1
|
Guyon L, Tessier S, Croyal M, Gourdel M, Lafont M, Segeron F, Chabaud L, Gautier H, Weiss P, Gaudin A. Influence of physico-chemical properties of two lipoxin emulsion-loaded hydrogels on pre-polarized macrophages: a comparative analysis. Drug Deliv Transl Res 2025; 15:231-241. [PMID: 38565761 DOI: 10.1007/s13346-024-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Inflammation, a crucial defense mechanism, must be rigorously regulated to prevent the onset of chronic inflammation and subsequent tissue damage. Specialized pro resolving mediators (SPMs) such as lipoxin A4 (LXA4) have demonstrated their ability to facilitate the resolution of inflammation by orchestrating a transition of M1 pro-inflammatory macrophages towards an anti-inflammatory M2 phenotype. However, the hydrophobic and chemically labile nature of LXA4 necessitates the development of a delivery system capable of preserving its integrity for clinical applications. In this study, two types of emulsion were formulated using different homogenization processes:mechanical overhead stirrer (MEB for blank Emulsion and MELX for LXA4 loaded-Emulsion) or Luer-lock syringes (SEB for blank Emulsion and SELX for LXA4 loaded-Emulsion)). Following characterization, including size and droplet morphology assessment by microscopy, the encapsulation efficiency (EE) was determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). To exert control over LXA4 release, these emulsions were embedded within silanized hyaluronic acid hydrogels. A comprehensive evaluation, encompassing gel time, swelling, and degradation profiles under acidic, basic, and neutral conditions, preceded the assessment of LXA4 cumulative release using LC-MS/MS. Physicochemical results indicate that H-MELX (Mechanical overhead stirrer LXA4 Emulsion loaded-Hydrogel) exhibits superior efficiency over H-SELX (Luer-lock syringes LXA4 Emulsion loaded-Hydrogel). While both formulations stimulated pro-inflammatory cytokine secretion and promoted a pro-inflammatory macrophage phenotype, LXA4 emulsion-loaded hydrogels displayed a diminished pro-inflammatory activity compared to blank emulsion-loaded hydrogels. These findings highlight the biological efficacy of LXA4 within both systems, with H-SELX outperforming H-MELX in terms of efficiency. To the best of our knowledge, this is the first successful demonstration of the biological efficacy of LXA4 emulsion-loaded hydrogel systems on macrophage polarization. These versatile H-MELX and H-SELX formulations can be customized to enhance their biological activity making them promising tools to promote the resolution of inflammation in diverse clinical applications.
Collapse
Affiliation(s)
- Léna Guyon
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Solène Tessier
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Mikaël Croyal
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
- Nantes Université, CHU Nantes, Inserm CNRS, SFR Santé, Inserm UMS 016, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Mathilde Gourdel
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Marianne Lafont
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Florian Segeron
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Lionel Chabaud
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
- Nantes Université, UFR Sciences Biologiques et Pharmaceutiques, F-44035, Nantes, France
| | - Hélène Gautier
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
- Nantes Université, UFR Sciences Biologiques et Pharmaceutiques, F-44035, Nantes, France
| | - Pierre Weiss
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Alexis Gaudin
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
- Department of Endodontics, University of Nantes, 1 place Alexis Ricordeau, 44093 Nantes Cedex 01, Nantes, France.
| |
Collapse
|
2
|
Runser JY, More SH, Fneich F, Boutfol T, Weiss P, Schmutz M, Senger B, Jierry L, Schaaf P. Model to rationalize and predict the formation of organic patterns originating from an enzyme-assisted self-assembly Liesegang-like process of peptides in a host hydrogel. SOFT MATTER 2024; 20:7723-7734. [PMID: 39308326 DOI: 10.1039/d4sm00888j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Recently, we have investigated the enzyme-assisted self-assembly of precursor peptides diffusing in an enzyme-containing host gel, leading to various self-assembly profiles within the gel. At high enzyme concentrations, the reaction-diffusion self-assembly processes result in the formation of a continuous non-monotonous peptide self-assembly profile. At low enzyme concentrations, they result in the formation of individual self-assembled peptide microglobules and at intermediate enzyme concentrations both kinds of self-assembled structures coexist. Herein, we develop a Liesegang-type model that considers four major points: (i) the diffusion of the precursor peptides within the host gel, (ii) the diffusion of the enzymes in the gel, (iii) the enzymatic transformation of the precursor peptides into the self-assembling ones and (iv) the nucleation of these building blocks as the starting point of the self-assembly process. This process is treated stochastically. Our model predicts most of the experimentally observed features and in particular (i) the transition from a continuous to a microglobular pattern of self-assembled peptides through five types of patterns by decreasing the enzyme concentration in the host hydrogel. (ii) It also predicts that when the precursor peptide concentration decreases, the enzyme concentration at which the continuous/microglobules transition appears increases. (iii) Finally, it predicts that for peptides whose critical self-assembly concentration in solution decreases, the peptide concentration at which the continuous-to-microglobular transition decreases too. All these predictions are observed experimentally.
Collapse
Affiliation(s)
- Jean-Yves Runser
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France.
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Shahaji H More
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France.
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Fatima Fneich
- Université de Nantes, ONIRIS, INSERM UMR 1229, 1 place Ricordeau, Nantes, 44042, France
- UFR Odontologie, Université de Nantes, 44042, France
- CHU Nantes, PHU4 OTONN, Nantes, 44042, France
| | - Timothée Boutfol
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Pierre Weiss
- Université de Nantes, ONIRIS, INSERM UMR 1229, 1 place Ricordeau, Nantes, 44042, France
- UFR Odontologie, Université de Nantes, 44042, France
- CHU Nantes, PHU4 OTONN, Nantes, 44042, France
| | - Marc Schmutz
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Bernard Senger
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France.
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| | - Pierre Schaaf
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France.
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, 67034 Strasbourg Cedex 2, BP 84047, France.
| |
Collapse
|
3
|
Li X, Han W, Zhang Y, Tan D, Cui M, Wang S, Shi W. Multifunctional Hydrogels Based on γ-Polyglutamic Acid/Polyethyleneimine for Hemostasis and Wound Healing. Biomater Res 2024; 28:0063. [PMID: 39104745 PMCID: PMC11298251 DOI: 10.34133/bmr.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Current hemostatic materials have many shortcomings, such as biotoxicity or poor degradability, and do not effectively promote wound healing after hemostasis. To address these limitations, a hemostasis-promoting wound-healing hydrogel, polyglutamic acid/polyethyleneimine/montmorillonite (PPM), comprising polyglutamic acid, 3,4-dihydroxybenzaldehyde-modified polyethyleneimine, and amino-modified montmorillonite (montmorillonite-NH2) was constructed in this study. Due to the excellent water absorption abilities of γ-polyglutamic acid, the PPM and polyglutamic acid/polyethyleneimine hydrogels could rapidly absorb the blood and tissue fluid exuded from the wound to keep the wound clean and accelerate the blood coagulation. The homogeneous distribution of montmorillonite-NH2 enhanced not only the mechanical properties of the hydrogel but also its hemostatic properties. In addition, the modification of polyethylenimine with 3,4-dihydroxybenzaldehyde provided anti-inflammatory effects and endorsed the wound healing. Cellular and blood safety experiments demonstrated the biocompatibility of the PPM hydrogel, and animal studies demonstrated that the PPM hydrogel effectively stopped bleeding and promoted wound healing. The concept design of clay-based hydrogel may create diverse opportunities for constructing hemostasis and wound-healing dressings.
Collapse
Affiliation(s)
- Xiuyun Li
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China
| | - Wenli Han
- School of Materials and Chemistry,
University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- Shandong Cancer Hospital and Institute,
Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, P. R. China
| | - Yilin Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China
| | - Dongmei Tan
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China
| | - Min Cui
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China
| | - Shige Wang
- School of Materials and Chemistry,
University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wenna Shi
- Shandong Cancer Hospital and Institute,
Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, P. R. China
| |
Collapse
|
4
|
Zhu S, Dou W, Zeng X, Chen X, Gao Y, Liu H, Li S. Recent Advances in the Degradability and Applications of Tissue Adhesives Based on Biodegradable Polymers. Int J Mol Sci 2024; 25:5249. [PMID: 38791286 PMCID: PMC11121545 DOI: 10.3390/ijms25105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In clinical practice, tissue adhesives have emerged as an alternative tool for wound treatments due to their advantages in ease of use, rapid application, less pain, and minimal tissue damage. Since most tissue adhesives are designed for internal use or wound treatments, the biodegradation of adhesives is important. To endow tissue adhesives with biodegradability, in the past few decades, various biodegradable polymers, either natural polymers (such as chitosan, hyaluronic acid, gelatin, chondroitin sulfate, starch, sodium alginate, glucans, pectin, functional proteins, and peptides) or synthetic polymers (such as poly(lactic acid), polyurethanes, polycaprolactone, and poly(lactic-co-glycolic acid)), have been utilized to develop novel biodegradable tissue adhesives. Incorporated biodegradable polymers are degraded in vivo with time under specific conditions, leading to the destruction of the structure and the further degradation of tissue adhesives. In this review, we first summarize the strategies of utilizing biodegradable polymers to develop tissue adhesives. Furthermore, we provide a symmetric overview of the biodegradable polymers used for tissue adhesives, with a specific focus on the degradability and applications of these tissue adhesives. Additionally, the challenges and perspectives of biodegradable polymer-based tissue adhesives are discussed. We expect that this review can provide new inspirations for the design of novel biodegradable tissue adhesives for biomedical applications.
Collapse
Affiliation(s)
- Shuzhuang Zhu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wenguang Dou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaojun Zeng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xingchao Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongliang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
5
|
Sánchez-Téllez DA, Baltierra-Uribe SL, Vidales-Hurtado MA, Valdivia-Flores A, García-Pérez BE, Téllez-Jurado L. Novel PVA-Hyaluronan-Siloxane Hybrid Nanofiber Mats for Bone Tissue Engineering. Polymers (Basel) 2024; 16:497. [PMID: 38399875 PMCID: PMC10892577 DOI: 10.3390/polym16040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Hyaluronan (HA) is a natural biodegradable biopolymer; its biological functions include cell adhesion, cell proliferation, and differentiation as well as decreasing inflammation, angiogenesis, and regeneration of damaged tissue. This makes it a suitable candidate for fabricating nanomaterials with potential use in tissue engineering. However, HA nanofiber production is restricted due to the high viscosity, low evaporation rate, and high surface tension of HA solutions. Here, hybrids in the form of continuous and randomly aligned polyvinyl alcohol (PVA)-(HA)-siloxane nanofibers were obtained using an electrospinning process. PVA-HA fibers were crosslinked by a 3D siloxane organic-inorganic matrix via sol-gel that restricts natural hydrophilicity and stiffens the structure. The hybrid nanofiber mats were characterized by FT-IR, micro-Raman spectroscopy, SEM, and biological properties. The PVA/HA ratio influenced the morphology of the hybrid nanofibers. Nanofibers with high PVA content (10PVA-8 and 10PVA-10) form mats with few beaded nanofibers, while those with high HA content (5PVA-8 and 5PVA-10) exhibit mats with mound patterns formed by "ribbon-like" nanofibers. The hybrid nanofibers were used as mats to support osteoblast growth, and they showed outstanding biological properties supporting cell adhesion, cell proliferation, and cell differentiation. Importantly, the 5PVA-8 mats show 3D spherical osteoblast morphology; this suggests the formation of tissue growth. These novel HA-based nanomaterials represent a relevant advance in designing nanofibers with unique properties for potential tissue regeneration.
Collapse
Affiliation(s)
- Daniela Anahí Sánchez-Téllez
- Department of Engineering in Metalurgy and Materials, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos (UPALM), Av. Instituto Politécnico Nacional S/N, Zacatenco, Mexico City 07738, Mexico
| | - Shantal Lizbeth Baltierra-Uribe
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Mónica Araceli Vidales-Hurtado
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Querétaro, Instituto Politécnico Nacional, Cerro Blanco 141, Colinas del Cimatario, Santiago de Querétaro 76090, Mexico
| | - Alejandra Valdivia-Flores
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Blanca Estela García-Pérez
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Mexico City 11340, Mexico
| | - Lucía Téllez-Jurado
- Department of Engineering in Metalurgy and Materials, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos (UPALM), Av. Instituto Politécnico Nacional S/N, Zacatenco, Mexico City 07738, Mexico
| |
Collapse
|
6
|
Zheng X, Wu H, Wang S, Zhao J, Hu L. Preparation and Characterization of Biocompatible Iron/Zirconium/Polydopamine/Carboxymethyl Chitosan Hydrogel with Fenton Catalytic Properties and Photothermal Efficacy. Gels 2023; 9:452. [PMID: 37367123 DOI: 10.3390/gels9060452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, multifunctional hydrogel nanoplatforms for the synergistic treatment of tumors have received a great deal of attention. Here, we prepared an iron/zirconium/polydopamine/carboxymethyl chitosan hydrogel with Fenton and photothermal effects, promising for future use in the field of synergistic therapy and prevention of tumor recurrence. The iron (Fe)-zirconium (Zr)@ polydopamine (PDA) nanoparticles were synthesized by a simple one-pot hydrothermal method using iron (III) chloride hexahydrate (FeCl3•6H2O), zirconium tetrachloride (ZrCl4), and dopamine, followed by activation of the carboxyl group of carboxymethyl chitosan (CMCS) using 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC)/N(4)-hydroxycytidine (NHS). Finally, the Fe-Zr@PDA nanoparticles and the activated CMCS were mixed to form a hydrogel. On the one side, Fe ions can use hydrogen peroxide (H2O2) which is rich in the tumor microenvironment (TME) to produce toxic hydroxyl radicals (•OH) and kill tumor cells, and Zr can also enhance the Fenton effect; on the other side, the excellent photothermal conversion efficiency of the incorporated PDA is used to kill tumor cells under the irradiation of near-infrared light. The ability of Fe-Zr@PDA@CMCS hydrogel to produce •OH and the ability of photothermal conversion were verified in vitro, and swelling and degradation experiments confirmed the effective release and good degradation of this hydrogel in an acidic environment. The multifunctional hydrogel is biologically safe at both cellular and animal levels. Therefore, this hydrogel has a wide range of applications in the synergistic treatment of tumors and the prevention of recurrence.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Pudong New Area, No. 219 Miao Pu Road, Shanghai 200135, China
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Hang Wu
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
7
|
Jiang X, Zeng F, Zhang L, Yu A, Lu A. Engineered Injectable Cell-Laden Chitin/Chitosan Hydrogel with Adhesion and Biodegradability for Calvarial Defect Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20761-20773. [PMID: 37075321 DOI: 10.1021/acsami.3c02108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Trade-off of high-strength and dynamic crosslinking of hydrogels remains an enormous challenge. Motivated by the self-healing property of biological tissues, the strategy of combining multiple dynamic bond mechanisms and a polysaccharide network is proposed to fabricate biomimetic hydrogels with sufficient mechanical strength, injectability, biodegradability, and self-healing property for bone reconstruction engineering. Stable acylhydrazone bonds endowed hydrogels with robust mechanical strength (>10 kPa). The integration of dynamic imine bonds and acylhydrazone bonds optimized the reversible characteristic to protect the cell during the injection and mimicked ECM microenvironment for cell differentiation as well as rapid adapting bone defect area. Furthermore, due to the slow enzymatic hydrolysis kinetics of chitosan and the self-healing properties of resulting networks, hydrogels exhibited a satisfactory biodegradation period (>8 weeks) that highly matches with bone regeneration. Additionally, rBMSC-laden hydrogels exhibited splendid osteogenic induction and bone reconstruction without prefabrication scaffolds and incubation, demonstrating tremendous potential for clinical application. This work proposes an efficient strategy for the construction of a low-cost multifunctional hydrogel, making polysaccharide-based hydrogels as the optimal carrier for enabling cellular functions in bone repair.
Collapse
Affiliation(s)
- Xueyu Jiang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fanwei Zeng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Silica Hydrogels as Platform for Delivery of Hyaluronic Acid. Pharmaceutics 2022; 15:pharmaceutics15010077. [PMID: 36678706 PMCID: PMC9864809 DOI: 10.3390/pharmaceutics15010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Hyaluronic acid (HA) is chondroprotective and anti-inflammatory drug used clinically for treatment of inflammatory disorders (arthritis, skin diseases, bowel diseases, etc.). In addition, HA is a crucial ingredient in the cosmetic products used to eliminate the unpleasant consequences of inflammatory skin diseases. The main disadvantages that limit its use are its low mechanical properties and its rapid biodegradation. In this paper, silica hydrogels are considered as a promising matrix for HA to improve its properties. The hybrid HA-silica hydrogels were synthesized by the sol-gel method. Morphology of the hydrogels was investigated by optical microscopy and scanning electron microscopy methods. Taking into account their potential applications for topical and injectable delivery, much attention was paid to investigation of deformation properties of the hydrogels under shear, compression, and tension. Their resistance to enzymatic degradation in vitro was estimated. Kinetics and mechanisms of HA release from the hybrid hydrogels in vitro were also studied. It was found that the indicated properties can be controlled by synthesis conditions, HA molecular weight, and its loading in the hydrogels. Silica hydrogels are a prospective platform for the development of new soft formulations and cosmetic compositions of HA with improved pharmacological and consumer properties.
Collapse
|
9
|
Watson AL, Eckhart KE, Wolf ME, Sydlik SA. Hyaluronic Acid-Based Antibacterial Hydrogels for Use as Wound Dressings. ACS APPLIED BIO MATERIALS 2022; 5:5608-5616. [PMID: 36383154 DOI: 10.1021/acsabm.2c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wound dressings have been shifting toward a more active role in the wound-healing process. Hydrated environments with additives to aid in the healing process are currently being explored through the application of hydrocolloid dressings. However, these moist healing environments are also ideal for bacterial growth, leading to the widespread use of antibiotics with concerns of antibiotic resistance and toxicity. To overcome this concern, we present a hydrogel wound dressing consisting of hyaluronic acid (HA) cross-linked with gentamicin. This hydrogel treats bacterial infection locally, lowering the effective dose and reducing the concerns of antibiotic resistance and systemic exposure. Changing the cross-linking density, by using varied amounts of a cross-linker, created gels that provided a sustained release of gentamicin for up to 9 days with a range of adhesive and cohesive properties. Overall, this HA hydrogel could provide an important solution in treating local infection in burns and other dermal injuries.
Collapse
Affiliation(s)
- Anna L Watson
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania15213, United States
| | - Karoline E Eckhart
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania15213, United States
| | - Michelle E Wolf
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania15213, United States
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|
10
|
A Tissue Engineering Acoustophoretic (TEA) Set-up for the Enhanced Osteogenic Differentiation of Murine Mesenchymal Stromal Cells (mMSCs). Int J Mol Sci 2022; 23:ijms231911473. [PMID: 36232775 PMCID: PMC9570200 DOI: 10.3390/ijms231911473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Quickly developing precision medicine and patient-oriented treatment strategies urgently require novel technological solutions. The randomly cell-populated scaffolds usually used for tissue engineering often fail to mimic the highly anisotropic characteristics of native tissue. In this work, an ultrasound standing-wave-based tissue engineering acoustophoretic (TEA) set-up was developed to organize murine mesenchymal stromal cells (mMSCs) in an in situ polymerizing 3-D fibrin hydrogel. The resultant constructs, consisting of 17 cell layers spaced at 300 µm, were obtained by continuous wave ultrasound applied at a 2.5 MHz frequency. The patterned mMSCs preserved the structured behavior within 10 days of culturing in osteogenic conditions. Cell viability was moderately increased 1 day after the patterning; it subdued and evened out, with the cells randomly encapsulated in hydrogels, within 21 days of culturing. Cells in the structured hydrogels exhibited enhanced expression of certain osteogenic markers, i.e., Runt-related transcription factor 2 (RUNX2), osterix (Osx) transcription factor, collagen-1 alpha1 (COL1A1), osteopontin (OPN), osteocalcin (OCN), and osteonectin (ON), as well as of certain cell-cycle-progression-associated genes, i.e., Cyclin D1, cysteine-rich angiogenic inducer 61 (CYR61), and anillin (ANLN), when cultured with osteogenic supplements and, for ANLN, also in the expansion media. Additionally, OPN expression was also augmented on day 5 in the patterned gels cultured without the osteoinductive media, suggesting the pro-osteogenic influence of the patterned cell organization. The TEA set-up proposes a novel method for non-invasively organizing cells in a 3-D environment, potentially enhancing the regenerative properties of the designed anisotropic constructs for bone healing.
Collapse
|
11
|
Ma Y, Wang X, Su T, Lu F, Chang Q, Gao J. Recent Advances in Macroporous Hydrogels for Cell Behavior and Tissue Engineering. Gels 2022; 8:606. [PMID: 36286107 PMCID: PMC9601978 DOI: 10.3390/gels8100606] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels have been extensively used as scaffolds in tissue engineering for cell adhesion, proliferation, migration, and differentiation because of their high-water content and biocompatibility similarity to the extracellular matrix. However, submicron or nanosized pore networks within hydrogels severely limit cell survival and tissue regeneration. In recent years, the application of macroporous hydrogels in tissue engineering has received considerable attention. The macroporous structure not only facilitates nutrient transportation and metabolite discharge but also provides more space for cell behavior and tissue formation. Several strategies for creating and functionalizing macroporous hydrogels have been reported. This review began with an overview of the advantages and challenges of macroporous hydrogels in the regulation of cellular behavior. In addition, advanced methods for the preparation of macroporous hydrogels to modulate cellular behavior were discussed. Finally, future research in related fields was discussed.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| |
Collapse
|
12
|
Freeman S, Calabro S, Williams R, Jin S, Ye K. Bioink Formulation and Machine Learning-Empowered Bioprinting Optimization. Front Bioeng Biotechnol 2022; 10:913579. [PMID: 35782492 PMCID: PMC9240914 DOI: 10.3389/fbioe.2022.913579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
Bioprinting enables the fabrication of complex, heterogeneous tissues through robotically-controlled placement of cells and biomaterials. It has been rapidly developing into a powerful and versatile tool for tissue engineering. Recent advances in bioprinting modalities and biofabrication strategies as well as new materials and chemistries have led to improved mimicry and development of physiologically relevant tissue architectures constituted with multiple cell types and heterogeneous spatial material properties. Machine learning (ML) has been applied to accelerate these processes. It is a new paradigm for bioprinting. In this review, we explore current trends in bioink formulation and how ML has been used to accelerate optimization and enable real-time error detection as well as to reduce the iterative steps necessary for bioink formulation. We examined how rheometric properties, including shear storage, loss moduli, viscosity, shear-thinning property of biomaterials affect the printability of a bioink. Furthermore, we scrutinized the interplays between yield shear stress and the printability of a bioink. Moreover, we systematically surveyed the application of ML in precision in situ surgical site bioprinting, closed-loop AI printing, and post-printing optimization.
Collapse
Affiliation(s)
- Sebastian Freeman
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Stefano Calabro
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Roma Williams
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Sha Jin
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, United States
| | - Kaiming Ye
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, United States
| |
Collapse
|
13
|
Flegeau K, Gauthier O, Rethore G, Autrusseau F, Schaefer A, Lesoeur J, Veziers J, Brésin A, Gautier H, Weiss P. Injectable silanized hyaluronic acid hydrogel/biphasic calcium phosphate granule composites with improved handling and biodegradability promote bone regeneration in rabbits. Biomater Sci 2021; 9:5640-5651. [PMID: 34254604 DOI: 10.1039/d1bm00403d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biphasic calcium phosphate (BCP) granules are osteoconductive biomaterials used in clinics to favor bone reconstruction. Yet, poor cohesivity, injectability and mechanical properties restrain their use as bone fillers. In this study, we incorporated BCP granules into in situ forming silanized hyaluronic acid (Si-HA) and hydroxypropylmethylcellulose (Si-HPMC) hydrogels. Hydrogel composites were shown to be easily injectable (F < 30 N), with fast hardening properties (<5 min), and similar mechanical properties (E∼ 60 kPa). In vivo, both hydrogels were well tolerated by the host, but showed different biodegradability with Si-HA gels being partially degraded after 21d, while Si-HPMC gels remained stable. Both composites were easily injected into critical size rabbit defects and remained cohesive. After 4 weeks, Si-HPMC/BCP led to poor bone healing due to a lack of degradation. Conversely, Si-HA/BCP composites were fully degraded and beneficially influenced bone regeneration by increasing the space available for bone ingrowth, and by accelerating BCP granules turnover. Our study demonstrates that the degradation rate is key to control bone regeneration and that Si-HA/BCP composites are promising biomaterials to regenerate bone defects.
Collapse
Affiliation(s)
- Killian Flegeau
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and HTL S.A.S, Javené, France
| | - Olivier Gauthier
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and Department of Experimental Surgery, CRIP, Oniris, Nantes, F-44300, France
| | - Gildas Rethore
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and CHU Nantes, PHU4 OTONN, Nantes F-44093, France
| | - Florent Autrusseau
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and Ecole Polytechnique de l'Université de Nantes, rue Ch. Pauc, Nantes, F-44300, France
| | - Aurélie Schaefer
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and SC3M, SFR Santé F. Bonamy, FED 4203, UMS Inserm 016, CNRS 3556, Nantes F-44042, France
| | - Julie Lesoeur
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and SC3M, SFR Santé F. Bonamy, FED 4203, UMS Inserm 016, CNRS 3556, Nantes F-44042, France
| | - Joëlle Veziers
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and CHU Nantes, PHU4 OTONN, Nantes F-44093, France and SC3M, SFR Santé F. Bonamy, FED 4203, UMS Inserm 016, CNRS 3556, Nantes F-44042, France
| | | | - Hélène Gautier
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and Université de Nantes, Faculté de Pharmacie, Laboratoire de Pharmacie Galénique, Nantes F-44042, France
| | - Pierre Weiss
- Université de Nantes, ONIRIS, Inserm UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes F-44042, France. and Université de Nantes, UFR Odontologie, Nantes, F-44042, France and CHU Nantes, PHU4 OTONN, Nantes F-44093, France
| |
Collapse
|