1
|
Park S, Choi J, Ko N, Mondal S, Pal U, Lee BI, Oh J. Beta cyclodextrin conjugated AuFe 3O 4 Janus nanoparticles with enhanced chemo-photothermal therapy performance. Acta Biomater 2024; 182:213-227. [PMID: 38734286 DOI: 10.1016/j.actbio.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The strategic integration of multi-functionalities within a singular nanoplatform has received growing attention for enhancing treatment efficacy, particularly in chemo-photothermal therapy. This study introduces a comprehensive concept of Janus nanoparticles (JNPs) composed of Au and Fe3O4 nanostructures intricately bonded with β-cyclodextrins (β-CD) to encapsulate 5-Fluorouracil (5-FU) and Ibuprofen (IBU). This strategic structure is engineered to exploit the synergistic effects of chemo-photothermal therapy, underscored by their exceptional biocompatibility and photothermal conversion efficiency (∼32.88 %). Furthermore, these β-CD-conjugated JNPs enhance photodynamic therapy by generating singlet oxygen (1O2) species, offering a multi-modality approach to cancer eradication. Computer simulation results were in good agreement with in vitro and in vivo assays. Through these studies, we were able to prove the improved tumor ablation ability of the drug-loaded β-CD-conjugated JNPs, without inducing adverse effects in tumor-bearing nude mice. The findings underscore a formidable tumor ablation potency of β-CD-conjugated Au-Fe3O4 JNPs, heralding a new era in achieving nuanced, highly effective, and side-effect-free cancer treatment modalities. STATEMENT OF SIGNIFICANCE: The emergence of multifunctional nanoparticles marks a pivotal stride in cancer therapy research. This investigation unveils Janus nanoparticles (JNPs) amalgamating gold (Au), iron oxide (Fe3O4), and β-cyclodextrins (β-CD), encapsulating 5-Fluorouracil (5-FU) and Ibuprofen (IBU) for synergistic chemo-photothermal therapy. Demonstrating both biocompatibility and potent photothermal properties (∼32.88 %), these JNPs present a promising avenue for cancer treatment. Noteworthy is their heightened photodynamic efficiency and remarkable tumor ablation capabilities observed in vitro and in vivo, devoid of adverse effects. Furthermore, computational simulations validate their interactions with cancer cells, bolstering their utility as an emerging therapeutic modality. This endeavor pioneers a secure and efficacious strategy for cancer therapy, underscoring the significance of β-CD-conjugated Au-Fe3O4 JNPs as innovative nanoplatforms with profound implications for the advancement of cancer therapy.
Collapse
Affiliation(s)
- Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Namsuk Ko
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Umapada Pal
- Institute of Physics, Autonomous University of Puebla, Puebla 72570, Mexico
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea; Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea.
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea; Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Addison AP, McGinnis J, Ortiz-Guzman J, Tantry EK, Patel DM, Belfort BDW, Srivastava S, Romero JM, Arenkiel BR, Curry DJ. Molecular Neurosurgery: Introduction to Gene Therapy and Clinical Applications. JOURNAL OF PEDIATRIC EPILEPSY 2023. [DOI: 10.1055/s-0042-1760292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractTo date, more than 100 clinical trials have used sequence-based therapies to address diseases of the pediatric central nervous system. The first targeted pathologies share common features: the diseases are severe; they are due (mostly) to single variants; the variants are well characterized within the genome; and the interventions are technically feasible. Interventions range from intramuscular and intravenous injection to intrathecal and intraparenchymal infusions. Whether the therapeutic sequence consists of RNA or DNA, and whether the sequence is delivered via simple oligonucleotide, nanoparticle, or viral vector depends on the disease and the involved cell type(s) of the nervous system. While only one active trial targets an epilepsy disorder—Dravet syndrome—experiences with aromatic L-amino acid decarboxylase deficiency, spinal muscular atrophy, and others have taught us several lessons that will undoubtedly apply to the future of gene therapy for epilepsies. Epilepsies, with their diverse underlying mechanisms, will have unique aspects that may influence gene therapy strategies, such as targeting the epileptic zone or nodes in affected circuits, or alternatively finding ways to target nearly every neuron in the brain. This article focuses on the current state of gene therapy and includes its history and premise, the strategy and delivery vehicles most commonly used, and details viral vectors, current trials, and considerations for the future of pediatric intracranial gene therapy.
Collapse
Affiliation(s)
- Angela P. Addison
- Department of Surgery, Section of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - J.P. McGinnis
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States
| | - Joshua Ortiz-Guzman
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Evelyne K. Tantry
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Dhruv M. Patel
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of BioSciences, Rice University, Houston, Texas, United States
| | - Benjamin D. W. Belfort
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Snigdha Srivastava
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of BioSciences, Rice University, Houston, Texas, United States
| | - Benjamin R. Arenkiel
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
| | - Daniel J. Curry
- Department of Surgery, Section of Pediatric Neurosurgery, Texas Children's Hospital, Houston, Texas, United States
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
3
|
Habibi N, Bissonnette C, Pei P, Wang D, Chang A, Raymond JE, Lahann J, Mallery SR. Mucopenetrating Janus Nanoparticles For Field-Coverage Oral Cancer Chemoprevention. Pharm Res 2023; 40:749-764. [PMID: 36635487 PMCID: PMC10036282 DOI: 10.1007/s11095-022-03465-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/18/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Oral squamous cell carcinoma (OSCC), is associated with high morbidity and mortality. Preemptive interventions have been postulated to provide superior therapeutic options, but their implementation has been restricted by the availability of broadly applicable local delivery systems. METHODS We address this challenge by engineering a delivery vehicle, Janus nanoparticles (JNP), that combine the dual mucoadhesive properties of a first cationic chitosan compartment with a second hydrophobic poly(lactide-co-glycolide) release compartment. JNP are designed to avoid rapid mucus clearance while ensuring stable loading and controlled release of the IL-6 receptor antagonist, tocilizumab (TCZ). RESULTS The JNP featured defined and monodispersed sizes with an average diameter of 327 nm and a PDI of 0.245, high circularities above 0.90 and supported controlled release of TCZ and effective internalization by oral keratinocytes. TCZ released from JNP retained its biological activity and effectively reduced both, soluble and membrane-bound IL-6Rα (71% and 50%). In full-thickness oral mucosal explants, 76% of the JNP breached the stratum corneum and in 41% were observed in the basal cell layer indicating excellent mucopenetrating properties. When tested in an aggressive OSCC xenograft model, TCZ-loaded JNP showed high levels of xenograft inhibition and outperformed all control groups with respect to inhibition of tumor cell proliferation, reduction in tumor size and reduced expression of the proto-oncogene ERG. CONCLUSION By combining critically required, yet orthogonal properties within the same nanoparticle design, the JNP in this study, demonstrate promise as precision delivery platforms for intraoral field-coverage chemoprevention, a vastly under-researched area of high clinical importance.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | - Caroline Bissonnette
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA
- Department of Stomatology, Faculty of Dentistry, University of Montreal, Montreal, QC, Canada
| | - Ping Pei
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA
| | - Daren Wang
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA
| | - Albert Chang
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | - Jeffery E Raymond
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | - Joerg Lahann
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA.
| | - Susan R Mallery
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA.
- The Ohio State University Comprehensive Cancer, 460 W. 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Formulation attributes, acid tunable degradability and cellular interaction of acetalated maltodextrin nanoparticles. Carbohydr Polym 2022; 288:119378. [DOI: 10.1016/j.carbpol.2022.119378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 01/06/2023]
|
5
|
Alghamri MS, Banerjee K, Mujeeb AA, Mauser A, Taher A, Thalla R, McClellan BL, Varela ML, Stamatovic SM, Martinez-Revollar G, Andjelkovic AV, Gregory JV, Kadiyala P, Calinescu A, Jiménez JA, Apfelbaum AA, Lawlor ER, Carney S, Comba A, Faisal SM, Barissi M, Edwards MB, Appelman H, Sun Y, Gan J, Ackermann R, Schwendeman A, Candolfi M, Olin MR, Lahann J, Lowenstein PR, Castro MG. Systemic Delivery of an Adjuvant CXCR4-CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy. ACS NANO 2022; 16:8729-8750. [PMID: 35616289 PMCID: PMC9649873 DOI: 10.1021/acsnano.1c07492] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer, with a 5 year survival of ∼5%. Challenges that hamper GBM therapeutic efficacy include (i) tumor heterogeneity, (ii) treatment resistance, (iii) immunosuppressive tumor microenvironment (TME), and (iv) the blood-brain barrier (BBB). The C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling pathway is activated in GBM and is associated with tumor progression. Although the CXCR4 antagonist (AMD3100) has been proposed as an attractive anti-GBM therapeutic target, it has poor pharmacokinetic properties, and unfavorable bioavailability has hampered its clinical implementation. Thus, we developed synthetic protein nanoparticles (SPNPs) coated with the transcytotic peptide iRGD (AMD3100-SPNPs) to target the CXCL2/CXCR4 pathway in GBM via systemic delivery. We showed that AMD3100-SPNPs block CXCL12/CXCR4 signaling in three mouse and human GBM cell cultures in vitro and in a GBM mouse model in vivo. This results in (i) inhibition of GBM proliferation, (ii) reduced infiltration of CXCR4+ monocytic myeloid-derived suppressor cells (M-MDSCs) into the TME, (iii) restoration of BBB integrity, and (iv) induction of immunogenic cell death (ICD), sensitizing the tumor to radiotherapy and leading to anti-GBM immunity. Additionally, we showed that combining AMD3100-SPNPs with radiation led to long-term survival, with ∼60% of GBM tumor-bearing mice remaining tumor free after rechallenging with a second GBM in the contralateral hemisphere. This was due to a sustained anti-GBM immunological memory response that prevented tumor recurrence without additional treatment. In view of the potent ICD induction and reprogrammed tumor microenvironment, this SPNP-mediated strategy has a significant clinical translation applicability.
Collapse
Affiliation(s)
- Mahmoud S Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anzar A Mujeeb
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ava Mauser
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayman Taher
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rohit Thalla
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brandon L McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria L Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Svetlana M Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | | | - Anuska V Andjelkovic
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jason V Gregory
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexandra Calinescu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer A Jiménez
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - April A Apfelbaum
- Seattle Children’s Research Institute, University of Washington Seattle, WA, 98101
- Cancer Biology Ph.D. Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth R Lawlor
- Seattle Children’s Research Institute, University of Washington Seattle, WA, 98101
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Syed Mohd Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Marcus Barissi
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Marta B. Edwards
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Henry Appelman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yilun Sun
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Jingyao Gan
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Rose Ackermann
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Michael R. Olin
- Department of Pediatrics, University of Minnesota, Minneapolis MN 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis MN 55455
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Corresponding Authors:, ,
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Biosciences Initiative in Brain Cancer, University of Michigan, Ann Arbor, MI 48109, USA
- Corresponding Authors:, ,
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Biosciences Initiative in Brain Cancer, University of Michigan, Ann Arbor, MI 48109, USA
- Corresponding Authors:, ,
| |
Collapse
|
6
|
Lenzi E, Jimenez de Aberasturi D, Henriksen-Lacey M, Piñeiro P, Muniz AJ, Lahann J, Liz-Marzán LM. SERS and Fluorescence-Active Multimodal Tessellated Scaffolds for Three-Dimensional Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20708-20719. [PMID: 35487502 PMCID: PMC9100500 DOI: 10.1021/acsami.2c02615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
With the ever-increasing use of 3D cell models toward studying bio-nano interactions and offering alternatives to traditional 2D in vitro and in vivo experiments, methods to image biological tissue in real time and with high spatial resolution have become a must. A suitable technique therefore is surface-enhanced Raman scattering (SERS)-based microscopy, which additionally features reduced photocytotoxicity and improved light penetration. However, optimization of imaging and postprocessing parameters is still required. Herein we present a method to monitor cell proliferation over time in 3D, using multifunctional 3D-printed scaffolds composed of biologically inert poly(lactic-co-glycolic acid) (PLGA) as the base material, in which fluorescent labels and SERS-active gold nanoparticles (AuNPs) can be embedded. The combination of imaging techniques allows optimization of SERS imaging parameters for cell monitoring. The scaffolds provide anchoring points for cell adhesion, so that cell growth can be observed in a suspended 3D matrix, with multiple reference points for confocal fluorescence and SERS imaging. By prelabeling cells with SERS-encoded AuNPs and fluorophores, cell proliferation and migration can be simultaneously monitored through confocal Raman and fluorescence microscopy. These scaffolds provide a simple method to follow cell dynamics in 4D, with minimal disturbance to the tissue model.
Collapse
Affiliation(s)
- Elisa Lenzi
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Malou Henriksen-Lacey
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
| | - Paula Piñeiro
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Ayse J. Muniz
- Biointerfaces
Institute, Department of Chemical Engineering, Materials Science and
Engineering, Biomedical Engineering Macromolecular
Science and Engineering B10-A175 NCRC University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109-2800, United States
| | - Joerg Lahann
- Biointerfaces
Institute, Department of Chemical Engineering, Materials Science and
Engineering, Biomedical Engineering Macromolecular
Science and Engineering B10-A175 NCRC University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109-2800, United States
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research
and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería
Biomateriales, y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Li X, Chen L, Cui D, Jiang W, Han L, Niu N. Preparation and application of Janus nanoparticles: Recent development and prospects. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104012. [PMID: 35077010 PMCID: PMC8922121 DOI: 10.1002/advs.202104012] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Indexed: 05/16/2023]
Abstract
Protein nanoparticles, PNPs, have played a long-standing role in food and industrial applications. More recently, their potential in nanomedicine has been more widely pursued. This review summarizes recent trends related to the preparation, application, and chemical construction of nanoparticles that use proteins as major building blocks. A particular focus has been given to emerging trends related to applications in nanomedicine, an area of research where PNPs are poised for major breakthroughs as drug delivery carriers, particle-based therapeutics or for non-viral gene therapy.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Ava Mauser
- Biointerfaces InstituteDepartment of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Yeongun Ko
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Biointerfaces InstituteDepartments of Chemical EngineeringMaterial Science and EngineeringBiomedical Engineeringand Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
9
|
He S, Tian S, He X, Le X, Ning Y, Chen J, Chen H, Mu J, Xu K, Xiang Q, Wu Y, Chen J, Xiang T. Multiple targeted self-emulsifying compound RGO reveals obvious anti-tumor potential in hepatocellular carcinoma. Mol Ther Oncolytics 2021; 22:604-616. [PMID: 34589579 PMCID: PMC8449031 DOI: 10.1016/j.omto.2021.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly vascularized, inflammatory, and abnormally proliferating tumor. Monotherapy is often unable to effectively and comprehensively inhibit the progress of HCC. In present study, we selected ginsenoside Rg3, ganoderma lucidum polysaccharide (GLP), and oridonin as the combined therapy. These three plant monomers play important roles in anti-angiogenesis, immunological activation, and apoptosis promotion, respectively. However, the low solubility and poor bioavailability seriously hinder their clinical application. To resolve these problems, we constructed a new drug, Rg3, GLP, and oridonin self-microemulsifying drug delivery system (RGO-SMEDDS). We found that this drug effectively inhibits the progression of HCC by simultaneously targeting multiple signaling pathways. RGO-SMEDDS restored immune function by suppressing the production of immunosuppressive cytokine and M2-polarized macrophages, reduced angiogenesis by downregulation of vascular endothelial growth factor and its receptor, and retarded proliferation by inhibiting the epidermal growth factor receptor EGFR/AKT/epidermal growth factor receptor/protein kinase B/glycogen synthase kinase-3 (GSK3) signaling pathway. In addition, RGO-SMEDDS showed considerable safety in acute toxicity tests. Results from this study show that RGO-SMEDDS is a promising therapy for the treatment of HCC.
Collapse
Affiliation(s)
- Sanxiu He
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shaorong Tian
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Le
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yijiao Ning
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jialin Chen
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hongyi Chen
- Chongqing College of Humanities, Science & Technology, Chongqing, China
| | - Junhao Mu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Xu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Tabish TA, Narayan RJ. Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater 2021; 129:43-56. [PMID: 33965624 DOI: 10.1016/j.actbio.2021.04.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/09/2023]
Abstract
There have been numerous efforts to develop targeted therapies for treating cancer. The non-specificity of 'classical' cytotoxic chemotherapy drugs and drug resistance remain major challenges in cancer dormancy. Mitochondria-targeted therapy is an alternative strategy for the treatment of numerous cancer types and is heavily dependent on the ability of the anticancer drugs to reach the tumor mitochondria in a safe and selective manner. Over the past two decades, research efforts have provided mechanistic insights into the roles of mitochondria in cancer progression and therapies that specifically target cancer mitochondria. Given that several nanotechnology-driven strategies aimed at therapeutically targeting mitochondrial dysfunction are still in their infancy, this review considers the cross-disciplinary nature of this area and focuses on the design and development of mitochondria-targeted graphene (mitoGRAPH), its immense potential, and future use for selective targeting of cancer mitochondria. This review also provides novel insights into the strategies for preparing mitoGRAPH to destroy the cell powerhouse in a targeted fashion. Targeting mitochondria with graphene may represent an important therapeutic approach that transforms therapeutic interventions. STATEMENT OF SIGNIFICANCE: Mitochondria-targeted therapy represents a major advance for treating several medical conditions. At this time, no nanoparticles (NPs) or nanocarriers are clinically available, which are capable of spatial targeting and controlled delivery of drugs to mitochondria. NPs-based approaches have revolutionized the field of targeted therapy and have demonstrated efficacy for delivering drugs selectively to mitochondria. These NPs show limited results in pre-clinical animal models due to their adverse side effects and inadequate therapeutic outcomes. Over the past decade, graphene has emerged as a potential anticancer agent and has shown great potential in targeting tumor mitochondria in a safe and targeted fashion. This review considers recent advances in the use of mitochondria-targeted graphene (mitoGRAPH) in chemotherapy, photodynamic therapy, photothermal therapy, and combination therapies.
Collapse
|
11
|
Wang S, Fontana F, Shahbazi MA, Santos HA. Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chem Commun (Camb) 2021; 57:4212-4229. [PMID: 33913978 DOI: 10.1039/d1cc00811k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acetalated dextran (Ac-DEX) is a pH-responsive dextran derivative polymer. Prepared by a simple acetalation reaction, Ac-DEX has tunable acid-triggered release profile. Despite its relatively short research history, Ac-DEX has shown great potential in various therapeutic applications. Furthermore, the recent functionalization of Ac-DEX makes versatile derivatives with additional properties. Herein, we summarize the cutting-edge development of Ac-DEX and related polymers. Specifically, we focus on the chemical synthesis, nano- and micro-particle fabrication techniques, the controlled-release mechanisms, and the rational design Ac-DEX-based of drug delivery systems in various biomedical applications. Finally, we briefly discuss the challenges and future perspectives in the field.
Collapse
Affiliation(s)
- Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. and Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran and Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|