1
|
Zhao J, Zaheer M, You J, Owyong TC, Giel MC, Praveen P, Li W, Hou J, Hogan CF, Zhao E, Ding S, Hong Y. Functionalized α-Cyanostilbene Derivatives for Detection of Hypoxia or Proteostasis Imbalance in Live Cells. Chemistry 2024; 30:e202402630. [PMID: 39229809 DOI: 10.1002/chem.202402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024]
Abstract
α-Cyanostilbene represents one of the easily functionalized aggregation-induced emission (AIE) scaffolds. It has been widely adopted for the construction of fluorescent materials for broad applications. Here, we further expanded the utilization of α-cyanostilbene derivatives for the detection of hypoxia or proteostasis imbalance in live cells. Four different amine containing donors were introduced to construct α-cyanostilbene derivatives (R-ASC) with donor-acceptor scaffolds. Equipped with the cysteine (Cys) reactive group, maleimide (MI), R-ASC-MI shows fluorescence turn-on property upon binding with unfolded proteins in vitro and in live cells under proteostatic stress. By virtue of R-ASC-MI, the level of unfolded protein loads in cells can be quantified by flow cytometry, or visualized under microscope. Furthermore, we also characterized the performance of R-ASC-NO2, synthetic precursors of R-ASC-MI, in cellular hypoxia. R-ASC-NO2 revealed upregulated activities of nitroreductase, as well as increased hydrophobicity in live cells, under either chemical (NaN3) induced or atmospheric (1 % O2) hypoxia. Together, the advantages of easy modification and high signal-to-noise ratio of new α-cyanostilbene derivatives reported in this work highlight the great potential of α-cyanostilbene in constructing functional biosensors and many other domains.
Collapse
Affiliation(s)
- Jiamin Zhao
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Maryam Zaheer
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Jiawei You
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Tze Cin Owyong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marie-Claire Giel
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Praveen Praveen
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Conor F Hogan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Siyang Ding
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Zhang S, Owyong TC, Sanislav O, Englmaier L, Sui X, Wang G, Greening DW, Williamson NA, Villunger A, White JM, Heras B, Wong WWH, Fisher PR, Hong Y. Global analysis of endogenous protein disorder in cells. Nat Methods 2024:10.1038/s41592-024-02507-z. [PMID: 39587358 DOI: 10.1038/s41592-024-02507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Disorder and flexibility in protein structures are essential for biological function but can also contribute to diseases, such as neurodegenerative disorders. However, characterizing protein folding on a proteome-wide scale within biological matrices remains challenging. Here we present a method using a bifunctional chemical probe, named TME, to capture in situ, enrich and quantify endogenous protein disorder in cells. TME exhibits a fluorescence turn-on effect upon selective conjugation with proteins with free cysteines in surface-exposed and flexible environments-a distinctive signature of protein disorder. Using an affinity-based proteomic approach, we identify both basal disordered proteins and those whose folding status changes under stress, with coverage to proteins even of low abundance. In lymphoblastoid cells from individuals with Parkinson's disease and healthy controls, our TME-based strategy distinguishes the two groups more effectively than lysate profiling methods. High-throughput TME fluorescence and proteomics further reveal a universal cellular quality-control mechanism in which cells adapt to proteostatic stress by adopting aggregation-prone distributions and sequestering disordered proteins, as illustrated in Huntington's disease cell models.
Collapse
Affiliation(s)
- Shouxiang Zhang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Tze Cin Owyong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Oana Sanislav
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Xiaojing Sui
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, USA
| | - Geqing Wang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Villunger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Jonathan M White
- School of Chemistry, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Wallace W H Wong
- School of Chemistry, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
- ARC Centre of Excellence in Exciton Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul R Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Fakim A, Maatouk BI, Maiti B, Dey A, Alotaiby SH, Moosa BA, Lin W, Khashab NM. Flaring Inflammation and ER Stress by an Organelle-Specific Fluorescent Cage. Adv Healthc Mater 2024; 13:e2401117. [PMID: 38848965 DOI: 10.1002/adhm.202401117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Indexed: 06/09/2024]
Abstract
The endoplasmic reticulum (ER) plays an important role in protein synthesis and its disruption can cause protein unfolding and misfolding. Accumulation of such proteins leads to ER stress, which ultimately promotes many diseases. Routine screening of ER activity in immune cells can flag serious conditions at early stages, but the current clinically used bio-probes have limitations. Herein, an ER-specific fluorophore based on a biocompatible benzothiadiazole-imine cage (BTD-cage) with excellent photophysical properties is developed. The cage outperforms commercially available ER stains in long-term live cell imaging with no fading or photobleaching over time. The cage is responsive to different levels of ER stress where its fluorescence increases accordingly. Incorporating the bio-probe into an immune disorder model, a 6-, 21-, and 48-fold increase in intensity is shown in THP-1, Raw 246.7, and Jurkat cells, respectively (within 15 min). These results strongly support that this system can be used for rapid visual and selective detection of ER stress. It is envisaged that tailoring molecular interactions and molecular recognition using supramolecular improved fluorophores can expand the library of biological probes for enhanced selectivity and targetability toward cellular organelles.
Collapse
Affiliation(s)
- Aliyah Fakim
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Batoul I Maatouk
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bappa Maiti
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Avishek Dey
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shahad H Alotaiby
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem A Moosa
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Weibin Lin
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Wu X, Hu JJ, Duan C, Liu R, Xia F, Lou X. A Universal and Programmable Platform based on Fluorescent Peptide-Conjugated Probes for Detection of Proteins in Organelles of Living Cells. Angew Chem Int Ed Engl 2024; 63:e202400766. [PMID: 38438308 DOI: 10.1002/anie.202400766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/06/2024]
Abstract
Realizing protein analysis in organelles of living cells is of great significance for developing diagnostic and therapeutic methods of diseases. Fluorescent-labeled antibodies with well imaging performance and high affinity are classical biochemical tools for protein analysis, while due to the inability to effectively enter into cells, not to mention organelles and the uncontrollable reaction sites that might cause antibodies inactivation when chemically modification, they are hard to apply to living cells. Inspired by the structure of fluorescent-labeled antibodies, we designed as a universal detection platform that was based on the peptide-conjugated probes (PCPs) and consisted of three parts: a) a rotor type fluorescent molecular scaffold for conjugation and signal output; b) the cell penetration protein recognition unit; c) the subcellular organelle targeting unit. In living cells, PCPs could firstly localize at organelles and then proceed protein specific recognition, thus jointly leading to the restriction of twisted intramolecular charge transfer and activation of fluorescence signal. As a proof-of-concept, six different proteins in three typical intracellular organelles could be detected by our platform through simply replacing the recognition sequence of proteins and matching organelle targeting units. The position and intensity of fluorescence signals demonstrated specificity of PCPs and universality of the platform.
Collapse
Affiliation(s)
- Xia Wu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, China
| | - Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, China
| |
Collapse
|
5
|
Hoelzel C, Bai Y, Wang M, Liu Y, Zhang X. High-Fidelity Assay Based on Turn-Off Fluorescence to Detect the Perturbations of Cellular Proteostasis. ACS BIO & MED CHEM AU 2024; 4:111-118. [PMID: 38645930 PMCID: PMC11027126 DOI: 10.1021/acsbiomedchemau.3c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 04/23/2024]
Abstract
The persistence of neurodegenerative diseases has necessitated the development of new strategies to monitor protein homeostasis (proteostasis). Previous efforts in our laboratory have focused on the development of fluorogenic strategies to observe the onset and progression of proteostatic stress. These works utilized solvatochromic and viscosity sensitive fluorophores to sense protein folded states, enabling stressor screening with an increase in the emission intensity upon aggregation. In this work, we present a novel, high-fidelity assay to detect perturbations of cellular proteostasis, where the fluorescence intensity decreases with the onset of proteostatic stress. Utilizing a fluorogenic, hydroxymethyl silicon-rhodamine probe to differentiate between protein folded states, we establish the validity of this technology in living cells by demonstrating a two-fold difference in fluorescence intensity between unstressed and stressed conditions.
Collapse
Affiliation(s)
- Conner Hoelzel
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yulong Bai
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, China
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang
Province China
- Institute
of Natural Sciences, Westlake Institute for Advanced Study, Westlake
Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| | - Mengdie Wang
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, China
| | - Yu Liu
- Dalian
Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, China
| | - Xin Zhang
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang
Province China
- Institute
of Natural Sciences, Westlake Institute for Advanced Study, Westlake
Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province China
| |
Collapse
|
6
|
Jing B, Bi Y, Kong H, Wan W, Wang J, Yu B. Dual-environment-sensitive probe to detect protein aggregation in stressed laryngeal carcinoma cells and tissues. J Mater Chem B 2024; 12:2505-2510. [PMID: 38334693 DOI: 10.1039/d3tb02627b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The interplay between protein folding and biological activity is crucial, with the integrity of the proteome being paramount to ensuring effective biological function execution. In this study, we report a dual-environment-sensitive probe A1, capable of selectively binding to protein aggregates and dynamically monitoring their formation and degradation. Through in vitro, cellular, and tissue assays, A1 demonstrated specificity in distinguishing aggregated from folded protein states, selectively partitioning into aggregated proteins. Thermal shift assays revealed A1 could monitor the process of protein aggregation upon binding to misfolded proteins and preceding to insoluble aggregate formation. In cellular models, A1 detected stress-induced proteome aggregation in TU212 cells (laryngeal carcinoma cells), revealing a less polar microenvironment within the aggregated proteome. Similarly, tissue samples showed more severe proteome aggregation in cancerous tissues compared to paracancerous tissues. Overall, A1 represents a versatile tool for probing protein aggregation with significant implications for both fundamental research and clinical diagnostics.
Collapse
Affiliation(s)
- Biao Jing
- Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yanjie Bi
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China.
| | - Hui Kong
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China.
| | - Wang Wan
- Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jizhe Wang
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China.
| | - Bo Yu
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
7
|
Wang Q, Chen B, Duan C, Wang T, Lou X, Dai J, Xia F. Unfolded Protein-Based Sandwich AIE Probe Imparts High Fluorescent Contrast for Pan-Cancer Surgical Navigation. Anal Chem 2024; 96:3609-3617. [PMID: 38364862 DOI: 10.1021/acs.analchem.3c05735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Fluorescence imaging-guided navigation for cancer surgery has a promising clinical application. However, pan-cancer encompasses a wide variety of cancer types with significant heterogeneity, resulting in the lack of universal and highly contrasted fluorescent probes for surgical navigation. Here, we developed an aggregation-induced emission (AIE) probe (MI-AIE-TsG, MAT) with dual activation for pan-cancer surgical navigation. MAT weakly activates fluorescence by targeting the SUR1 protein on the endoplasmic reticulum (ER) through the TsG group. Subsequently, the sulfhydryl groups on the unfolded proteins, which are highly enriched in cancer ER, react with the maleimide (MI) of MAT through the thiol-ene click reaction, further enhancing the fluorescence. The formation of a SUR1-MAT-unfolded protein sandwich complex reinforces the restriction of intramolecular motion and eliminates photoinduced electron transfer of MAT, leading to high signal-to-noise (9.2) fluorescence imaging and use for surgical navigation of pan-cancer. The generally high content of unfolded proteins in cancer cells makes MAT imaging generalizable, and it currently has proven feasibility in ovarian, cervical, and breast cancers. Meanwhile, MAT promotes cellular autophagy by hindering protein folding, thereby inhibiting cancer cell proliferation. This generalizable, high-contrast AIE fluorescent probe spans the heterogeneity of pancreatic cancer, enabling precise pancreatic cancer surgery navigation and treatment.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
8
|
Moradi Y, Lee JSH, Armani AM. Detecting Disruption of HER2 Membrane Protein Organization in Cell Membranes with Nanoscale Precision. ACS Sens 2024; 9:52-61. [PMID: 37955934 PMCID: PMC10825864 DOI: 10.1021/acssensors.3c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
The spatiotemporal organization of proteins within the cell membrane can affect numerous biological functions, including cell signaling, communication, and transportation. Deviations from normal spatial arrangements have been observed in various diseases, and a better understanding of this process is a key stepping stone to advancing development of clinical interventions. However, given the nanometer length scales involved, detecting these subtle changes has primarily relied on complex super-resolution and single-molecule imaging methods. In this work, we demonstrate an alternative fluorescent imaging strategy for detecting protein organization based on a material that exhibits a unique photophysical behavior known as aggregation-induced emission (AIE). Organic AIE molecules have an increase in emission signal when they are in close proximity, and the molecular motion is restricted. This property simultaneously addresses the high background noise and low detection signal that limit conventional widefield fluorescent imaging. To demonstrate the potential of this approach, the fluorescent molecule sensor is conjugated to a human epidermal growth factor receptor 2 (HER2)-specific antibody and used to investigate the spatiotemporal behavior of HER2 clustering in the membrane of HER2-overexpressing breast cancer cells. Notably, the disruption of HER2 clusters in response to an FDA-approved monoclonal antibody therapeutic (Trastuzumab) is successfully detected using a simple widefield fluorescent microscope. While the sensor demonstrated here is optimized for sensing HER2 clustering, it is an easily adaptable platform. Moreover, given the compatibility with widefield imaging, the system has the potential to be used with high-throughput imaging techniques, accelerating investigations into membrane protein spatiotemporal organization.
Collapse
Affiliation(s)
- Yasaman Moradi
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Ellison
Institute of Technology, Los Angeles, California 90064, United States
| | - Jerry S. H. Lee
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Ellison
Institute of Technology, Los Angeles, California 90064, United States
- Keck
School of Medicine, University of Southern
California, Los Angeles, California 90089, United States
| | - Andrea M. Armani
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Ellison
Institute of Technology, Los Angeles, California 90064, United States
| |
Collapse
|
9
|
Bao J, Tong C, He M, Zhang H. Luminescent polypeptides. LUMINESCENCE 2024; 39:e4594. [PMID: 37712500 DOI: 10.1002/bio.4594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Polypeptides, as biomacromolecules, hold immense potential in various biological applications such as tissue engineering, immunomodulating agents, and target binding. Among these applications, the attention towards luminescent polypeptides has grown significantly, due to their ability to visualize biological processes effectively. In this perspective, we have compiled information on three distinct types of luminescent polypeptides: natural fluorescent proteins, luminophores-bioconjugated polypeptides, and synthesized polypeptides with clusteroluminescence. Last, we shed light on the significance and prospects of clusteroluminescent polypeptides, which are expected to emerge as crucial new-generation bioluminophores, offering high emission efficiency and tunable emission wavelengths.
Collapse
Affiliation(s)
- Jieyu Bao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chuanye Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Mengxuan He
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, China
| |
Collapse
|
10
|
Segawa S, He X, Tang BZ. Metal-free click and bioorthogonal reactions of aggregation-induced emission probes for lighting up living systems. LUMINESCENCE 2024; 39:e4619. [PMID: 37987236 DOI: 10.1002/bio.4619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
In 2002, two transformative research paradigms emerged: 'click chemistry' and 'aggregation-induced emission (AIE),' both leaving significant impacts on early 21st-century academia. Click chemistry, which describes the straightforward and reliable reactions for linking two building blocks, has simplified complex molecular syntheses and functionalization, propelling advancements in polymer, material, and life science. In particular, nontoxic, metal-free click reactions involving abiotic functional groups have matured into bioorthogonal reactions. These are organic ligations capable of selective and efficient operations even in congested living systems, therefore enabling in vitro to in vivo biomolecular labelling. Concurrently, AIE, a fluorogenic phenomenon of twisted π-conjugated compounds upon aggregation, has offered profound insight into solid-state photophysics and promoted the creation of aggregate materials. The inherent fluorogenicity and aggregate-emission properties of AIE luminogens have found extensive application in biological imaging, characterized by their high-contrast and photostable fluorescent signals. As such, the convergence of these two domains to yield efficient labelling with excellent fluorescence images is an anticipated progression in recent life science research. In this review, we intend to showcase the synergetic applications of AIE probes and metal-free click or bioorthogonal reactions, highlighting both the achievements and the unexplored avenues in this promising field.
Collapse
Affiliation(s)
- Shinsuke Segawa
- Department of Chemical and Biological Engineering, School of Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
12
|
Qiao Y, Hu JJ, Hu Y, Duan C, Jiang W, Ma Q, Hong Y, Huang WH, Xia F, Lou X. Detection of Unfolded Cellular Proteins Using Nanochannel Arrays with Probe-Functionalized Outer Surfaces. Angew Chem Int Ed Engl 2023; 62:e202309671. [PMID: 37672359 DOI: 10.1002/anie.202309671] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Nanochannel technology has emerged as a powerful tool for label-free and highly sensitive detection of protein folding/unfolding status. However, utilizing the inner walls of a nanochannel array may cause multiple events even for proteins with the same conformation, posing challenges for accurate identification. Herein, we present a platform to detect unfolded proteins through electrical and optical signals using nanochannel arrays with outer-surface probes. The detection principle relies on the specific binding between the maleimide groups in outer-surface probes and the protein cysteine thiols that induce changes in the ionic current and fluorescence intensity responses of the nanochannel array. By taking advantage of this mechanism, the platform has the ability to differentiate folded and unfolded state of proteins based on the exposure of a single cysteine thiol group. The integration of these two signals enhances the reliability and sensitivity of the identification of unfolded protein states and enables the distinction between normal cells and Huntington's disease mutant cells. This study provides an effective approach for the precise analysis of proteins with distinct conformations and holds promise for facilitating the diagnoses of protein conformation-related diseases.
Collapse
Affiliation(s)
- Yujuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuxin Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Chong Duan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Wenlian Jiang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Qun Ma
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Wei Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
13
|
Owyong TC, Zhao J, Hong Y. Small molecule fluorescent probes for the study of protein phase separation. Curr Opin Chem Biol 2023; 76:102354. [PMID: 37364418 DOI: 10.1016/j.cbpa.2023.102354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Liquid-liquid phase separation (LLPS) and liquid-solid phase transitions (LSPT) play crucial roles in biological systems, including sorting biomolecules, facilitate the transport of substrates for assembly, and accelerate the formation of metabolic and signaling complexes. Efforts towards improved characterization and quantification of phase separated species remain of outstanding interest and priority. In this review, we cover recent advances and the strategies used with small molecule fluorescent probes for the study of phase separation.
Collapse
Affiliation(s)
- Tze Cin Owyong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia; ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, VIC, 3010, Australia
| | - Jiamin Zhao
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086 Australia.
| |
Collapse
|
14
|
Chen B, Hu JJ, Ouyang H, Zhang W, Dai J, Xu L, Xia F, Lou X. Peptide-Conjugated Probe Inducing Mitochondrial Dysfunction and Self-Reporting Cell Apoptosis by Aggregated Proteins. Anal Chem 2023; 95:12903-12912. [PMID: 37594437 DOI: 10.1021/acs.analchem.3c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Inducing and monitoring cell apoptosis in a real-time manner are crucial for evaluating the therapeutic effect of drugs and avoiding excessive treatment. Although promising advancements have been made to monitor cell apoptosis by assessing cell membrane integrity, the chronic compromise of cellular fitness caused by imbalance proteostasis is not visible and hard to be detected. As an indicator for cell apoptosis, imaging of aggregated proteins provides a new direction. Herein, we design a peptide-conjugated probe (QRKN) that can induce mitochondrial dysfunction for self-reporting cell apoptosis by imaging aggregated proteins. Specifically, QRKN can be cleaved into the α-helix-forming part (QRK) and azide-modified small-molecule part (N) by overexpressed cathepsin B (CB) in tumor cells. The QRK part can destroy the mitochondrial membrane and promote cytochrome c (Cyt c) efflux and caspase 3 expression. The other N part can inhibit the activity of mitochondrial complex IV (Mito-IV) and decrease the expression level of adenosine triphosphate (ATP). Two signaling pathways cooperatively induce mitochondrial dysfunction, resulting in protein aggregation and cell apoptosis ultimately. Meanwhile, the cell apoptosis process can be monitored based on QRKN, which is highly sensitive to the aggregated protein-triggered viscosity change. The self-reporting probe can monitor therapeutic responses and provide valuable diagnosis information.
Collapse
Affiliation(s)
- Bochao Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hanzhi Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wei Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
15
|
Fluorogenic toolbox for visualizing protein aggregation: From designing principles to biological application. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Cox D, Ormsby AR, Reid GE, Hatters DM. Protein painting reveals pervasive remodeling of conserved proteostasis machinery in response to pharmacological stimuli. NPJ Syst Biol Appl 2022; 8:46. [DOI: 10.1038/s41540-022-00256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022] Open
Abstract
AbstractThe correct spatio-temporal organization of the proteome is essential for cellular homeostasis. However, a detailed mechanistic understanding of this organization and how it is altered in response to external stimuli in the intact cellular environment is as-yet unrealized. ‘Protein painting methods provide a means to address this gap in knowledge by monitoring the conformational status of proteins within cells at the proteome-wide scale. Here, we demonstrate the ability of a protein painting method employing tetraphenylethene maleimide (TPE-MI) to reveal proteome network remodeling in whole cells in response to a cohort of commonly used pharmacological stimuli of varying specificity. We report specific, albeit heterogeneous, responses to individual stimuli that coalesce on a conserved set of core cellular machineries. This work expands our understanding of proteome conformational remodeling in response to cellular stimuli, and provides a blueprint for assessing how these conformational changes may contribute to disorders characterized by proteostasis imbalance.
Collapse
|
17
|
Owyong TC, Hong Y. Emerging fluorescence tools for the study of proteostasis in cells. Curr Opin Chem Biol 2022; 67:102116. [PMID: 35176555 DOI: 10.1016/j.cbpa.2022.102116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Understanding how cells maintain the functional proteome and respond to stress conditions is critical for deciphering molecular pathogenesis and developing treatments for conditions such as neurodegenerative diseases. Efforts towards finer quantification of cellular proteostasis machinery efficiency, phase transitions and local environment changes remain a priority. Herein, we describe recent developments in fluorescence-based strategy and methodology, building on the experimental toolkit, for the study of proteostasis (protein homeostasis) in cells. We hope this review can assist in bridging gaps between a multitude of research disciplines and promote interdisciplinary collaboration to address the crucial topic of proteostasis.
Collapse
Affiliation(s)
- Tze Cin Owyong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia; ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
18
|
Ye S, Hsiung CH, Tang Y, Zhang X. Visualizing the Multistep Process of Protein Aggregation in Live Cells. Acc Chem Res 2022; 55:381-390. [PMID: 35040316 PMCID: PMC9098262 DOI: 10.1021/acs.accounts.1c00648] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Protein aggregation is a biological phenomenon in which aberrantly processed or mutant proteins misfold and assemble into a variety of insoluble aggregates. Decades of studies have delineated the structure, interaction, and activity of proteins in either their natively folded structures or insoluble aggregates such as amyloid fibrils. However, a variety of intermediate species exist between these two extreme states in the protein folding landscape. Herein, we collectively term these intermediate species as misfolded protein oligomers, including soluble oligomers and preamyloid oligomers that are formed by unfolded or misfolded proteins. While extensive tools have been developed to study folded proteins or amyloid fibrils, research to understand the properties and activities of misfolded protein oligomers has been limited by the lack of methods to detect and interrogate these species in live cells.In this Account, we describe our efforts in the development of chemical methods that allow for the characterization of the multistep protein aggregation process, in particular the misfolded protein oligomers, in living cells. As the start of this journey, we attempted to develop a fluorogenic method wherein the misfolded oligomers could turn on the fluorescence of chemical probes that are conjugated to the protein-of-interest (POI). To this end, we produced a series of destabilized HaloTag variants, formulating the primary component of the AgHalo sensor, which misfolds and aggregates when cells are subjected to stress. When AgHalo is covalently conjugated with a solvatochromic fluorophore, misfolding of the AgHalo conjugate would activate fluorescence, resulting in the observation of misfolded oligomers. Following this work, we extended the scope of detection from AgHalo to any protein-of-interest via the AggTag method, wherein the POIs are genetically fused to self-labeling protein tags (HaloTag or SNAP-tag). Focusing on the molecular rotor-based fluorophores, we applied the modulated fluorescent protein (FP) chromophore core as a prototype for the AggTag probes, to enable the fluorogenic detection of misfolded soluble oligomers of multiple proteins in live cells. Next, we further developed the AggTag method to distinguish insoluble aggregates from misfolded oligomers, using two classes of probes that activate different fluorescence emission toward these two conformations. To enable this goal, we applied physical organic chemistry and computational chemistry to discover a new category of triode-like fluorophores, wherein the π orbitals of either an electron density regulator or the donor-acceptor linkages are used to control the rotational barriers of fluorophores in the excited states. This mechanism allows us to rationally design molecular rotor-based fluorophores that have desired responses to viscosity, thus extending the application of the AggTag method.In summary, our work allows the direct monitoring of the misfolded protein oligomers and differentiation of insoluble aggregates from other conformations in live cells, thus enabling studies of many currently unanswered questions in protein aggregation. Future directions are to develop methods that enable quantitative analyses of the protein aggregation process. Further, new methods are needed to detect and to quantify the formation and maturation of protein or RNA condensates that form membraneless organelles.
Collapse
Affiliation(s)
- Songtao Ye
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States,Present address: School of Science and School of Life Sciences, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study; Westlake Laboratory of Life Sciences and Biomedicine; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Chia-Heng Hsiung
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States,Present address: School of Science and School of Life Sciences, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study; Westlake Laboratory of Life Sciences and Biomedicine; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yuqi Tang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States,Present address: School of Science and School of Life Sciences, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study; Westlake Laboratory of Life Sciences and Biomedicine; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xin Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States,Present address: School of Science and School of Life Sciences, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study; Westlake Laboratory of Life Sciences and Biomedicine; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|