1
|
Mottet G, Grassart A, Barthélemy P, Antignac C, Arrabal S, Bourdin A, Descroix S, De Vos J, Doutriaux A, Fabrega Q, Galaup A, Graff-Dubois S, Illiano S, Legallais C, Maisonneuve B, Piwnica D, Quéméneur E, Salentey V, Rozenberg J, Sotiropoulos A, Tomasi R, Vergnolle N, Devillier P. Organoïdes, organes sur puce, complex in vitro model : définitions, applications, validation, éthique. Therapie 2024:S0040-5957(24)00205-1. [PMID: 39710544 DOI: 10.1016/j.therap.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Affiliation(s)
- Guillaume Mottet
- Large Molecule Research Platform, Microfluidic Team, Sanofi R&D, 94400 Vitry-sur-Seine, France
| | - Alexandre Grassart
- CNRS, Inserm, institut Pasteur de Lille, U1019, UMR 9017, Center for Infection and Immunity of Lille (CIIL), CHU de Lille, université de Lille, 59000 Lille, France.
| | | | - Corinne Antignac
- Laboratoire des maladies rénales héréditaires, Inserm UMR1153, institut Imagine, université Paris Cité, 75000 Paris, France
| | | | - Arnaud Bourdin
- Département de pneumologie et addictologie, PhyMedExp, Inserm U1046, CNRS UMR 9214, University of Montpellier, 34000 Montpellier, France; Hôpital Arnaud-de-Villeneuve, CHU de Montpellier, 34000 Montpellier, France
| | - Stéphanie Descroix
- Laboratoire physique des cellules et cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75000 Paris, France
| | - John De Vos
- Ingénierie cellulaire et tissulaire, unité de thérapie cellulaire, CHU de Montpellier, 34000 Montpellier, France
| | | | - Quentin Fabrega
- Direction des filières industrielles, Bpifrance, 75000 Paris, France
| | | | - Stéphanie Graff-Dubois
- UMRS 959, laboratoire i3, groupe hospitalier Pitié-Salpêtrière, Sorbonne université, 75000 Paris, France
| | | | - Cécile Legallais
- UMR CNRS 7338 biomécanique et bioingénierie, université de technologie de Compiègne, 60200 Compiègne, France
| | | | - David Piwnica
- Institut de R&D Servier Paris-Saclay, 91190 Gif-sur-Yvette, France
| | | | - Valérie Salentey
- Regulatory Affairs and Quality Assurance, Sensorion, 34000 Montpellier, France
| | | | | | | | - Nathalie Vergnolle
- IRSD, Inserm, INRAE, ENVT, université Toulouse III - Paul-Sabatier, université de Toulouse, 31000 Toulouse, France
| | - Philippe Devillier
- VIM Suresnes, UMR_0892, hôpital Foch, université Paris-Saclay, 92150 Suresnes, France
| |
Collapse
|
2
|
Liu Y, Huang T, Yap NA, Lim K, Ju LA. Harnessing the power of bioprinting for the development of next-generation models of thrombosis. Bioact Mater 2024; 42:328-344. [PMID: 39295733 PMCID: PMC11408160 DOI: 10.1016/j.bioactmat.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Thrombosis, a leading cause of cardiovascular morbidity and mortality, involves the formation of blood clots within blood vessels. Current animal models and in vitro systems have limitations in recapitulating the complex human vasculature and hemodynamic conditions, limiting the research in understanding the mechanisms of thrombosis. Bioprinting has emerged as a promising approach to construct biomimetic vascular models that closely mimic the structural and mechanical properties of native blood vessels. This review discusses the key considerations for designing bioprinted vascular conduits for thrombosis studies, including the incorporation of key structural, biochemical and mechanical features, the selection of appropriate biomaterials and cell sources, and the challenges and future directions in the field. The advancements in bioprinting techniques, such as multi-material bioprinting and microfluidic integration, have enabled the development of physiologically relevant models of thrombosis. The future of bioprinted models of thrombosis lies in the integration of patient-specific data, real-time monitoring technologies, and advanced microfluidic platforms, paving the way for personalized medicine and targeted interventions. As the field of bioprinting continues to evolve, these advanced vascular models are expected to play an increasingly important role in unraveling the complexities of thrombosis and improving patient outcomes. The continued advancements in bioprinting technologies and the collaboration between researchers from various disciplines hold great promise for revolutionizing the field of thrombosis research.
Collapse
Affiliation(s)
- Yanyan Liu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Tao Huang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nicole Alexis Yap
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Khoon Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Darlington, NSW 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW 2042, Australia
| |
Collapse
|
3
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
4
|
Luo X, Pang Z, Li J, Anh M, Kim BS, Gao G. Bioengineered human arterial equivalent and its applications from vascular graft to in vitro disease modeling. iScience 2024; 27:111215. [PMID: 39555400 PMCID: PMC11565542 DOI: 10.1016/j.isci.2024.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Arterial disorders such as atherosclerosis, thrombosis, and aneurysm pose significant health risks, necessitating advanced interventions. Despite progress in artificial blood vessels and animal models aimed at understanding pathogenesis and developing therapies, limitations in graft functionality and species discrepancies restrict their clinical and research utility. Addressing these issues, bioengineered arterial equivalents (AEs) with enhanced vascular functions have been developed, incorporating innovative technologies that improve clinical outcomes and enhance disease progression modeling. This review offers a comprehensive overview of recent advancements in bioengineered AEs, systematically summarizing the bioengineered technologies used to construct these AEs, and discussing their implications for clinical application and pathogenesis understanding. Highlighting current breakthroughs and future perspectives, this review aims to inform and inspire ongoing research in the field, potentially transforming vascular medicine and offering new avenues for preclinical and clinical advances.
Collapse
Affiliation(s)
- Xi Luo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zherui Pang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology, Zhuhai 519088, China
| | - Minjun Anh
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
5
|
Du Y, Liu Y, Chen K, Zhang Y, Zhang X, Liu S, Wang T, Wang F. Type II photoinitiators with collagen-based cyanine for cell encapsulation under green-red LED. Int J Biol Macromol 2024; 278:134589. [PMID: 39127295 DOI: 10.1016/j.ijbiomac.2024.134589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
3D bioprinting with cell-laden materials is an emerging technique for fabricating functional tissue constructs. However, current cell-laden bioinks often lack sufficient cytocompatibility with commonly used UV-light sources. In this study, green to red photoinduced hydrogel crosslinking was obtained by introducing synthesized biosafety photoinitiators and used in light-based direct ink writing (DIW) 3D printing for enabling cell encapsulation successfully. The novel type II photointiators contain iodonium (ONI) and synthesized cyanine dyes CZBIN, TDPABIN, Col-SH-CZ, and Col-SH-TD with strong absorption in the range of 400-600 nm. Collagen-based macromolecule dyes Col-SH-CZ and Col-SH-TD showed excellent cytocompatibility. The photochemistry of these photoinitiators revealed an efficient photoinduced electron transfer (PET) process from the singlet excited states of the dyes to iodonium (ONI), facilitating the crosslinking of the biogels. L929 cells were encapsulated in Gel-MA hydrogels containing various photoinitiating systems and exposed to near-ultraviolet, green, or red LED irradiation. DIW-type 3D printing of Gel-MA bioink with L929 cells was also evaluated. The cell viability achieved with green light encapsulation reached 90 %. This novel approach offers promising prospects for bioprinting functional tissues with enhanced cytocompatibility under visible light conditions.
Collapse
Affiliation(s)
- Yao Du
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Yimei Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Kai Chen
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, PR China
| | - Yating Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Xiwang Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Shitao Liu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Tao Wang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China.
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun, PR China.
| |
Collapse
|
6
|
Deo KA, Murali A, Tronolone JJ, Mandrona C, Lee HP, Rajput S, Hargett SE, Selahi A, Sun Y, Alge DL, Jain A, Gaharwar AK. Granular Biphasic Colloidal Hydrogels for 3D Bioprinting. Adv Healthc Mater 2024; 13:e2303810. [PMID: 38749006 DOI: 10.1002/adhm.202303810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Indexed: 05/30/2024]
Abstract
Granular hydrogels composed of hydrogel microparticles are promising candidates for 3D bioprinting due to their ability to protect encapsulated cells. However, to achieve high print fidelity, hydrogel microparticles need to jam to exhibit shear-thinning characteristics, which is crucial for 3D printing. Unfortunately, this overpacking can significantly impact cell viability, thereby negating the primary advantage of using hydrogel microparticles to shield cells from shear forces. To overcome this challenge, a novel solution: a biphasic, granular colloidal bioink designed to optimize cell viability and printing fidelity is introduced. The biphasic ink consists of cell-laden polyethylene glycol (PEG) hydrogel microparticles embedded in a continuous gelatin methacryloyl (GelMA)-nanosilicate colloidal network. Here, it is demonstrated that this biphasic bioink offers outstanding rheological properties, print fidelity, and structural stability. Furthermore, its utility for engineering complex tissues with multiple cell types and heterogeneous microenvironments is demonstrated, by incorporating β-islet cells into the PEG microparticles and endothelial cells in the GelMA-nanosilicate colloidal network. Using this approach, it is possible to induce cell patterning, enhance vascularization, and direct cellular function. The proposed biphasic bioink holds significant potential for numerous emerging biomedical applications, including tissue engineering and disease modeling.
Collapse
Affiliation(s)
- Kaivalya A Deo
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Aparna Murali
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - James J Tronolone
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Cole Mandrona
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Hung Pang Lee
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Satyam Rajput
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Sarah E Hargett
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Amirali Selahi
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Nutrition, College of Agriculture, Texas A&M University, College Station, TX, 77843, USA
| | - Daniel L Alge
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Abhishek Jain
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
- Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Akhilesh K Gaharwar
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, TX, 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
7
|
Simińska-Stanny J, Podstawczyk D, Delporte C, Nie L, Shavandi A. Hyaluronic Acid Role in Biomaterials Prevascularization. Adv Healthc Mater 2024:e2402045. [PMID: 39254277 DOI: 10.1002/adhm.202402045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 09/11/2024]
Abstract
Tissue vascularization is a major bottleneck in tissue engineering. In this review, the state of the art on the intricate role of hyaluronic acid (HA) in angiogenesis is explored. HA plays a twofold role in angiogenesis. First, when released as a free polymer in the extracellular matrix (ECM), HA acts as a signaling molecule triggering multiple cascades that foster smooth muscle cell differentiation, migration, and proliferation thereby contributing to vessel wall thickening. Simultaneously, HA bound to the plasma membrane in the pericellular space functions as a polymer block, participating in vessel formation. Starting with the HA origins in native vascular tissues, the approaches aimed at achieving vascularization in vivo are reviewed. The significance of HA molecular weight (MW) in angiogenesis and the challenges associated with utilizing HA in vascular tissue engineering (VTE) are conscientiously addressed. The review finally focuses on a thorough examination and comparison of the diverse strategies adopted to harness the benefits of HA in the vascularization of bioengineered materials. By providing a nuanced perspective on the multifaceted role of HA in angiogenesis, this review contributes to the ongoing discourse in tissue engineering and advances the collective understanding of optimizing vascularization processes assisted by functional biomaterials.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, Wroclaw, 50-373, Poland
| | - Christine Delporte
- Laboratoire de Biochimie physiopathologique et nutritionnelle (LBNP), Faculté de Médecine, Université libre de Bruxelles (ULB), Campus Erasme - CP 611, Route de Lennik 808, Bruxelles, 1070, Belgium
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang, 464031, China
| | - Armin Shavandi
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
8
|
Martier A, Chen Z, Schaps H, Mondrinos MJ, Fang JS. Capturing physiological hemodynamic flow and mechanosensitive cell signaling in vessel-on-a-chip platforms. Front Physiol 2024; 15:1425618. [PMID: 39135710 PMCID: PMC11317428 DOI: 10.3389/fphys.2024.1425618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Recent advances in organ chip (or, "organ-on-a-chip") technologies and microphysiological systems (MPS) have enabled in vitro investigation of endothelial cell function in biomimetic three-dimensional environments under controlled fluid flow conditions. Many current organ chip models include a vascular compartment; however, the design and implementation of these vessel-on-a-chip components varies, with consequently varied impact on their ability to capture and reproduce hemodynamic flow and associated mechanosensitive signaling that regulates key characteristics of healthy, intact vasculature. In this review, we introduce organ chip and vessel-on-a-chip technology in the context of existing in vitro and in vivo vascular models. We then briefly discuss the importance of mechanosensitive signaling for vascular development and function, with focus on the major mechanosensitive signaling pathways involved. Next, we summarize recent advances in MPS and organ chips with an integrated vascular component, with an emphasis on comparing both the biomimicry and adaptability of the diverse approaches used for supporting and integrating intravascular flow. We review current data showing how intravascular flow and fluid shear stress impacts vessel development and function in MPS platforms and relate this to existing work in cell culture and animal models. Lastly, we highlight new insights obtained from MPS and organ chip models of mechanosensitive signaling in endothelial cells, and how this contributes to a deeper understanding of vessel growth and function in vivo. We expect this review will be of broad interest to vascular biologists, physiologists, and cardiovascular physicians as an introduction to organ chip platforms that can serve as viable model systems for investigating mechanosensitive signaling and other aspects of vascular physiology.
Collapse
Affiliation(s)
- A. Martier
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - Z. Chen
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - H. Schaps
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, United States
| | - M. J. Mondrinos
- Department of Biomedical Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, United States
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - J. S. Fang
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA, United States
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
9
|
Simińska-Stanny J, Nicolas L, Chafai A, Jafari H, Hajiabbas M, Dodi G, Gardikiotis I, Delporte C, Nie L, Podstawczyk D, Shavandi A. Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing. Bioact Mater 2024; 36:168-184. [PMID: 38463551 PMCID: PMC10924180 DOI: 10.1016/j.bioactmat.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600-1300 μm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lise Nicolas
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- European School of Materials Science and Engineering, University of Lorraine, Nancy, France
| | - Adam Chafai
- Université Libre de Bruxelles (ULB), Micro-milli Platform, Avenue F.D. Roosevelt, 50 - CP 165/67, 1050, Brussels, Belgium
| | - Hafez Jafari
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Maryam Hajiabbas
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- Université Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, Belgium
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Christine Delporte
- Université Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, Belgium
| | - Lei Nie
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| |
Collapse
|
10
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
11
|
Makode S, Maurya S, Niknam SA, Mollocana-Lara E, Jaberi K, Faramarzi N, Tamayol A, Mortazavi M. Three dimensional (bio)printing of blood vessels: from vascularized tissues to functional arteries. Biofabrication 2024; 16:022005. [PMID: 38277671 DOI: 10.1088/1758-5090/ad22ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Tissue engineering has emerged as a strategy for producing functional tissues and organs to treat diseases and injuries. Many chronic conditions directly or indirectly affect normal blood vessel functioning, necessary for material exchange and transport through the body and within tissue-engineered constructs. The interest in vascular tissue engineering is due to two reasons: (1) functional grafts can be used to replace diseased blood vessels, and (2) engineering effective vasculature within other engineered tissues enables connection with the host's circulatory system, supporting their survival. Among various practices, (bio)printing has emerged as a powerful tool to engineer biomimetic constructs. This has been made possible with precise control of cell deposition and matrix environment along with the advancements in biomaterials. (Bio)printing has been used for both engineering stand-alone vascular grafts as well as vasculature within engineered tissues for regenerative applications. In this review article, we discuss various conditions associated with blood vessels, the need for artificial blood vessels, the anatomy and physiology of different blood vessels, available 3D (bio)printing techniques to fabricate tissue-engineered vascular grafts and vasculature in scaffolds, and the comparison among the different techniques. We conclude our review with a brief discussion about future opportunities in the area of blood vessel tissue engineering.
Collapse
Affiliation(s)
- Shubham Makode
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Satyajit Maurya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Seyed A Niknam
- Department of Industrial Engineering, Western New England University, Springfield, MA, United States of America
| | - Evelyn Mollocana-Lara
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Kiana Jaberi
- Department of Nutritional Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Faramarzi
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Mehdi Mortazavi
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
| |
Collapse
|
12
|
Jiang H, Li X, Chen T, Liu Y, Wang Q, Wang Z, Jia J. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels. Mater Today Bio 2023; 23:100846. [PMID: 37953757 PMCID: PMC10632537 DOI: 10.1016/j.mtbio.2023.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
3D bioprinting technology is widely used to fabricate various tissue structures. However, the absence of vessels hampers the ability of bioprinted tissues to receive oxygen and nutrients as well as to remove wastes, leading to a significant reduction in their survival rate. Despite the advancements in bioinks and bioprinting technologies, bioprinted vascular structures continue to be unsuitable for transplantation compared to natural blood vessels. In addition, a complete assessment index system for evaluating the structure and function of bioprinted vessels in vitro has not yet been established. Therefore, in this review, we firstly highlight the significance of selecting suitable bioinks and bioprinting techniques as they two synergize with each other. Subsequently, focusing on both vascular-associated cells and vascular tissues, we provide a relatively thorough assessment of the functions of bioprinted vascular tissue based on the physiological functions that natural blood vessels possess. We end with a review of the applications of vascular models, such as vessel-on-a-chip, in simulating pathological processes and conducting drug screening at the organ level. We believe that the development of fully functional blood vessels will soon make great contributions to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haihong Jiang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xueyi Li
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| | - Tianhong Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yang Liu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhimin Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Jia Jia
- School of Life Sciences, Shanghai University, Shanghai, China
- Sino-Swiss Institute of Advanced Technology, School of Micro-electronics, Shanghai University, Shanghai, China
| |
Collapse
|
13
|
Yeo M, Sarkar A, Singh YP, Derman ID, Datta P, Ozbolat IT. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication 2023; 16:012003. [PMID: 37944186 PMCID: PMC10658349 DOI: 10.1088/1758-5090/ad0b3f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/27/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Three-dimensional (3D) bioprinting offers promising solutions to the complex challenge of vascularization in biofabrication, thereby enhancing the prospects for clinical translation of engineered tissues and organs. While existing reviews have touched upon 3D bioprinting in vascularized tissue contexts, the current review offers a more holistic perspective, encompassing recent technical advancements and spanning the entire multistage bioprinting process, with a particular emphasis on vascularization. The synergy between 3D bioprinting and vascularization strategies is crucial, as 3D bioprinting can enable the creation of personalized, tissue-specific vascular network while the vascularization enhances tissue viability and function. The review starts by providing a comprehensive overview of the entire bioprinting process, spanning from pre-bioprinting stages to post-printing processing, including perfusion and maturation. Next, recent advancements in vascularization strategies that can be seamlessly integrated with bioprinting are discussed. Further, tissue-specific examples illustrating how these vascularization approaches are customized for diverse anatomical tissues towards enhancing clinical relevance are discussed. Finally, the underexplored intraoperative bioprinting (IOB) was highlighted, which enables the direct reconstruction of tissues within defect sites, stressing on the possible synergy shaped by combining IOB with vascularization strategies for improved regeneration.
Collapse
Affiliation(s)
- Miji Yeo
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Anwita Sarkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Yogendra Pratap Singh
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Irem Deniz Derman
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, United States of America
- Materials Research Institute, Penn State University, University Park, PA 16802, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
- Penn State Cancer Institute, Penn State University, Hershey, PA 17033, United States of America
- Biotechnology Research and Application Center, Cukurova University, Adana 01130, Turkey
| |
Collapse
|
14
|
Lee HP, Cai KX, Wang TC, Davis R, Deo K, Singh KA, Lele TP, Gaharwar AK. Dynamically crosslinked thermoresponsive granular hydrogels. J Biomed Mater Res A 2023; 111:1577-1587. [PMID: 37199446 DOI: 10.1002/jbm.a.37556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Granular hydrogels are a promising biomaterial for a wide range of biomedical applications, including tissue regeneration, drug/cell delivery, and 3D printing. These granular hydrogels are created by assembling microgels through the jamming process. However, current methods for interconnecting the microgels often limit their use due to the reliance on postprocessing for crosslinking through photoinitiated reactions or enzymatic catalysis. To address this limitation, we incorporated a thiol-functionalized thermo-responsive polymer into oxidized hyaluronic acid microgel assemblies. The rapid exchange rate of thiol-aldehyde dynamic covalent bonds allows the microgel assembly to be shear-thinning and self-healing, with the phase transition behavior of the thermo-responsive polymer serving as secondary crosslinking to stabilize the granular hydrogels network at body temperature. This two-stage crosslinking system provides excellent injectability and shape stability, while maintaining mechanical integrity. In addition, the aldehyde groups of the microgels act as covalent binding sites for sustained drug release. These granular hydrogels can be used as scaffolds for cell delivery and encapsulation, and can be 3D printed without the need for post-printing processing to maintain mechanical stability. Overall, our work introduces thermo-responsive granular hydrogels with promising potential for various biomedical applications.
Collapse
Affiliation(s)
- Hung-Pang Lee
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Kathy Xiao Cai
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Ting-Ching Wang
- Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Ryan Davis
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Kaivalya Deo
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Kanwar Abhay Singh
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA
| | - Akhilesh K Gaharwar
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Material Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, Texas, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Duong VT, Nguyen CT, Phan HL, Le VP, Dang TT, Choi C, Seo J, Cha C, Back SH, Koo KI. Double-layered blood vessels over 3 mm in diameter extruded by the inverse-gravity technique. Biofabrication 2023; 15:045022. [PMID: 37659401 DOI: 10.1088/1758-5090/acf61f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/01/2023] [Indexed: 09/04/2023]
Abstract
One of the most promising techniques for treating severe peripheral artery disease is the use of cellular tissue-engineered vascular grafts (TEVGs). This study proposes an inverse-gravity (IG) extrusion technique for creating long double-layered cellular TEVGs with diameters over 3 mm. A three-layered coaxial laminar hydrogel flow in an 8 mm-diameter pipe was realised simply by changing the extrusion direction of the hydrogel from being aligned with the direction of gravity to against it. This technique produced an extruded mixture of human aortic smooth muscle cells (HASMCs) and type-I collagen as a tubular structure with an inner diameter of 3.5 mm. After a 21 day maturation period, the maximal burst pressure, longitudinal breaking force, and circumferential breaking force of the HASMC TEVG were 416 mmHg, 0.69 N, and 0.89 N, respectively. The HASMC TEVG was endothelialised with human umbilical vein endothelial cells to form a tunica intima that simulated human vessels. Besides subcutaneous implantability on mice, the double-layered blood vessels showed a considerably lower adherence of platelets and red blood cells once exposed to heparinised mouse blood and were considered nonhaemolytic. The proposed IG extrusion technique can be applied in various fields requiring multilayered materials with large diameters.
Collapse
Affiliation(s)
- Van Thuy Duong
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Chanh Trung Nguyen
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Huu Lam Phan
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Van Phu Le
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Thao Thi Dang
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Cholong Choi
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jongmo Seo
- Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Hoon Back
- School of Biological Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Kyo-In Koo
- Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
16
|
Sun Z, Zhao J, Leung E, Flandes-Iparraguirre M, Vernon M, Silberstein J, De-Juan-Pardo EM, Jansen S. Three-Dimensional Bioprinting in Cardiovascular Disease: Current Status and Future Directions. Biomolecules 2023; 13:1180. [PMID: 37627245 PMCID: PMC10452258 DOI: 10.3390/biom13081180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Three-dimensional (3D) printing plays an important role in cardiovascular disease through the use of personalised models that replicate the normal anatomy and its pathology with high accuracy and reliability. While 3D printed heart and vascular models have been shown to improve medical education, preoperative planning and simulation of cardiac procedures, as well as to enhance communication with patients, 3D bioprinting represents a potential advancement of 3D printing technology by allowing the printing of cellular or biological components, functional tissues and organs that can be used in a variety of applications in cardiovascular disease. Recent advances in bioprinting technology have shown the ability to support vascularisation of large-scale constructs with enhanced biocompatibility and structural stability, thus creating opportunities to replace damaged tissues or organs. In this review, we provide an overview of the use of 3D bioprinting in cardiovascular disease with a focus on technologies and applications in cardiac tissues, vascular constructs and grafts, heart valves and myocardium. Limitations and future research directions are highlighted.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jack Zhao
- School of Medicine, Faculty of Health Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.Z.); (E.L.)
| | - Emily Leung
- School of Medicine, Faculty of Health Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.Z.); (E.L.)
| | - Maria Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Michael Vernon
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Jenna Silberstein
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
| | - Elena M. De-Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia
- Heart and Vascular Research Institute, Harry Perkins Medical Research Institute, Perth, WA 6009, Australia
- School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
17
|
Pérez-López A, Isabel Torres-Suárez A, Martín-Sabroso C, Aparicio-Blanco J. An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines. Adv Drug Deliv Rev 2023; 196:114816. [PMID: 37003488 DOI: 10.1016/j.addr.2023.114816] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The blood-brain barrier (BBB) prevents efficient drug delivery to the central nervous system. As a result, brain diseases remain one of the greatest unmet medical needs. Understanding the tridimensional structure of the BBB helps gain insight into the pathology of the BBB and contributes to the development of novel therapies for brain diseases. Therefore, 3D models with an ever-growing sophisticated complexity are being developed to closely mimic the human neurovascular unit. Among these 3D models, hydrogel-, spheroid- and organoid-based static BBB models have been developed, and so have microfluidic-based BBB-on-a-chip models. The different 3D preclinical models of the BBB, both in health and disease, are here reviewed, from their development to their application for permeability testing of nanomedicines across the BBB, discussing the advantages and disadvantages of each model. The validation with data from in vivo preclinical data is also discussed in those cases where provided.
Collapse
Affiliation(s)
- Alexandre Pérez-López
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, Madrid, Spain.
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
18
|
Jin Q, Yu C, Xu L, Zhang G, Ju J, Hou R. Combined light-cured and sacrificial hydrogels for fabrication of small-diameter bionic vessels by 3D bioprinting. Technol Health Care 2023:THC220393. [PMID: 36872804 DOI: 10.3233/thc-220393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND Bionic grafts can replace autologous tissue through tissue engineering in cases of cardiovascular disease. However, small-diameter vessel grafts remain challenging to precellularize. OBJECTIVE Bionic small-diameter vessels with endothelial and smooth muscle cells (SMCs) manufactured with a novel approach. METHODS A 1-mm-diameter bionic blood vessel was constructed by combining light-cured hydrogel gelatin-methacryloyl (GelMA) with sacrificial hydrogel Pluronic F127. Mechanical properties of GelMA (Young's modulus and tensile stress) were tested. Cell viability and proliferation were detected using Live/dead staining and CCK-8 assays, respectively. The histology and function of the vessels were observed using hematoxylin and eosin and immunofluorescence staining. RESULTS GelMA and Pluronic were printed together using extrusion. The temporary Pluronic support was removed by cooling during GelMA crosslinking, yielding a hollow tubular construct. A bionic bilayer vascular structure was fabricated by loading SMCs into the GelMA bioink, followed by perfusion with endothelial cells. In the structure, both cell types maintained good cell viability. The vessel showed good histological morphology and function. CONCLUSION Using light-cured and sacrificial hydrogels, we formed a small ca bionic vessel with a small caliber containing SMCs and endothelial cells, demonstrating an innovative approach for construction of bionic vascular tissues.
Collapse
Affiliation(s)
- Qianheng Jin
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China.,Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chenghao Yu
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China.,Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lei Xu
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China
| | - Guangliang Zhang
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China
| | - Jihui Ju
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China
| | - Ruixing Hou
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.,Suzhou Ruihua Orthopedic Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Li J, Moeinzadeh S, Kim C, Pan CC, Weale G, Kim S, Abrams G, James AW, Choo H, Chan C, Yang YP. Development and systematic characterization of GelMA/alginate/PEGDMA/xanthan gum hydrogel bioink system for extrusion bioprinting. Biomaterials 2023; 293:121969. [PMID: 36566553 PMCID: PMC9868087 DOI: 10.1016/j.biomaterials.2022.121969] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/27/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Gelatin methacryloyl (GelMA)/alginate-based hydrogels have shown great promise in bioprinting, but their printability is limited at room temperature. In this paper, we present our development of a room temperature printable hydrogel bioink by introducing polyethylene glycol dimethacrylate (PEGDMA) and xanthan gum into the GelMA/alginate system. The inclusion of PEGDMA facilitates tuning of the hydrogel's mechanical property, while xanthan gum improves the viscosity of the hydrogel system and allows easy extrusion at room temperature. To fine-tune the mechanical and degradation properties, methacrylated xanthan gum was synthesized and chemically crosslinked to the system. We systematically characterized this hydrogel with attention to printability, strut size, mechanical property, degradation and cytocompatibility, and achieved a broad range of compression modulus (∼10-100 kPa) and degradation profile (100% degradation by 24 h-40% by 2 weeks). Moreover, xanthan gum demonstrated solubility in ionic solutions such as cell culture medium, which is essential for biocompatibility. Live/dead staining showed that cell viability in the printed hydrogels was over 90% for 7 days. Metabolic activity analysis demonstrated excellent cell proliferation and survival within 4 weeks of incubation. In summary, the newly developed hydrogel system has demonstrated distinct features including extrusion printability, widely tunable mechanical property and degradation, ionic solubility, and cytocompatibility. It offers great flexibility in bioprinting and tissue engineering.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA94304, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA94304, USA
| | - Carolyn Kim
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA94304, USA; Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA94305, USA
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA94304, USA; Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA94305, USA
| | - George Weale
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA94304, USA
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA94304, USA
| | - Geoffrey Abrams
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA94304, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, 720 Rutland Avenue, Room 524A, Baltimore, MD, 21205, USA
| | - HyeRan Choo
- Department of Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA94305, USA
| | - Charles Chan
- Department of Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA94304, USA; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA94305, USA; Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA94305, USA.
| |
Collapse
|
20
|
Kamaraj M, Giri PS, Mahapatra S, Pati F, Rath SN. Bioengineering strategies for 3D bioprinting of tubular construct using tissue-specific decellularized extracellular matrix. Int J Biol Macromol 2022; 223:1405-1419. [PMID: 36375675 DOI: 10.1016/j.ijbiomac.2022.11.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
The goal of the current study is to develop an extracellular matrix bioink that could mimic the biochemical components present in natural blood vessels. Here, we have used an innovative approach to recycle the discarded varicose vein for isolation of endothelial cells and decellularization of the same sample to formulate the decellularized extracellular matrix (dECM) bioink. The shift towards dECM bioink observed as varicose vein dECM provides the tissue-specific biochemical factors that will enhance the regeneration capability. Interestingly, the encapsulated umbilical cord mesenchymal stem cells expressed the markers of vascular smooth muscle cells because of the cues present in the vein dECM. Further, in vitro immunological investigation of dECM revealed a predominant M2 polarization which could further aid in tissue remodeling. A novel approach was used to fabricate vascular construct using 3D bioprinting without secondary support. The outcomes suggest that this could be a potential approach for patient- and tissue-specific blood vessel regeneration.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Pravin Shankar Giri
- Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Sandeep Mahapatra
- Vascular & Endovascular Surgery, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Falguni Pati
- BioFabTE Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
21
|
Yang GH, Kang D, An S, Ryu JY, Lee K, Kim JS, Song MY, Kim YS, Kwon SM, Jung WK, Jeong W, Jeon H. Advances in the development of tubular structures using extrusion-based 3D cell-printing technology for vascular tissue regenerative applications. Biomater Res 2022; 26:73. [PMID: 36471437 PMCID: PMC9720982 DOI: 10.1186/s40824-022-00321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/13/2022] [Indexed: 12/11/2022] Open
Abstract
Until recent, there are no ideal small diameter vascular grafts available on the market. Most of the commercialized vascular grafts are used for medium to large-sized blood vessels. As a solution, vascular tissue engineering has been introduced and shown promising outcomes. Despite these optimistic results, there are limitations to commercialization. This review will cover the need for extrusion-based 3D cell-printing technique capable of mimicking the natural structure of the blood vessel. First, we will highlight the physiological structure of the blood vessel as well as the requirements for an ideal vascular graft. Then, the essential factors of 3D cell-printing including bioink, and cell-printing system will be discussed. Afterwards, we will mention their applications in the fabrication of tissue engineered vascular grafts. Finally, conclusions and future perspectives will be discussed.
Collapse
Affiliation(s)
- Gi Hoon Yang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| | - Donggu Kang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| | - SangHyun An
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Jeong Yeop Ryu
- grid.258803.40000 0001 0661 1556Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, 130 Dongdeok‑ro, Jung‑gu, Daegu, 41944 South Korea
| | - KyoungHo Lee
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Jun Sik Kim
- Preclinical Research Center, K Medi-hub, 80 Cheombok-ro, Dong-gu, Daegu, 41061 South Korea
| | - Moon-Yong Song
- Medical Safety Center, Bio Division, Korea Conformity Laboratories 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, Incheon, 21999 South Korea
| | - Young-Sik Kim
- Medical Safety Center, Bio Division, Korea Conformity Laboratories 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, Incheon, 21999 South Korea
| | - Sang-Mo Kwon
- grid.262229.f0000 0001 0719 8572Department of Physiology, School of Medicine, Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan National University, Yangsan, 626-870 South Korea
| | - Won-Kyo Jung
- grid.412576.30000 0001 0719 8994Division of Biomedical Engineering and Research Center for Marine Integrated Bionics Technology, Pukyong National University, Daeyeon-dong, Nam-gu, Busan, 48513 South Korea
| | - Woonhyeok Jeong
- grid.412091.f0000 0001 0669 3109Department of Plastic and Reconstructive Surgery, Dongsan Medical Center, Keimyung University College of Medicine, 1035 Dalgubeol-daero, Dalseo-gu, Daegu, 42601 South Korea
| | - Hojun Jeon
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc, 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do 15588 South Korea
| |
Collapse
|
22
|
Kang X, Zhang XB, Gao XD, Hao DJ, Li T, Xu ZW. Bioprinting for bone tissue engineering. Front Bioeng Biotechnol 2022; 10:1036375. [PMID: 36507261 PMCID: PMC9732272 DOI: 10.3389/fbioe.2022.1036375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
The shape transformation characteristics of four-dimensional (4D)-printed bone structures can meet the individual bone regeneration needs, while their structure can be programmed to cross-link or reassemble by stimulating responsive materials. At the same time, it can be used to design vascularized bone structures that help establish a bionic microenvironment, thus influencing cellular behavior and enhancing stem cell differentiation in the postprinting phase. These developments significantly improve conventional three-dimensional (3D)-printed bone structures with enhanced functional adaptability, providing theoretical support to fabricate bone structures to adapt to defective areas dynamically. The printing inks used are stimulus-responsive materials that enable spatiotemporal distribution, maintenance of bioactivity and cellular release for bone, vascular and neural tissue regeneration. This paper discusses the limitations of current bone defect therapies, 4D printing materials used to stimulate bone tissue engineering (e.g., hydrogels), the printing process, the printing classification and their value for clinical applications. We focus on summarizing the technical challenges faced to provide novel therapeutic implications for bone defect repair.
Collapse
Affiliation(s)
- Xin Kang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China
| | - Xiao-Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China
| | - Tao Li
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China
| | - Zheng-Wei Xu
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong University, Xian, Shaanxi, China,*Correspondence: Zheng-Wei Xu,
| |
Collapse
|
23
|
Bhattacharyya A, Janarthanan G, Kim T, Taheri S, Shin J, Kim J, Bae HC, Han HS, Noh I. Modulation of bioactive calcium phosphate micro/nanoparticle size and shape during in situ synthesis of photo-crosslinkable gelatin methacryloyl based nanocomposite hydrogels for 3D bioprinting and tissue engineering. Biomater Res 2022; 26:54. [PMID: 36209133 PMCID: PMC9548207 DOI: 10.1186/s40824-022-00301-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background The gelatin-methacryloyl (GelMA) polymer suffers shape fidelity and structural stability issues during 3D bioprinting for bone tissue engineering while homogeneous mixing of reinforcing nanoparticles is always under debate. Method In this study, amorphous calcium phosphates micro/nanoparticles (CNP) incorporated GelMA is synthesized by developing specific sites for gelatin structure-based nucleation and stabilization in a one-pot processing. The process ensures homogenous distribution of CNPs while different concentrations of gelatin control their growth and morphologies. After micro/nanoparticles synthesis in the gelatin matrix, methacrylation is carried out to prepare homogeneously distributed CNP-reinforced gelatin methacryloyl (CNP GelMA) polymer. After synthesis of CNP and CNP GelMA gel, the properties of photo-crosslinked 3D bioprinting scaffolds were compared with those of the conventionally fabricated ones. Results The shape (spindle to spherical) and size (1.753 μm to 296 nm) of the micro/nanoparticles in the GelMA matrix are modulated by adjusting the gelatin concentrations during the synthesis. UV cross-linked CNP GelMA (using Irgacure 2955) has significantly improved mechanical (three times compressive strength), 3D printability (160 layers, 2 cm self-standing 3D printed height) and biological properties (cell supportiveness with osteogenic differentiation). The photo-crosslinking becomes faster due to better methacrylation, facilitating continuous 3D bioprinting or printing. Conclusion For 3D bioprinting using GelMA like photo cross-linkable polymers, where structural stability and homogeneous control of nanoparticles are major concerns, CNP GelMA is beneficial for even bone tissue regeneration within short period. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00301-6.
Collapse
Affiliation(s)
- Amitava Bhattacharyya
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.,Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.,Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
| | - Gopinathan Janarthanan
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.,Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Taeyang Kim
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Shiva Taheri
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jisun Shin
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jihyeon Kim
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Hyun Cheol Bae
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyuk-Soo Han
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea. .,Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
24
|
Prabhakaran P, Palaniyandi T, Kanagavalli B, Ram Kumar V, Hari R, Sandhiya V, Baskar G, Rajendran BK, Sivaji A. Prospect and retrospect of 3D bio-printing. Acta Histochem 2022; 124:151932. [PMID: 36027838 DOI: 10.1016/j.acthis.2022.151932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/01/2022]
Abstract
3D bioprinting has become a popular medical technique in recent years. The most compelling rationale for the development of 3D bioprinting is the paucity of biological structures required for the rehabilitation of missing organs and tissues. They're useful in a multitude of domains, including disease modelling, regenerative medicine, tissue engineering, drug discovery with testing, personalised medicine, organ development, toxicity studies, and implants. Bioprinting requires a range of bioprinting technologies and bioinks to finish their procedure, that Inkjet-based bioprinting, extrusion-based bioprinting, laser-assisted bioprinting, stereolithography-based bioprinting, and in situ bioprinting are some of the technologies listed here. Bioink is a 3D printing material that is used to construct engineered artificial living tissue. It can be constructed solely for cells, but it usually includes a carrier substance that envelops the cells, then there's Agarose-based bioinks, alginate-based bioinks, collagen-based bioinks, and hyaluronic acid-based bioinks, to name a few. Here we presented about the different bioprinting methods with the use of bioinks in it and then Prospected over various applications in different fields.
Collapse
Affiliation(s)
- Pranav Prabhakaran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Thirunavukkarsu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India; Department of Anatomy, Biomedical Reseach Unit and Laboratory Animal Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - B Kanagavalli
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - V Ram Kumar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Rajeswari Hari
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - V Sandhiya
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to University, Chennai, India
| | | | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|
25
|
Chimene D, Deo KA, Thomas J, Dahle L, Mandrona C, Gaharwar AK. Designing Cost-Effective Open-Source Multihead 3D Bioprinters. GEN BIOTECHNOLOGY 2022; 1:386-400. [PMID: 36061222 PMCID: PMC9426752 DOI: 10.1089/genbio.2022.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
For the past decade, additive manufacturing has resulted in significant advances toward fabricating anatomic-size patient-specific scaffolds for tissue models and regenerative medicine. This can be attributed to the development of advanced bioinks capable of precise deposition of cells and biomaterials. The combination of additive manufacturing with advanced bioinks is enabling researchers to fabricate intricate tissue scaffolds that recreate the complex spatial distributions of cells and bioactive cues found in the human body. However, the expansion of this promising technique has been hampered by the high cost of commercially available bioprinters and proprietary software. In contrast, conventional three-dimensional (3D) printing has become increasingly popular with home hobbyists and caused an explosion of both low-cost thermoplastic 3D printers and open-source software to control the printer. In this study, we bring these benefits into the field of bioprinting by converting widely available and cost-effective 3D printers into fully functional, open-source, and customizable multihead bioprinters. These bioprinters utilize computer controlled volumetric extrusion, allowing bioinks with a wide range of flow properties to be bioprinted, including non-Newtonian bioinks. We demonstrate the practicality of this approach by designing bioprinters customized with multiple extruders, automatic bed leveling, and temperature controls for ∼$400 USD. These bioprinters were then used for in vitro and ex vivo bioprinting to demonstrate their utility for tissue engineering.
Collapse
Affiliation(s)
- David Chimene
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Kaivalya A. Deo
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeremy Thomas
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Landon Dahle
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Cole Mandrona
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Department of Biochemistry and Biophysics, Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, Texas, USA
- Department of Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
26
|
Tissue Engineering Approaches to Uncover Therapeutic Targets for Endothelial Dysfunction in Pathological Microenvironments. Int J Mol Sci 2022; 23:ijms23137416. [PMID: 35806421 PMCID: PMC9266895 DOI: 10.3390/ijms23137416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Endothelial cell dysfunction plays a central role in many pathologies, rendering it crucial to understand the underlying mechanism for potential therapeutics. Tissue engineering offers opportunities for in vitro studies of endothelial dysfunction in pathological mimicry environments. Here, we begin by analyzing hydrogel biomaterials as a platform for understanding the roles of the extracellular matrix and hypoxia in vascular formation. We next examine how three-dimensional bioprinting has been applied to recapitulate healthy and diseased tissue constructs in a highly controllable and patient-specific manner. Similarly, studies have utilized organs-on-a-chip technology to understand endothelial dysfunction's contribution to pathologies in tissue-specific cellular components under well-controlled physicochemical cues. Finally, we consider studies using the in vitro construction of multicellular blood vessels, termed tissue-engineered blood vessels, and the spontaneous assembly of microvascular networks in organoids to delineate pathological endothelial dysfunction.
Collapse
|
27
|
Nadine S, Chung A, Diltemiz SE, Yasuda B, Lee C, Hosseini V, Karamikamkar S, de Barros NR, Mandal K, Advani S, Zamanian BB, Mecwan M, Zhu Y, Mofidfar M, Zare MR, Mano J, Dokmeci MR, Alambeigi F, Ahadian S. Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artif Organs 2022; 46:E211-E243. [PMID: 35349178 DOI: 10.1111/aor.14232] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tissue engineering provides various strategies to fabricate an appropriate microenvironment to support the repair and regeneration of lost or damaged tissues. In this matter, several technologies have been implemented to construct close-to-native three-dimensional structures at numerous physiological scales, which are essential to confer the functional characteristics of living tissues. METHODS In this article, we review a variety of microfabrication technologies that are currently utilized for several tissue engineering applications, such as soft lithography, microneedles, templated and self-assembly of microstructures, microfluidics, fiber spinning, and bioprinting. RESULTS These technologies have considerably helped us to precisely manipulate cells or cellular constructs for the fabrication of biomimetic tissues and organs. Although currently available tissues still lack some crucial functionalities, including vascular networks, innervation, and lymphatic system, microfabrication strategies are being proposed to overcome these issues. Moreover, the microfabrication techniques that have progressed to the preclinical stage are also discussed. CONCLUSIONS This article aims to highlight the advantages and drawbacks of each technique and areas of further research for a more comprehensive and evolving understanding of microfabrication techniques in terms of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ada Chung
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | | | - Brooke Yasuda
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | - Charles Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA.,Station 1, Lawrence, Massachusetts, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Shailesh Advani
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Palo Alto, California, USA
| | | | - João Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Farshid Alambeigi
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| |
Collapse
|
28
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|
29
|
Royse MK, Means AK, Calderon GA, Kinstlinger IS, He Y, Durante MR, Procopio A, Veiseh O, Xu J. A 3D printable perfused hydrogel vascular model to assay ultrasound-induced permeability. Biomater Sci 2022; 10:3158-3173. [DOI: 10.1039/d2bm00223j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an in vitro model to study vascular permeability is vital for clinical applications such as the targeted delivery of therapeutics. This work demonstrates the use of a...
Collapse
|
30
|
Banerjee P, Olmsted-Davis EA, Deswal A, Nguyen MTH, Koutroumpakis E, Palaskas NL, Lin SH, Kotla S, Reyes-Gibby C, Yeung SCJ, Yusuf SW, Yoshimoto M, Kobayashi M, Yu B, Schadler K, Herrmann J, Cooke JP, Jain A, Chini E, Le NT, Abe JI. Cancer treatment-induced NAD+ depletion in premature senescence and late cardiovascular complications. THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:28. [PMID: 35801078 PMCID: PMC9258520 DOI: 10.20517/jca.2022.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous studies have revealed the critical role of premature senescence induced by various cancer treatment modalities in the pathogenesis of aging-related diseases. Senescence-associated secretory phenotype (SASP) can be induced by telomere dysfunction. Telomeric DNA damage response induced by some cancer treatments can persist for months, possibly accounting for long-term sequelae of cancer treatments. Telomeric DNA damage-induced mitochondrial dysfunction and increased reactive oxygen species production are hallmarks of premature senescence. Recently, we reported that the nucleus-mitochondria positive feedback loop formed by p90 ribosomal S6 kinase (p90RSK) and phosphorylation of S496 on ERK5 (a unique member of the mitogen-activated protein kinase family that is not only a kinase but also a transcriptional co-activator) were vital signaling events that played crucial roles in linking mitochondrial dysfunction, nuclear telomere dysfunction, persistent SASP induction, and atherosclerosis. In this review, we will discuss the role of NAD+ depletion in instigating SASP and its downstream signaling and regulatory mechanisms that lead to the premature onset of atherosclerotic cardiovascular diseases in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Elizabeth A. Olmsted-Davis
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Minh TH. Nguyen
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA.,University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi 122100, Vietnam
| | - Efstratios Koutroumpakis
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cielito Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Momoko Yoshimoto
- Center for Stem Cell & Regenerative Medicine, The University of Texas Health Science Center of Houston, TX 77030, USA
| | - Michihiro Kobayashi
- Center for Stem Cell & Regenerative Medicine, The University of Texas Health Science Center of Houston, TX 77030, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences School of Public Health, The University of Texas Health Science Center of Houston, TX 77030, USA
| | - Keri Schadler
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - John P. Cooke
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M, College Station, TX 77843, USA
| | - Eduardo Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nhat-Tu Le
- Academic Institute, Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
31
|
García-Villén F, Ruiz-Alonso S, Lafuente-Merchan M, Gallego I, Sainz-Ramos M, Saenz-del-Burgo L, Pedraz JL. Clay Minerals as Bioink Ingredients for 3D Printing and 3D Bioprinting: Application in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:1806. [PMID: 34834221 PMCID: PMC8623235 DOI: 10.3390/pharmaceutics13111806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
The adaptation and progress of 3D printing technology toward 3D bioprinting (specifically adapted to biomedical purposes) has opened the door to a world of new opportunities and possibilities in tissue engineering and regenerative medicine. In this regard, 3D bioprinting allows for the production of tailor-made constructs and organs as well as the production of custom implants and medical devices. As it is a growing field of study, currently, the attention is heeded on the optimization and improvement of the mechanical and biological properties of the so-called bioinks/biomaterial inks. One of the strategies proposed is the use of inorganic ingredients (clays, hydroxyapatite, graphene, carbon nanotubes and other silicate nanoparticles). Clays have proven to be useful as rheological and mechanical reinforcement in a wide range of fields, from the building industry to pharmacy. Moreover, they are naturally occurring materials with recognized biocompatibility and bioactivity, revealing them as optimal candidates for this cutting-edge technology. This review deals with the use of clays (both natural and synthetic) for tissue engineering and regenerative medicine through 3D printing and bioprinting. Despite the limited number of studies, it is possible to conclude that clays play a fundamental role in the formulation and optimization of bioinks and biomaterial inks since they are able to improve their rheology and mechanical properties, thus improving printability and construct resistance. Additionally, they have also proven to be exceptionally functional ingredients (enhancing cellular proliferation, adhesion, differentiation and alignment), controlling biodegradation and carrying/releasing actives with tissue regeneration therapeutic activities.
Collapse
Affiliation(s)
- Fátima García-Villén
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (M.L.-M.); (I.G.); (M.S.-R.); (L.S.-d.-B.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|