1
|
Bakhshandeh S, Heras U, Taïeb HM, Varadarajan AR, Lissek SM, Hücker SM, Lu X, Garske DS, Young SAE, Abaurrea A, Caffarel MM, Riestra A, Bragado P, Contzen J, Gossen M, Kirsch S, Warfsmann J, Honarnejad K, Klein CA, Cipitria A. Dormancy-inducing 3D engineered matrix uncovers mechanosensitive and drug-protective FHL2-p21 signaling axis. SCIENCE ADVANCES 2024; 10:eadr3997. [PMID: 39504377 PMCID: PMC11540038 DOI: 10.1126/sciadv.adr3997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Solid cancers frequently relapse with distant metastasis, despite local and systemic treatment. Cellular dormancy has been identified as an important mechanism underlying drug resistance enabling late relapse. Therefore, relapse from invisible, minimal residual cancer of seemingly disease-free patients call for in vitro models of dormant cells suited for drug discovery. Here, we explore dormancy-inducing 3D engineered matrices, which generate mechanical confinement and induce growth arrest and survival against chemotherapy in cancer cells. We characterized the dormant phenotype of solitary cells by P-ERKlow:P-p38high dormancy signaling ratio, along with Ki67- expression. As underlying mechanism, we identified stiffness-dependent nuclear localization of the four-and-a-half LIM domain 2 (FHL2) protein, leading to p53-independent high p21Cip1/Waf1 nuclear expression, validated in murine and human tissue. Suggestive of a resistance-causing role, cells in the dormancy-inducing matrix became sensitive against chemotherapy upon FHL2 down-regulation. Thus, our biomaterial-based approach will enable systematic screens for previously unidentified compounds suited to eradicate potentially relapsing dormant cancer cells.
Collapse
Affiliation(s)
- Sadra Bakhshandeh
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Unai Heras
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Hubert M. Taïeb
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Adithi R. Varadarajan
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Susanna M. Lissek
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Sarah M. Hücker
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Xin Lu
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Daniela S. Garske
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Sarah A. E. Young
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Andrea Abaurrea
- Group of Breast Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
| | - Maria M Caffarel
- Group of Breast Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Ana Riestra
- Department of Pharmacy, Fundación Onkologikoa Fundazioa, San Sebastian, Spain
- Department of Medicine, University of Deusto, Bilbao, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Jörg Contzen
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité Campus Virchow Klinikum, Berlin, Germany
| | - Stefan Kirsch
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Jens Warfsmann
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Kamran Honarnejad
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Christoph A. Klein
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
3
|
Goodarzi K, Lane R, Rao SS. Varying the RGD concentration on a hyaluronic acid hydrogel influences dormancy versus proliferation in brain metastatic breast cancer cells. J Biomed Mater Res A 2024; 112:710-720. [PMID: 38018303 DOI: 10.1002/jbm.a.37651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
A majority of breast cancer deaths occur due to metastasis of cancer cells to distant organs. In particular, brain metastasis is very aggressive with an extremely low survival rate. Breast cancer cells that metastasize to the brain can enter a state of dormancy, which allows them to evade death. The brain microenvironment provides biophysical, biochemical, and cellular cues, and plays an important role in determining the fate of dormant cancer cells. However, how these cues influence dormancy remains poorly understood. Herein, we employed hyaluronic acid (HA) hydrogels with a stiffness of ~0.4 kPa as an in vitro biomimetic platform to investigate the impact of biochemical cues, specifically alterations in RGD concentration, on dormancy versus proliferation in MDA-MB-231Br brain metastatic breast cancer cells. We applied varying concentrations of RGD peptide (0, 1, 2, or 4 mg/mL) to HA hydrogel surfaces and confirmed varying degrees of surface functionalization using a fluorescently labeled RGD peptide. Post functionalization, ~10,000 MDA-MB-231Br cells were seeded on top of the hydrogels and cultured for 5 days. We found that an increase in RGD concentration led to changes in cell morphology, with cells transitioning from a rounded to spindle-like morphology as well as an increase in cell spreading area. Also, an increase in RGD concentration resulted in an increase in cell proliferation. Cellular dormancy was assessed using the ratio of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK) to phosphorylated p38 (p-p38) positivity, which was significantly lower in hydrogels without RGD and in hydrogels with lowest RGD concentration compared to hydrogels functionalized with higher RGD concentration. We also demonstrated that the HA hydrogel-induced cellular dormancy was reversible. Finally, we demonstrated the involvement of β1 integrin in mediating cell phenotype in our hydrogel platform. Overall, our results provide insight into the role of biochemical cues in regulating dormancy versus proliferation in brain metastatic breast cancer cells.
Collapse
Affiliation(s)
- Kasra Goodarzi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Rachel Lane
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
4
|
Richbourg NR, Irakoze N, Kim H, Peyton SR. Outlook and opportunities for engineered environments of breast cancer dormancy. SCIENCE ADVANCES 2024; 10:eadl0165. [PMID: 38457510 PMCID: PMC10923521 DOI: 10.1126/sciadv.adl0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Dormant, disseminated breast cancer cells resist treatment and may relapse into malignant metastases after decades of quiescence. Identifying how and why these dormant breast cancer cells are triggered into outgrowth is a key unsolved step in treating latent, metastatic breast cancer. However, our understanding of breast cancer dormancy in vivo is limited by technical challenges and ethical concerns with triggering the activation of dormant breast cancer. In vitro models avoid many of these challenges by simulating breast cancer dormancy and activation in well-controlled, bench-top conditions, creating opportunities for fundamental insights into breast cancer biology that complement what can be achieved through animal and clinical studies. In this review, we address clinical and preclinical approaches to treating breast cancer dormancy, how precisely controlled artificial environments reveal key interactions that regulate breast cancer dormancy, and how future generations of biomaterials could answer further questions about breast cancer dormancy.
Collapse
Affiliation(s)
- Nathan R. Richbourg
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Ninette Irakoze
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
| | - Hyuna Kim
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst Amherst, MA 01003, USA
| |
Collapse
|
5
|
Cambria E, Coughlin MF, Floryan MA, Offeddu GS, Shelton SE, Kamm RD. Linking cell mechanical memory and cancer metastasis. Nat Rev Cancer 2024; 24:216-228. [PMID: 38238471 PMCID: PMC11146605 DOI: 10.1038/s41568-023-00656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 03/01/2024]
Abstract
Metastasis causes most cancer-related deaths; however, the efficacy of anti-metastatic drugs is limited by incomplete understanding of the biological mechanisms that drive metastasis. Focusing on the mechanics of metastasis, we propose that the ability of tumour cells to survive the metastatic process is enhanced by mechanical stresses in the primary tumour microenvironment that select for well-adapted cells. In this Perspective, we suggest that biophysical adaptations favourable for metastasis are retained via mechanical memory, such that the extent of memory is influenced by both the magnitude and duration of the mechanical stress. Among the mechanical cues present in the primary tumour microenvironment, we focus on high matrix stiffness to illustrate how it alters tumour cell proliferation, survival, secretion of molecular factors, force generation, deformability, migration and invasion. We particularly centre our discussion on potential mechanisms of mechanical memory formation and retention via mechanotransduction and persistent epigenetic changes. Indeed, we propose that the biophysical adaptations that are induced by this process are retained throughout the metastatic process to improve tumour cell extravasation, survival and colonization in the distant organ. Deciphering mechanical memory mechanisms will be key to discovering a new class of anti-metastatic drugs.
Collapse
Affiliation(s)
- Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mark F Coughlin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni S Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Kumari A, Veena SM, Luha R, Tijore A. Mechanobiological Strategies to Augment Cancer Treatment. ACS OMEGA 2023; 8:42072-42085. [PMID: 38024751 PMCID: PMC10652740 DOI: 10.1021/acsomega.3c06451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Cancer cells exhibit aberrant extracellular matrix mechanosensing due to the altered expression of mechanosensory cytoskeletal proteins. Such aberrant mechanosensing of the tumor microenvironment (TME) by cancer cells is associated with disease development and progression. In addition, recent studies show that such mechanosensing changes the mechanobiological properties of cells, and in turn cells become susceptible to mechanical perturbations. Due to an increasing understanding of cell biomechanics and cellular machinery, several approaches have emerged to target the mechanobiological properties of cancer cells and cancer-associated cells to inhibit cancer growth and progression. In this Perspective, we summarize the progress in developing mechano-based approaches to target cancer by interfering with the cellular mechanosensing machinery and overall TME.
Collapse
Affiliation(s)
| | | | | | - Ajay Tijore
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
7
|
Yuzhalin AE, Yu D. Critical functions of extracellular matrix in brain metastasis seeding. Cell Mol Life Sci 2023; 80:297. [PMID: 37728789 PMCID: PMC10511571 DOI: 10.1007/s00018-023-04944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Human brain is characterized by extremely sparse extracellular matrix (ECM). Despite its low abundance, the significance of brain ECM in both physiological and pathological conditions should not be underestimated. Brain metastasis is a serious complication of cancer, and recent findings highlighted the contribution of ECM in brain metastasis development. In this review, we provide a comprehensive outlook on how ECM proteins promote brain metastasis seeding. In particular, we discuss (1) disruption of the blood-brain barrier in brain metastasis; (2) role of ECM in modulating brain metastasis dormancy; (3) regulation of brain metastasis seeding by ECM-activated integrin signaling; (4) functions of brain-specific ECM protein reelin in brain metastasis. Lastly, we consider the possibility of targeting ECM for brain metastasis management.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Unit 108, Houston, TX, 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Unit 108, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Kim H, Wirasaputra A, Mohammadi F, Kundu AN, Esteves JAE, Heiser LM, Meyer AS, Peyton SR. Live Cell Lineage Tracing of Dormant Cancer Cells. Adv Healthc Mater 2023; 12:e2202275. [PMID: 36625629 PMCID: PMC10238615 DOI: 10.1002/adhm.202202275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/02/2022] [Indexed: 01/11/2023]
Abstract
Breast cancer is a leading cause of global cancer-related deaths, and metastasis is the overwhelming culprit of poor patient prognosis. The most nefarious aspect of metastasis is dormancy, a prolonged period between primary tumor resection and relapse. Current therapies are insufficient at killing dormant cells; thus, they can remain quiescent in the body for decades until eventually undergoing a phenotypic switch, resulting in metastases that are more adaptable and drug resistant. Unfortunately, dormancy has few in vitro models, largely because lab-derived cell lines are highly proliferative. Existing models address tumor dormancy, not cellular dormancy, because tracking individual cells is technically challenging. To combat this problem, a live cell lineage approach to find and track individual dormant cells, distinguishing them from proliferative and dying cells over multiple days, is adapted. This approach is applied across a range of different in vitro microenvironments. This approach reveals that the proportion of cells that exhibit long-term quiescence is regulated by both cell intrinsic and extrinsic factors, with the most dormant cells found in 3D collagen gels. This paper envisions that this approach will prove useful to biologists and bioengineers in the dormancy community to identify, quantify, and study dormant tumor cells.
Collapse
Affiliation(s)
- Hyuna Kim
- Molecular and Cell Biology Graduate Program, University of Massachusetts, Amherst, MA, 01002, USA
| | - Anna Wirasaputra
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01002, USA
| | - Farnaz Mohammadi
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Aritra Nath Kundu
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01002, USA
| | - Jennifer A E Esteves
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01002, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Shelly R Peyton
- Molecular and Cell Biology Graduate Program, University of Massachusetts, Amherst, MA, 01002, USA
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01002, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01002, USA
| |
Collapse
|
9
|
Lee JW, Song KH. Fibrous hydrogels by electrospinning: Novel platforms for biomedical applications. J Tissue Eng 2023; 14:20417314231191881. [PMID: 37581121 PMCID: PMC10423451 DOI: 10.1177/20417314231191881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/19/2023] [Indexed: 08/16/2023] Open
Abstract
Hydrogels, hydrophilic and biocompatible polymeric networks, have been used for numerous biomedical applications because they have exhibited abilities to mimic features of extracellular matrix (ECM). In particular, the hydrogels engineered with electrospinning techniques have shown great performances in biomedical applications. Electrospinning techniques are to generate polymeric micro/nanofibers that can mimic geometries of natural ECM by drawing micro/nanofibers from polymer precursors with electrical forces, followed by structural stabilization of them. By exploiting the electrospinning techniques, the fibrous hydrogels have been fabricated and utilized as 2D/3D cell culture platforms, implantable scaffolds, and wound dressings. In addition, some hydrogels that respond to external stimuli have been used to develop biosensors. For comprehensive understanding, this review covers electrospinning processes, hydrogel precursors used for electrospinning, characteristics of fibrous hydrogels and specific biomedical applications of electrospun fibrous hydrogels and highlight their potential to promote use in biomedical applications.
Collapse
Affiliation(s)
- Ji Woo Lee
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Kwang Hoon Song
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
- Research Center of Brain-Machine Interface, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
10
|
Kondapaneni RV, Shevde LA, Rao SS. A Biomimetic Hyaluronic Acid Hydrogel Models Mass Dormancy in Brain Metastatic Breast Cancer Spheroids. Adv Biol (Weinh) 2023; 7:e2200114. [PMID: 36354182 DOI: 10.1002/adbi.202200114] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/15/2022] [Indexed: 11/11/2022]
Abstract
Approximately 90% of breast cancer related mortalities are due to metastasis to distant organs. At the metastatic sites, cancer cells are capable of evading death by exhibiting cellular or mass dormancy. However, the mechanisms involved in attaining dormancy at the metastatic site are not well understood. This is partly due to the lack of experimental models to study metastatic site-specific interactions, particularly in the context of brain metastatic breast cancer (BMBC). Herein, an in vitro hyaluronic acid (HA) hydrogel-based model is developed to study mass dormancy in BMBC. HA hydrogels with a stiffness of ≈0.4 kPa are utilized to mimic the brain extracellular matrix. MDA-MB-231Br or BT474Br3 BMBC spheroids are prepared and cultured on top of HA hydrogels or in suspension for 7 days. HA hydrogel induced a near mass dormant state in spheroids by achieving a balance between proliferating and dead cells. In contrast, these spheroids displayed growth in suspension cultures. The ratio of %p-ERK to %p-p38 positive cells is significantly lower in HA hydrogels compared to suspension cultures. Further, it is demonstrated that hydrogel induced mass dormant state is reversible. Overall, such models provide useful tools to study dormancy in BMBC and could be employed for drug screening.
Collapse
Affiliation(s)
- Raghu Vamsi Kondapaneni
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Lalita A Shevde
- Department of Pathology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
11
|
Kondapaneni RV, Warren R, Rao SS. Low dose chemotherapy induces a dormant state in brain metastatic breast cancer spheroids. AIChE J 2022. [DOI: 10.1002/aic.17858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Raghu Vamsi Kondapaneni
- Department of Chemical and Biological Engineering The University of Alabama Tuscaloosa AL USA
| | - Rachel Warren
- Department of Chemical and Biological Engineering The University of Alabama Tuscaloosa AL USA
| | - Shreyas S. Rao
- Department of Chemical and Biological Engineering The University of Alabama Tuscaloosa AL USA
| |
Collapse
|
12
|
Pally D, Goutham S, Bhat R. Extracellular matrix as a driver for intratumoral heterogeneity. Phys Biol 2022; 19. [PMID: 35545075 DOI: 10.1088/1478-3975/ac6eb0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
The architecture of an organ is built through interactions between its native cells and its connective tissue consisting of stromal cells and the extracellular matrix (ECM). Upon transformation through tumorigenesis, such interactions are disrupted and replaced by a new set of intercommunications between malignantly transformed parenchyma, an altered stromal cell population, and a remodeled ECM. In this perspective, we propose that the intratumoral heterogeneity of cancer cell phenotypes is an emergent property of such reciprocal intercommunications, both biochemical and mechanical-physical, which engender and amplify the diversity of cell behavioral traits. An attempt to assimilate such findings within a framework of phenotypic plasticity furthers our understanding of cancer progression.
Collapse
Affiliation(s)
- Dharma Pally
- Molecular Reproduction Development and Genetics, Indian Institute of Science, GA 07, Bangalore, Karnataka, 560012, INDIA
| | - Shyamili Goutham
- Molecular Reproduction Development and Genetics, Indian Institute of Science, GA 07, Bangalore, Karnataka, 560012, INDIA
| | - Ramray Bhat
- Molecular Reproduction Development and Genetics, Indian Institute of Science, GA 07, Bangalore, Karnataka, 560012, INDIA
| |
Collapse
|