1
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hooman Fallahi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104 USA
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Maurice N. Collins
- School of Engineering, Bernal Institute and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 16635-148, Iran
| | - Hermann Seitz
- Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
2
|
Gudde A, van Velthoven MJJ, Türkel B, Kouwer PHJ, Roovers JPWR, Guler Z. Vaginal Fibroblast Behavior as a Function of Stiffness Changes in a Polyisocyanide Hydrogel for Prolapse Repair. ACS APPLIED BIO MATERIALS 2023; 6:3759-3767. [PMID: 37589427 PMCID: PMC10521013 DOI: 10.1021/acsabm.3c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
There is an urgent need for improved outcomes in the treatment of pelvic organ prolapse (POP). Success of primary surgery relies on the load bearing capacity of plicated connective tissue underneath the vaginal wall, which is compromised due to an altered vaginal fibroblast function and collagen composition. There is an important factor in connective tissue repair that relates to changes in stiffness of the vaginal fibroblast microenvironment, which influences cell activity through cellular mechanosensing. The aim of this study is to investigate the effect of stiffness changes on vaginal fibroblast functions that relate to connective tissue healing in prolapse repair. The substrate stiffness was controlled by changing the polymer concentration in the fibrous and strongly biomimetic polyisocyanide (PIC) hydrogel. We analyzed stiffness during cell culture and assessed the consequential fibroblast proliferation, morphology, collagen deposition, and contraction. Our results show that increasing stiffness coincides with vaginal fibroblast alignment, promotes collagen deposition, and inhibits PIC gel contraction. These findings suggest that the matrix stiffness directly influences vaginal fibroblast functionality. Moreover, we observed a buildup in stiffness and collagen, with an enhanced fibroblast and collagen organization on the PIC-substrate, which indicate an enhanced structural integrity of the hydrogel-cell construct. An improved tissue structure during healing is relevant in the functional repair of POP. Therefore, this study encourages future research in the use of PIC gels as a supplement in prolapse surgery, whereby the hydrogel stiffness should be considered.
Collapse
Affiliation(s)
- Aksel
N. Gudde
- Department
of Obstetrics and Gynecology, Amsterdam
University Medical Center−location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Reproductive
Biology Laboratory, Amsterdam Reproduction and Development, Amsterdam University Medical Center−location
AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Melissa J. J. van Velthoven
- Department
of Urology, Radboud Institute for Molecular
Life Sciences, Radboud University Medical Centre, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Betül Türkel
- Department
of Obstetrics and Gynecology, Amsterdam
University Medical Center−location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Reproductive
Biology Laboratory, Amsterdam Reproduction and Development, Amsterdam University Medical Center−location
AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan-Paul W. R. Roovers
- Department
of Obstetrics and Gynecology, Amsterdam
University Medical Center−location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Reproductive
Biology Laboratory, Amsterdam Reproduction and Development, Amsterdam University Medical Center−location
AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Zeliha Guler
- Department
of Obstetrics and Gynecology, Amsterdam
University Medical Center−location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Reproductive
Biology Laboratory, Amsterdam Reproduction and Development, Amsterdam University Medical Center−location
AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Mackay CDA, Jadli AS, Fedak PWM, Patel VB. Adventitial Fibroblasts in Aortic Aneurysm: Unraveling Pathogenic Contributions to Vascular Disease. Diagnostics (Basel) 2022; 12:diagnostics12040871. [PMID: 35453919 PMCID: PMC9025866 DOI: 10.3390/diagnostics12040871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
Aortic aneurysm (AA) is a degenerative vascular disease that involves aortic dilatation, and, if untreated, it can lead to rupture. Despite its significant impact on the healthcare system, its multifactorial nature and elusive pathophysiology contribute to limited therapeutic interventions that prevent the progression of AA. Thus, further research into the mechanisms underlying AA is paramount. Adventitial fibroblasts are one of the key constituents of the aortic wall, and they play an essential role in maintaining vessel structure and function. However, adventitial fibroblasts remain understudied when compared with endothelial cells and smooth muscle cells. Adventitial fibroblasts facilitate the production of extracellular matrix (ECM), providing structural integrity. However, during biomechanical stress and/or injury, adventitial fibroblasts can be activated into myofibroblasts, which move to the site of injury and secrete collagen and cytokines, thereby enhancing the inflammatory response. The overactivation or persistence of myofibroblasts has been shown to initiate pathological vascular remodeling. Therefore, understanding the underlying mechanisms involved in the activation of fibroblasts and in regulating myofibroblast activation may provide a potential therapeutic target to prevent or delay the progression of AA. This review discusses mechanistic insights into myofibroblast activation and associated vascular remodeling, thus illustrating the contribution of fibroblasts to the pathogenesis of AA.
Collapse
Affiliation(s)
- Cameron D. A. Mackay
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
| | - Anshul S. Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
| | - Paul W. M. Fedak
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Vaibhav B. Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
- Correspondence: or ; Tel.: +1-(403)-220-3446
| |
Collapse
|
4
|
Mubarok W, Elvitigala KCML, Nakahata M, Kojima M, Sakai S. Modulation of Cell-Cycle Progression by Hydrogen Peroxide-Mediated Cross-Linking and Degradation of Cell-Adhesive Hydrogels. Cells 2022; 11:cells11050881. [PMID: 35269503 PMCID: PMC8909037 DOI: 10.3390/cells11050881] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The cell cycle is known to be regulated by features such as the mechanical properties of the surrounding environment and interaction of cells with the adhering substrates. Here, we investigated the possibility of regulating cell-cycle progression of the cells on gelatin/hyaluronic acid composite hydrogels obtained through hydrogen peroxide (H2O2)-mediated cross-linking and degradation of the polymers by varying the exposure time to H2O2 contained in the air. The stiffness of the hydrogel varied with the exposure time. Human cervical cancer cells (HeLa) and mouse mammary gland epithelial cells (NMuMG) expressing cell-cycle reporter Fucci2 showed the exposure-time-dependent different cell-cycle progressions on the hydrogels. Although HeLa/Fucci2 cells cultured on the soft hydrogel (Young’s modulus: 0.20 and 0.40 kPa) obtained through 15 min and 120 min of the H2O2 exposure showed a G2/M-phase arrest, NMuMG cells showed a G1-phase arrest. Additionally, the cell-cycle progression of NMuMG cells was not only governed by the hydrogel stiffness, but also by the low-molecular-weight HA resulting from H2O2-mediated degradation. These results indicate that H2O2-mediated cross-linking and degradation of gelatin/hyaluronic acid composite hydrogel could be used to control the cell adhesion and cell-cycle progression.
Collapse
|
5
|
Bone Regeneration Using MMP-Cleavable Peptides-Based Hydrogels. Gels 2021; 7:gels7040199. [PMID: 34842679 PMCID: PMC8628702 DOI: 10.3390/gels7040199] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence has suggested the significant potential of chemically modified hydrogels in bone regeneration. Despite the progress of bioactive hydrogels with different materials, structures and loading cargoes, the desires from clinical applications have not been fully validated. Multiple biological behaviors are orchestrated precisely during the bone regeneration process, including bone marrow mesenchymal stem cells (BMSCs) recruitment, osteogenic differentiation, matrix calcification and well-organized remodeling. Since matrix metalloproteinases play critical roles in such bone metabolism processes as BMSC commitment, osteoblast survival, osteoclast activation matrix calcification and microstructure remodeling, matrix metalloproteinase (MMP) cleavable peptides-based hydrogels could respond to various MMP levels and, thus, accelerate bone regeneration. In this review, we focused on the MMP-cleavable peptides, polymers, functional modification and crosslinked reactions. Applications, perspectives and limitations of MMP-cleavable peptides-based hydrogels for bone regeneration were then discussed.
Collapse
|
6
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
7
|
Parisi C, Qin K, Fernandes FM. Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200344. [PMID: 34334019 DOI: 10.1098/rsta.2020.0344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
Seeding materials with living cells has been-and still is-one of the most promising approaches to reproduce the complexity and the functionality of living matter. The strategies to associate living cells with materials are limited to cell encapsulation and colonization, however, the requirements for these two approaches have been seldom discussed systematically. Here we propose a simple two-dimensional map based on materials' pore size and the cytocompatibility of their fabrication process to draw, for the first time, a guide to building cellularized materials. We believe this approach may serve as a straightforward guideline to design new, more relevant materials, able to seize the complexity and the function of biological materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
8
|
Mubarok W, Qu Y, Sakai S. Influence of Hydrogen Peroxide-Mediated Cross-Linking and Degradation on Cell-Adhesive Gelatin Hydrogels. ACS APPLIED BIO MATERIALS 2021; 4:4184-4190. [PMID: 35006831 DOI: 10.1021/acsabm.0c01675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydrogen peroxide (H2O2) is widely used for the gelation of aqueous solutions of gelatin derivatives with phenolic hydroxyl groups (Gelatin-Ph) catalyzed by horseradish peroxidase (HRP). Apart from this, H2O2 is known to cause degradation/depolymerization of various polymers. Here, we prepared Gelatin-Ph hydrogels from solutions containing Gelatin-Ph and HRP by continuously supplying H2O2 from the gas phase and investigated the mechanical properties of resultant hydrogels and the behaviors of rat fibroblast and human adipose-derived stem cells on them. Young's modulus of the hydrogel obtained from 5 w/v % Gelatin-Ph and 1 and 5 U/mL HRP increased when the exposure time to air containing H2O2 (16 ppm) was extended from 15 to 30 min. However, further prolonging the exposure time to 60 min reduced Young's modulus to the same magnitude as for the hydrogels exposed to air containing H2O2 for 15 min. Interestingly, the cell length and aspect ratio of the cells continued to increase, as the exposure time was extended, without reflecting the decrease in Young's modulus. These results indicate that when preparing Gelatin-Ph hydrogels through HRP/H2O2-mediated gelation, it is necessary to consider the effect of the degradation of Gelatin-Ph caused by H2O2 on the mechanical properties of the resultant hydrogels and the behaviors of cells on them.
Collapse
Affiliation(s)
- Wildan Mubarok
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Yanfei Qu
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
9
|
Thilagam R, Gnanamani A. Preparation, characterization and cell response studies on bioconjugated 3D protein hydrogels with wide-range stiffness: An approach on cell therapy and cell storage. Colloids Surf B Biointerfaces 2021; 205:111843. [PMID: 34022701 DOI: 10.1016/j.colsurfb.2021.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022]
Abstract
The present study emphasizes the preparation and characterization of bioconjugated keratin-gelatin (KG) 3D hydrogels with wide-range stiffness to study cell response for cell therapy and cell storage applications. In brief, human hair keratin and bovine gelatin at different ratios bioconjugated using EDC/NHS provide five hydrogels (KG-1, KG-2.5, KG -5, KG-7.5 and KG-9) with modulus ranging from 0.9 ± 0.1 to 10.9 ± 0.4 kPa. Based on swelling, stability, porosity, and degradation parameters KG-5 and KG-9 are employed to assess the human dermal fibroblast (HDF) cell response, cell delivery and cell storage respectively. Characterization studies revealed the concentration of keratin determines the modulus/stiffness of the hydrogels, whereas gelatin concentration plays a vital role in porosity, swelling percentage, and degradation properties. HDF cell behaviour in the chosen hydrogels assessed based on cell adhesion, cell proliferation, PCNA expression, MTT assay, and DNA quantification. We observed the best cell behaviour in KG-5 hydrogels than in the KG-9 matrix. In cell storage and cell delivery studies, the KG-9 matrix displayed promising results. Thus, the present study concludes bioconjugated keratin-gelatin 3D hydrogel with modulus below 3.0 kPa facilitates the proliferation of HDFs, whereas matrix above 10 kPa modulus supports cell storage and cell recovery. The observations of the present study suggest the suitability of bioconjugated fibrous protein 3D hydrogel for cell therapy and cell storage.
Collapse
Affiliation(s)
- R Thilagam
- Microbiology Division, CSIR-Central Leather Research Institute, Adyar, Chennai 20, Tamil Nadu, India
| | - A Gnanamani
- Microbiology Division, CSIR-Central Leather Research Institute, Adyar, Chennai 20, Tamil Nadu, India.
| |
Collapse
|
10
|
Scott RA, Fowler EW, Jia X, Kiick KL, Akins RE. Regulation of neovasculogenesis in co-cultures of aortic adventitial fibroblasts and microvascular endothelial cells by cell-cell interactions and TGF-β/ALK5 signaling. PLoS One 2020; 15:e0244243. [PMID: 33370415 PMCID: PMC7769260 DOI: 10.1371/journal.pone.0244243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
Adventitial fibroblasts (AFs) are critical mediators of vascular remodeling. However, the contributions of AFs towards development of vasculature and the specific mechanisms by which these cells regulate physiological expansion of the vasa vasorum, the specialized microvasculature that supplies nutrients to the vascular wall, are not well understood. To determine the regulatory role of AFs in microvascular endothelial cell (MVEC) neovasculogenesis and to investigate the regulatory pathways utilized for communication between the two cell types, AFs and MVECs were cultured together in poly(ethylene glycol)-based hydrogels. Following preliminary evaluation of a set of cell adhesion peptides (AG10, AG73, A2G78, YIGSR, RGD), 7.5wt% hydrogels containing 3 mM RGD were selected as these substrates did not initiate primitive tubule structures in 3D MVEC monocultures, thus providing a passive platform to study AF-MVEC interaction. The addition of AFs to hydrogels promoted MVEC viability; however, increasing AF density within hydrogels stimulated MVEC proliferation, increased microvessel density and size, and enhanced deposition of basement membrane proteins, collagen IV and laminin. Importantly, AF-MVEC communication through the transforming growth factor beta (TGF-β)/activin receptor-like kinase 5 (ALK5) signaling pathway was observed to mediate microvessel formation, as inhibition of ALK5 significantly decreased MVEC proliferation, microvessel formation, mural cell recruitment, and basement membrane production. These data indicate that AFs regulate MVEC neovasculogenesis and suggest that therapeutics targeting the TGF-β/ALK5 pathway may be useful for regulation of vasculogenic and anti-vasculogenic responses.
Collapse
Affiliation(s)
- Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
- Nemours—Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Robert E. Akins
- Nemours—Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| |
Collapse
|