms, and abnormal psychological status may be one of the risk factors leading to different clinical symptoms and development of different types of TMD patients.
Collapse
|
34
|
Deliogullari B, Ilhan‐Ayisigi E, Cakmak B, Saglam‐Metiner P, Kaya N, Coskun‐Akar G, Yesil‐Celiktas O. Synthesis of an injectable heparin conjugated poloxamer hydrogel with high elastic recoverability for temporomandibular joint disorders. J Appl Polym Sci 2022. [DOI: 10.1002/app.52736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Buse Deliogullari
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences Ege University Bornova Izmir Turkey
| | - Esra Ilhan‐Ayisigi
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
- Genetic and Bioengineering Department, Faculty of Engineering and Architecture Kirsehir Ahi Evran University Kirsehir Turkey
| | - Betul Cakmak
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
| | - Pelin Saglam‐Metiner
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
| | - Nusret Kaya
- Department of Materials Science and Engineering, Faculty of Engineering and Architecture Izmir Katip Celebi University Cigli Izmir Turkey
| | - Gulcan Coskun‐Akar
- Department of Prosthodontics, Faculty of Dentistry Ege University Izmir Turkey
| | - Ozlem Yesil‐Celiktas
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences Ege University Bornova Izmir Turkey
- Department of Bioengineering, Faculty of Engineering Ege University Izmir Turkey
| |
Collapse
|
35
|
Gan Z, Zhao Y, Wu Y, Yang W, Zhao Z, Zhao L. Three-dimensional, biomimetic electrospun scaffolds reinforced with carbon nanotubes for temporomandibular joint disc regeneration. Acta Biomater 2022; 147:221-234. [PMID: 35562008 DOI: 10.1016/j.actbio.2022.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023]
Abstract
Temporomandibular disorder (TMD) remained a huge clinical challenge, with high prevalence but limited, unstable, and only palliative therapeutic methods available. As one of the most vulnerable sites implicated in TMD, the temporomandibular joint disc (TMJD) displayed a complicated microstructure, region-specific fibrocartilaginous distribution, and poor regenerative property, which all further hindered its functional regeneration. To address the problem, with versatile and relatively simple electrospinning (ELS) technique, our study successfully fabricated a biomimetic, three-dimensional poly (ϵ-caprolactone) (PCL)/polylactide (PLA)/carbon nanotubes (CNTs) disc scaffold, whose biconcave gross anatomy and regionally anisotropic microstructure recapitulating those of the native disc. As in vitro results validated the superior mechanical, bioactive, and regenerative properties of the biomimetic scaffolds with optimal CNTs reinforcement, we further performed in vivo experiments. After verifying its biocompatibility and ectopic fibrochondrogenicity in nude mice subcutaneous implantation models, the scaffolds guided disc regeneration and subchondral bone protection were also confirmed orthotopically in rabbits TMJD defected areas, implying the pivotal role of morphological cues in contact-guided tissue regeneration. In conclusion, our work represents a significant advancement in complex, inhomogeneous tissue engineering, providing promising clinical solutions to intractable TMD ailments. STATEMENT OF SIGNIFICANCE: Complex tissue regeneration remains a huge scientific and clinical challenge. Although frequently implicated in temporomandibular joint disorder (TMD), functional regeneration of injured temporomandibular joint disc (TMJD) is extremely hard to achieve, mainly because of the complex anatomy and microstructure with regionally variant, anisotropic fiber alignments in the native disc. In this study, we developed the biomimetic electrospun scaffold with optimal CNTs reinforcement and regionally anisotropic fiber orientations. The excellent mechanical and bioactive properties were confirmed both in vitro and in vivo, effectively promoting defected discs regeneration in rabbits. Besides demonstrating the crucial role of morphological biomimicry in tissue engineering, our work also presents a feasible clinical solution for complex tissue regeneration.
Collapse
Affiliation(s)
- Ziqi Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, China; Department of Orthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Yifan Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, China.
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, China.
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
36
|
Wu CB, Ma T, Ma L, Wang Q, Zhou Q. Piezo1 Affects Temporomandibular Joint Osteoarthritis by Influencing pSmad3. Front Physiol 2022; 13:892089. [PMID: 35615665 PMCID: PMC9126307 DOI: 10.3389/fphys.2022.892089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of this research was to study the expression of Piezo1 in a rat temporomandibular joint osteoarthritis animal model and to explore its mechanism for inducing inflammatory changes. Methods: A total of 24male SD rats aged approximately 8 weeks were randomly divided into three groups: the blank control group, complete Freund's adjuvant group (CFA), and CFA + inhibitor (GsMTx4) group. After 3 weeks, the condylar heads of the rats were evaluated by micro-CT, HE, immunohistochemistry, safranin O staining, and other experimental techniques. Protein was extracted from the subchondral bone, and the changes in Piezo1, Smad3, and pSmad3 levels in each group were detected by Western blotting. p < 0.05 was considered to indicate statistical significance. Results: The degree of damage to the cartilage and subchondral bone in the Piezo1 inhibitor group was smaller than that in the CFA group. The expression level of Piezo1 in the CFA group was higher than that in the other groups, and the difference was statistically significant. The expression of pSmad3 in the CFA group was also higher than that in the other groups (p < 0.05). Conclusion: Piezo1 is expressed in the condylar cartilage and subchondral bone of rats, and the degree of condylar destruction can be improved by influencing the pSmad3 expression.
Collapse
Affiliation(s)
- Chuan-Bin Wu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Tie Ma
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lin Ma
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qing Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
37
|
Ogata K, Moriyama M, Matsumura-Kawashima M, Kawado T, Yano A, Nakamura S. The Therapeutic Potential of Secreted Factors from Dental Pulp Stem Cells for Various Diseases. Biomedicines 2022; 10:biomedicines10051049. [PMID: 35625786 PMCID: PMC9138802 DOI: 10.3390/biomedicines10051049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
An alternative source of mesenchymal stem cells has recently been discovered: dental pulp stem cells (DPSCs), including deciduous teeth, which can thus comprise potential tools for regenerative medicine. DPSCs derive from the neural crest and are normally implicated in dentin homeostasis. The clinical application of mesenchymal stem cells (MSCs) involving DPSCs contains various limitations, such as high cost, low safety, and cell handling issues, as well as invasive sample collection procedures. Although MSCs implantation offers favorable outcomes on specific diseases, implanted MSCs cannot survive for a long period. It is thus considered that their mediated mechanism of action involves paracrine effects. It has been recently reported that secreted molecules in DPSCs-conditioned media (DPSC-CM) contain various trophic factors and cytokines and that DPSC-CM are effective in models of various diseases. In the current study, we focus on the characteristics of DPSC-CM and their therapeutic potential against various disorders.
Collapse
|
38
|
A review of composition‐structure‐function properties and tissue engineering strategies of articular cartilage: compare condyle process and knee‐joint. ADVANCED ENGINEERING MATERIALS 2022. [DOI: 10.1002/adem.202200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
Mesenchymal Stem Cells Based Treatment in Dental Medicine: A Narrative Review. Int J Mol Sci 2022; 23:ijms23031662. [PMID: 35163584 PMCID: PMC8836082 DOI: 10.3390/ijms23031662] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Application of mesenchymal stem cells (MSC) in regenerative therapeutic procedures is becoming an increasingly important topic in medicine. Since the first isolation of dental tissue-derived MSC, there has been an intense investigation on the characteristics and potentials of these cells in regenerative dentistry. Their multidifferentiation potential, self-renewal capacity, and easy accessibility give them a key role in stem cell-based therapy. So far, several different dental stem cell types have been discovered and their potential usage is found in most of the major dental medicine branches. These cells are also researched in multiple fields of medicine for the treatment of degenerative and inflammatory diseases. In this review, we summarized dental MSC sources and analyzed their treatment modalities with particular emphasis on temporomandibular joint osteoarthritis (TMJ OA).
Collapse
|
40
|
Xu M, Zhang X, He Y. An updated view on Temporomandibular Joint degeneration: insights from the cell subsets of mandibular condylar cartilage. Stem Cells Dev 2022; 31:445-459. [PMID: 35044232 DOI: 10.1089/scd.2021.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The high prevalence of temporomandibular joint osteoarthritis (TMJOA), which causes joint dysfunction, indicates the need for more effective methods for treatment and repair. Mandibular condylar cartilage (MCC), a typical fibrocartilage that experiences degenerative changes during the development of TMJOA, has become a research focus and therapeutic target in recent years. MCC is composed of four zones of cells at various stages of differentiation. The cell subsets in MCC exhibit different physiological and pathological characteristics during development and in TMJOA. Most studies of TMJOA are mainly concerned with gene regulation of pathological changes. The corresponding treatment targets with specific cell subsets in MCC may provide more accurate and reliable results for cartilage repair and TMJOA treatment. In this review, we summarized the current research progress on the cell subsets of MCC from the perspective of MCC development and degeneration. We hope to provide a reference for further exploration of the pathological process of TMJOA and improvement of TMJOA treatment.
Collapse
Affiliation(s)
- Minglu Xu
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Xuyang Zhang
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Yao He
- Chongqing Medical University, 12550, Chongqing, China, 400016;
| |
Collapse
|
41
|
Yuan W, Wu Y, Zhou X, Zheng Y, Wang J, Liu J. Comparison and applicability of three induction methods of temporomandibular joint osteoarthritis in murine models. J Oral Rehabil 2021; 49:430-441. [PMID: 34936115 DOI: 10.1111/joor.13300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJ-OA) causes severe symptoms such as chewing difficulties, acute pain and even maxillofacial deformity. However, there is hardly any effective disease-curing strategy because of uncertainty in aetiology. Animal model is an excellent tool to investigate the mechanism, prevention and treatment on diseases. Currently, although several TMJ-OA animal models have been established, there are almost no comparative studies on different models, which poses a great challenge for selecting suitable models. OBJECTIVE To compare three TMJ-OA induction methods and assess their applicability considering pathological changes in the cartilage, subchondral bone, osteoclasts, and synovium. METHODS Murine models were employed and followed for 3 and 6 weeks after experimental procedures (surgery, injection, crossbite). The TMJ changes were evaluated by Safranin-O/Fast green staining, immunofluorescence staining, micro-CT, TRAP staining, and HE staining. RESULTS In the Surgery group, a pronounced drop in bone volume fraction was observed. In the Injection group, chondrocytes were mostly disordered or arranged in clusters and a substantial increase in the OARSI score and osteoclasts was found. The OARSI score and osteoclasts also increased significantly in the Crossbite group, although to a lower extent compared with injection. CONCLUSION Osteoarthritis-like changes were observed in all models. Concerning the applicability of the different induction methods, surgery might be an important resource for the assessment of post-traumatic TMJ-OA and subchondral bone changes in early stages. Injection induces a severe end-stage osteoarthritis in a short time and provides model basis for advanced TMJ-OA. Crossbite might be more reasonable model to explore the pathogenesis mechanism of temporomandibular arthritis due to occlusal disorders.
Collapse
Affiliation(s)
- Wenxiu Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yange Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xueman Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Liu
- Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Samiei M, Alipour M, Khezri K, Saadat YR, Forouhandeh H, Abdolahinia ED, Vahed SZ, Sharifi S, Dizaj SM. Application of collagen and mesenchymal stem cells in regenerative dentistry. Curr Stem Cell Res Ther 2021; 17:606-620. [PMID: 34931969 DOI: 10.2174/1574888x17666211220100521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Collagen is an important macromolecule of extracellular matrix (ECM) in bones, teeth, and temporomandibular joints. Mesenchymal stem cells (MSCs) interact with the components of the ECM such as collagen, proteoglycans, glycosaminoglycans (GAGs), and several proteins on behalf of variable matrix elasticity and bioactive cues. Synthetic collagen-based biomaterials could be effective scaffolds for regenerative dentistry applications due to mimicking of host tissues' ECM. These biomaterials are biocompatible, biodegradable, readily available, and non-toxic to cells whose capability promotes cellular response and wound healing in the craniofacial region. Collagen could incorporate other biomolecules to induce mineralization in calcified tissues such as bone and tooth. Moreover, the addition of these molecules or other polymers to collagen-based biomaterials could enhance mechanical properties, which is important in load-bearing areas such as the mandible. A literature review was performed via reliable internet database (mainly PubMed) based on MeSH keywords. This review first describes the properties of collagen as a key protein in the structure of hard tissues. Then, it introduces different types of collagens, the correlation between collagen and MSCs, and the methods used to modify collagen in regenerative dentistry including recent progression on the regeneration of periodontium, dentin-pulp complex, and temporomandibular joint by applying collagen. Besides, the prospects and challenges of collagen-based biomaterials in the craniofacial region pointes out.
Collapse
Affiliation(s)
- Mohammad Samiei
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Haleh Forouhandeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Chandler M, Johnson B, Khisamutdinov E, Dobrovolskaia MA, Sztuba-Solinska J, Salem AK, Breyne K, Chammas R, Walter NG, Contreras LM, Guo P, Afonin KA. The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): The Present and Future of the Burgeoning Field. ACS NANO 2021; 15:16957-16973. [PMID: 34677049 PMCID: PMC9023608 DOI: 10.1021/acsnano.0c10240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) hosts an annual meeting series focused on presenting the latest research achievements involving RNA-based therapeutics and strategies, aiming to expand their current biomedical applications while overcoming the remaining challenges of the burgeoning field of RNA nanotechnology. The most recent online meeting hosted a series of engaging talks and discussions from an international cohort of leading nanotechnologists that focused on RNA modifications and modulation, dynamic RNA structures, overcoming delivery limitations using a variety of innovative platforms and approaches, and addressing the newly explored potential for immunomodulation with programmable nucleic acid nanoparticles. In this Nano Focus, we summarize the main discussion points, conclusions, and future directions identified during this two-day webinar as well as more recent advances to highlight and to accelerate this exciting field.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47304, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Rouse Life Sciences Building, Auburn, Alabama 36849, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachussets 02114, United States
| | - Roger Chammas
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo - ICESP, Faculdade de Medicina da Universidade de São Paulo - FMUSP, Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering and Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
44
|
Han X, Wu Y, Shan Y, Zhang X, Liao J. Effect of Micro-/Nanoparticle Hybrid Hydrogel Platform on the Treatment of Articular Cartilage-Related Diseases. Gels 2021; 7:gels7040155. [PMID: 34698122 PMCID: PMC8544595 DOI: 10.3390/gels7040155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Joint diseases that mainly lead to articular cartilage injury with prolonged severe pain as well as dysfunction have remained unexplained for many years. One of the main reasons is that damaged articular cartilage is unable to repair and regenerate by itself. Furthermore, current therapy, including drug therapy and operative treatment, cannot solve the problem. Fortunately, the micro-/nanoparticle hybrid hydrogel platform provides a new strategy for the treatment of articular cartilage-related diseases, owing to its outstanding biocompatibility, high loading capability, and controlled release effect. The hybrid platform is effective for controlling symptoms of pain, inflammation and dysfunction, and cartilage repair and regeneration. In this review, we attempt to summarize recent studies on the latest development of micro-/nanoparticle hybrid hydrogel for the treatment of articular cartilage-related diseases. Furthermore, some prospects are proposed, aiming to improve the properties of the micro-/nanoparticle hybrid hydrogel platform so as to offer useful new ideas for the effective and accurate treatment of articular cartilage-related diseases.
Collapse
|
45
|
Jiang N, Yang Y, Zhu S. Response to Letter to the Editor, "3D-Printed Polycaprolactone Reinforced Hydrogel as an Artificial TMJ Disc". J Dent Res 2021; 100:1301. [PMID: 34469239 DOI: 10.1177/00220345211031446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- N Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - S Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Trindade D, Cordeiro R, José HC, Ângelo DF, Alves N, Moura C. Biological Treatments for Temporomandibular Joint Disc Disorders: Strategies in Tissue Engineering. Biomolecules 2021; 11:biom11070933. [PMID: 34201698 PMCID: PMC8301995 DOI: 10.3390/biom11070933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
The temporomandibular joint (TMJ) is an important structure for the masticatory system and the pathologies associated with it affect a large part of the population and impair people's lifestyle. It comprises an articular disc, that presents low regeneration capacities and the existing clinical options for repairing it are not effective. This way, it is imperative to achieve a permanent solution to guarantee a good quality of life for people who suffer from these pathologies. Complete knowledge of the unique characteristics of the disc will make it easier to achieve a successful tissue engineering (TE) construct. Thus, the search for an effective, safe and lasting solution has already started, including materials that replace the disc, is currently growing. The search for a solution based on TE approaches, which involve regenerating the disc. The present work revises the TMJ disc characteristics and its associated diseases. The different materials used for a total disc replacement are presented, highlighting the TE area. A special focus on future trends in the field and part of the solution for the TMJ problems described in this review will involve the development of a promising engineered disc approach through the use of decellularized extracellular matrices.
Collapse
Affiliation(s)
- Daniela Trindade
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (R.C.); (D.F.Â.)
| | - Rachel Cordeiro
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (R.C.); (D.F.Â.)
| | | | - David Faustino Ângelo
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (R.C.); (D.F.Â.)
- Instituto Português da Face, 1050-227 Lisboa, Portugal;
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (R.C.); (D.F.Â.)
- Correspondence: (N.A.); (C.M.); Tel.: +351-24-456-9441 (C.M.)
| | - Carla Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal; (D.T.); (R.C.); (D.F.Â.)
- Correspondence: (N.A.); (C.M.); Tel.: +351-24-456-9441 (C.M.)
| |
Collapse
|
47
|
Hassan MG, Zaher AR, Athanasiou AE. How orthodontic research can be enriched and advanced by the novel and promising evolutions in biomedicine. J Orthod 2021; 48:288-294. [PMID: 33860691 DOI: 10.1177/14653125211006116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent advances in developmental, molecular and cellular biology as well as biomedical technologies show a promising future for crossing the gap between biomedical basic sciences and clinical orthodontics. Orthodontic research shall utilise the advances and technologies in biomedical fields including genomics, molecular biology, bioinformatics and developmental biology. This review provides an update on the novel and promising evolutions in biomedicine and highlights their current and likely future implementation to orthodontic practice. Biotechnological opportunities in orthodontics and dentofacial orthopaedics are presented with regards to CRISPR technology, multi-omics sequencing, gene therapy, stem cells and regenerative medicine. Future orthodontic advances in terms of translational research are also discussed. Given the breadth of applications and the great number of questions that the presently available novel biomedical tools and techniques raise, their use may provide orthodontic research in the future with a great potential in understanding the aetiology of dentofacial deformities and malocclusions as well as in improving the practice of this clinical specialty.
Collapse
Affiliation(s)
- Mohamed G Hassan
- Department of Orthodontics, Faculty of Oral and Dental Medicine, South Valley University, Qena, Egypt
| | - Abbas R Zaher
- Department of Orthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Athanasios E Athanasiou
- Department of Dentistry, School of Medicine, European University Cyprus, Nicosia, Cyprus.,Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
48
|
Laird NZ, Acri TM, Chakka JL, Quarterman JC, Malkawi WI, Elangovan S, Salem AK. Applications of nanotechnology in 3D printed tissue engineering scaffolds. Eur J Pharm Biopharm 2021; 161:15-28. [PMID: 33549706 PMCID: PMC7969465 DOI: 10.1016/j.ejpb.2021.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Tissue engineering is an interdisciplinary field that aims to combine life sciences and engineering to create therapies that regenerate functional tissue. Early work in tissue engineering mostly used materials as inert scaffolding structures, but research has shown that constructing scaffolds from biologically active materials can help with regeneration by enabling cell-scaffold interactions or release of factors that aid in regeneration. Three-dimensional (3D) printing is a promising technique for the fabrication of structurally intricate and compositionally complex tissue engineering scaffolds. Such scaffolds can be functionalized with techniques developed by nanotechnology research to further enhance their ability to stimulate regeneration and interact with cells. Nanotechnological components, nanoscale textures, and microscale/nanoscale printing can all be incorporated into the manufacture of 3D printed scaffolds. This review discusses recent advancements in the merging of nanotechnology with 3D printed tissue engineering scaffolds, with a focus on applications of nanoscale components, nanoscale texture, and innovative printing techniques and the effects observed in vitro and in vivo.
Collapse
Affiliation(s)
- Noah Z Laird
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Timothy M Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Jaidev L Chakka
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Juliana C Quarterman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Walla I Malkawi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Satheesh Elangovan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA; Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA; Department of Chemical and Biochemical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
49
|
Wang H, Xu Y, Wang P, Ma J, Wang P, Han X, Fan Y, Bai D, Sun Y, Zhang X. Cell-mediated injectable blend hydrogel-BCP ceramic scaffold for in situ condylar osteochondral repair. Acta Biomater 2021; 123:364-378. [PMID: 33453407 DOI: 10.1016/j.actbio.2020.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
The existing approaches for healing mandibular condylar osteochondral defects, which are prevalent in temporomandibular joint disorders (TMD), are sparse and not reparative. To address this, regenerative medicine in situ has transpired as a potential therapeutic solution as it can effectively regenerate composite tissues. Herein, injectable self-crosslinking thiolated hyaluronic acid (HA-SH)/type I collagen (Col I) blend hydrogel and BCP ceramics combined with rabbit bone mesenchymal stem cells (rBMSCs)/chondrocytes were used to fabricate a new bi-layer scaffold to simulate specific structure of rabbit condylar osteochondral defects. The in vitro results demonstrated that the blend hydrogel scaffold provided suitable microenvironment for simultaneously realizing proliferation and chondrogenic specific matrix secretion of both rBMSCs and chondrocytes, while BCP ceramics facilitated rBMSCs proliferation and osteogenic differentiation. The in vivo results confirmed that compared with cell-free implant, the rBMSCs/chondrocytes-loaded bi-layer scaffold could effectively promote the regeneration of both fibrocartilage and subchondral bone, suggesting that the bi-layer scaffold presented a promising option for cell-mediated mandibular condylar cartilage regeneration.
Collapse
|
50
|
Teng B, Zhang S, Pan J, Zeng Z, Chen Y, Hei Y, Fu X, Li Q, Ma M, Sui Y, Wei S. A chondrogenesis induction system based on a functionalized hyaluronic acid hydrogel sequentially promoting hMSC proliferation, condensation, differentiation, and matrix deposition. Acta Biomater 2021; 122:145-159. [PMID: 33444801 DOI: 10.1016/j.actbio.2020.12.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Hydrogel scaffolds are widely used in cartilage tissue engineering as a natural stem cell niche. In particular, hydrogels based on multiple biological signals can guide behaviors of mesenchymal stem cells (MSCs) during neo-chondrogenesis. In the first phase of this study, we showed that functionalized hydrogels with grafted arginine-glycine-aspartate (RGD) peptides and lower degree of crosslinking can promote the proliferation of human mesenchymal stem cells (hMSCs) and upregulate the expression of cell receptor proteins. Moreover, grafted RGD and histidine-alanine-valine (HAV) peptides in hydrogel scaffolds can regulate the adhesion of the intercellular at an early stage. In the second phase, we confirmed that simultaneous use of HAV and RGD peptides led to greater chondrogenic differentiation compared to the blank control and single-peptide groups. Furthermore, the controlled release of kartogenin (KGN) can better facilitate cell chondrogenesis compared to other groups. Interestingly, with longer culture time, cell condensation was clearly observed in the groups with RGD and HAV peptide. In all groups with RGD peptide, significant matrix deposition was observed, accompanied by glycosaminoglycan (GAG) and collagen (Coll) production. Through in vitro and in vivo experiments, this study confirmed that our hydrogel system can sequentially promote the proliferation, adhesion, condensation, chondrogenic differentiation of hMSCs, by mimicking the cell microenvironment during neo-chondrogenesis.
Collapse
|