1
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
2
|
Javid H, Oryani MA, Rezagholinejad N, Hashemzadeh A, Karimi-Shahri M. Unlocking the potential of RGD-conjugated gold nanoparticles: a new frontier in targeted cancer therapy, imaging, and metastasis inhibition. J Mater Chem B 2024; 12:10786-10817. [PMID: 39351647 DOI: 10.1039/d4tb00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In the rapidly evolving field of cancer therapeutics, the potential of gold nanoparticles (AuNPs) conjugated with RGD peptides has emerged as a promising avenue for targeted therapy and imaging. Despite numerous studies demonstrating the effectiveness of RGD-conjugated AuNPs in specifically targeting tumor cells and enhancing radiation therapy (RT), a comprehensive review of these advancements is currently lacking. This review aims to fill this critical gap in the literature. Our analysis reveals that RGD-conjugated AuNPs have shown significant promise in improving the diagnosis and treatment of various types of cancer, including breast cancer. However, the full potential of this technology is yet to be realized. The development of multifunctional nanoplatforms incorporating AuNPs has opened new horizons for targeted therapy, dual-mode imaging, and inhibition of tumor growth and metastasis. This review is of paramount importance as it provides a comprehensive overview of the current state of research in this area, and highlights the areas where further research is needed. It is hoped that this review will inspire further investigations into this promising nanotechnology, ultimately leading to improved cancer diagnosis and therapy. Therefore, the findings presented in this review underscore the potential of AuNPs conjugated with RGD peptides as a revolutionary approach in cancer therapeutics. It is our fervent hope that this review will serve as a catalyst for further research in this exciting field.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
3
|
Taheri RA, Fathi H, Sharafi A, Mirzaei M, Jafari S, Darvishi MH. Niosomes loaded with gold nanoparticles for enhanced radiation therapy in lung cancer. Nanomedicine (Lond) 2024; 19:2257-2270. [PMID: 39325679 PMCID: PMC11487956 DOI: 10.1080/17435889.2024.2393071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
Aim: The present investigation aimed to develop niosomes containing gold nanoparticles (Nio-AuNPs) and to evaluate the combinational effect of Nio-AuNPs and x-ray radiation therapy (XRT) on growth inhibition potential and induction of apoptosis in the A549 cell line.Materials & methods: Gold nanoparticles (AuNPs) were synthesized, and niosomes were prepared using the thin-film hydration method. Various techniques were employed to determine their physiochemical characteristics. MTT assay, cell apoptosis analysis and combination index analysis were conducted to evaluate the therapeutic feasibility of Nio-AuNPs combined with XRT.Results: The combination of Nio-AuNPs and XRT resulted in greater cytotoxicity compared with XRT alone or with AuNPs.Conclusion: The AuNPs-loaded niosomal formulation enhances the efficacy of XRT on lung cancer cells in vitro, presenting a promising and effective therapeutic strategy.
Collapse
Affiliation(s)
- Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamidreza Fathi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Morteza Mirzaei
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shima Jafari
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Liu J, Wu J, Chen T, Yang B, Liu X, Xi J, Zhang Z, Gao Y, Li Z. Enhancing X-Ray Sensitization with Multifunctional Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400954. [PMID: 38676336 DOI: 10.1002/smll.202400954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/30/2024] [Indexed: 04/28/2024]
Abstract
In the progression of X-ray-based radiotherapy for the treatment of cancer, the incorporation of nanoparticles (NPs) has a transformative impact. This study investigates the potential of NPs, particularly those comprised of high atomic number elements, as radiosensitizers. This aims to optimize localized radiation doses within tumors, thereby maximizing therapeutic efficacy while preserving surrounding tissues. The multifaceted applications of NPs in radiotherapy encompass collaborative interactions with chemotherapeutic, immunotherapeutic, and targeted pharmaceuticals, along with contributions to photodynamic/photothermal therapy, imaging enhancement, and the integration of artificial intelligence technology. Despite promising preclinical outcomes, the paper acknowledges challenges in the clinical translation of these findings. The conclusion maintains an optimistic stance, emphasizing ongoing trials and technological advancements that bolster personalized treatment approaches. The paper advocates for continuous research and clinical validation, envisioning the integration of NPs as a revolutionary paradigm in cancer therapy, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - JunYong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Bin Yang
- Department of Orthopedics, Shaodong People's Hospital, Shaoyang, Hunan Province, 422800, China
| | - XiangPing Liu
- Department of Neurology, Shaodong People's Hospital, Shaoyang, Hunan Province, 422800, China
| | - Jing Xi
- Department of Nephrology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan Province, 415000, China
| | - Ziyang Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119276, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| |
Collapse
|
5
|
Mal S, Chakraborty S, Mahapatra M, Pakeeraiah K, Das S, Paidesetty SK, Roy P. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. NANOSCALE ADVANCES 2024; 6:2766-2812. [PMID: 38817429 PMCID: PMC11134266 DOI: 10.1039/d3na00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | | | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management Action Area III, B/5, Newtown Kolkata West Bengal 700160 India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University) Vishakhapatnam 530045 India
| |
Collapse
|
6
|
Chen X, Cheng D, Yu N, Feng J, Li J, Lin L. Tumor-targeting polymer nanohybrids with amplified ROS generation for combined photodynamic and chemodynamic therapy. J Mater Chem B 2024; 12:1296-1306. [PMID: 38193142 DOI: 10.1039/d3tb02341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Reactive oxygen species (ROS) generating strategies have been widely adopted for cancer therapy, but therapeutic efficacies are often low due to the complicated tumor microenvironment. In this study, we present the development of tumor-targeting polymer nanohybrids that amplify ROS generation by combining photodynamic therapy (PDT) and chemodynamic therapy (CDT) for cancer treatment. Such polymer nanohybrids contained three main components: a semiconducting polymer (SP) that acted as the photosensitizer for PDT, manganese dioxide (MnO2) that acted as the catalyst for CDT, and transferrin that mediated tumor targeting via binding to transferrin receptors overexpressed on the surface of tumor cells. The formed nanohybrids (TSM) showed obviously enhanced accumulation efficacy in tumor sites because of their targeting ability. In tumor sites, TSM produced singlet oxygen (1O2) under near-infrared (NIR) laser irradiation and a hydroxyl radical (˙OH) via reacting with hydrogen peroxide (H2O2), which resulted in amplified generation of ROS to achieve PDT/CDT combinational therapy. The growth of subcutaneous 4T1 tumors was remarkably inhibited via TSM-mediated treatment. In addition, this therapeutic efficacy could suppress tumor metastasis in the liver and lungs. This study presents a targeting hybrid nanoplatform to combine different ROS generating strategies for effective cancer therapy.
Collapse
Affiliation(s)
- Xiaodan Chen
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Danling Cheng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Ningyue Yu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jian Feng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jingchao Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Lin Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
7
|
Ghaffarlou M, Mohammadi A, Mousazadeh N, Salehiabar M, Kalantari Y, Charmi J, Barsbay M, Ertas YN, Danafar H, Rezaeejam H, Nosrati H, Javani S. Facile preparation of silver based radiosensitizers via biomineralization method for enhanced in vivo breast cancer radiotherapy. Sci Rep 2023; 13:15131. [PMID: 37704633 PMCID: PMC10499791 DOI: 10.1038/s41598-023-40763-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
To solve the traditional radiotherapy obstacles, and also to enhance the radiation therapy efficacy various radiosensitizers have been developed. Radiosensitizers are promising agents that under X-ray irradiation enhance injury to tumor tissue by accelerating DNA damage. In this report, silver-silver sulfide nanoparticles (Ag-Ag2S NPs) were synthesized via a facile, one-pot and environmentally friendly biomineralization method. Ag-Ag2S was coated with bovine serum albumin (BSA) in situ and applied as an X-ray sensitizer to enhance the efficiency of radiotherapy. Also, folic acid (FA) was conjugated to Ag-Ag2S@BSA to impart active targeting capability to the final formulation (Ag-Ag2S@BSA-FA). Prepared NPs were characterized by transmission electron microscopes (TEM), scanning electron microscope (SEM), dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. Results show that most of the NPs have well-defined uniform Janus structures. The biocompatibility of the NPs was then evaluated both in vitro and in vivo. A series of in vitro assays were performed on 4T1 cancer cells to evaluate the therapeutic efficacy of the designed NPs. In addition, the radio-enhancing ability of the NPs was tested on the 4T1 breast cancer murine model. MTT, live and dead cell staining, apoptosis, ROS generation, and clonogenic in vitro assays demonstrated the efficacy of NPs as radiosensitizers in radiotherapy. In vivo results as well as H&E staining tumor tissues confirmed tumor destruction in the group that received Ag-Ag2S@BSA-FA NPs and exposed to X-ray. The results showed that prepared tumor-targeted Ag-Ag2S@BSA-FA NPs could be potential candidates as radiosensitizers for enhanced radiotherapy.
Collapse
Affiliation(s)
| | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marziyeh Salehiabar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yahya Kalantari
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jalil Charmi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Turkey
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Rezaeejam
- Department of Radiology Technology, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran.
| | - Hamed Nosrati
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Siamak Javani
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
8
|
Zhen W, Weichselbaum RR, Lin W. Nanoparticle-Mediated Radiotherapy Remodels the Tumor Microenvironment to Enhance Antitumor Efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206370. [PMID: 36524978 PMCID: PMC10213153 DOI: 10.1002/adma.202206370] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/12/2022] [Indexed: 05/26/2023]
Abstract
Radiotherapy (RT) uses ionizing radiation to eradicate localized tumors and, in rare cases, control tumors outside of the irradiated fields via stimulating an antitumor immune response (abscopal effect). However, the therapeutic effect of RT is often limited by inherent physiological barriers of the tumor microenvironment (TME), such as hypoxia, abnormal vasculature, dense extracellular matrix (ECM), and an immunosuppressive TME. Thus, it is critical to develop new RT strategies that can remodel the TME to overcome radio-resistance and immune suppression. In the past decade, high-Z-element nanoparticles have been developed to increase radiotherapeutic indices of localized tumors by reducing X-ray doses and side effects to normal tissues and enhance abscopal effects by activating the TME to elicit systemic antitumor immunity. In this review, the principles of RT and radiosensitization, the mechanisms of radio-resistance and immune suppression, and the use of various nanoparticles to sensitize RT and remodel TMEs for enhanced antitumor efficacy are discussed. The challenges in clinical translation of multifunctional TME-remodeling nanoradiosensitizers are also highlighted.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, Department of Radiation and Cellular Oncology, and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, Department of Radiation and Cellular Oncology, and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
9
|
Costa RODA, Passos TS, Silva EMDS, dos Santos NCS, Morais AHDA. Encapsulated Peptides and Proteins with an Effect on Satiety. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1166. [PMID: 37049259 PMCID: PMC10097199 DOI: 10.3390/nano13071166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The world scenario has undergone a nutritional transition in which some countries have left the reality of malnutrition and now face an epidemic of excess body weight. Researchers have been looking for strategies to reverse this situation. Peptides and proteins stand out as promising molecules with anti-obesity action. However, oral administration and passage through the gastrointestinal tract face numerous physiological barriers that impair their bioactive function. Encapsulation aims to protect the active substance and modify the action, one possibility of potentiating anti-obesity activity. Research with encapsulated peptides and proteins has demonstrated improved stability, delivery, controlled release, and increased bioactivity. However, it is necessary to explore how proteins and peptides affect weight loss and satiety, can impact the nutritional status of obesity, and how encapsulation can enhance the bioactive effects of these molecules. This integrative review aimed to discuss how the encapsulation of protein molecules impacts the nutritional status of obesity. From the studies selected following pre-established criteria, it was possible to infer that the encapsulation of proteins and peptides can contribute to greater efficiency in reducing weight gain, changes in adipose tissue function, and lower hormone levels that modulate appetite and body weight in animals with obesity.
Collapse
Affiliation(s)
- Rafael O. de A. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Thaís S. Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Eloyse Mikaelly de S. Silva
- Nutrition Course, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | | | - Ana Heloneida de A. Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Nutrition Course, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
10
|
Varzandeh M, Varshosaz J, Labbaf S, Esmaeil N. Sodium-borohydride exfoliated bismuthene loaded with Mitomycin C for chemo-photo-radiotherapy of triple negative breast cancer. Int J Pharm 2023; 636:122825. [PMID: 36921740 DOI: 10.1016/j.ijpharm.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
In current study, a new remotely controlled drug delivery, radio-sensitizing, and photothermal therapy agent based on thioglycolic acid modified bismuth nanosheets is thoroughly evaluated. Bismuth nanosheets were synthesized using sodium borohydride (NaBH4) and Tween 20 through low energy (400 W) sonication within 2 h. The resultant nanosheets were 40-60 nm in size and 1-3 atomic layers in thickness. The morphological and structural characteristics of the nanosheets were studied using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy and ultraviolet spectroscopy. The surface of the nanosheets was modified using thioglycolic acid, which resulted in enhanced Mitomycin C loading capacity to 274.35% and circumvented the burst drug release due to the improved electrostatic interactions. At pH 7.4 and 5.0, the drug release was significantly boosted from 45.1 to 69.8%, respectively. Thioglycolic acid modified bismuth nanosheets under 1064 nm laser irradiation possessed photothermal conversion efficiency of η=51.4% enabling a temperature rise of 24.9 °C at 100 μg/ml in 5 min. The combination of drug delivery, photothermal therapy, and radio-sensitization greatly damaged the MDA-MB-231 cells through apoptosis and diminished their colony forming.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Aghajani A, Ehsani M, Khajavi R, Kalaee M, Zaarei D. Conductive bio-epoxy/boron nitride nanocomposites: effect of combination of nanotubes and epichlorohydrin surface-modified nanosheets. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
12
|
Wu Y, Zhu K, Zhang X, Du W, Song J, Yang H. Emerging plasmonic nanoparticles and their assemblies for cancer radiotherapy. Adv Drug Deliv Rev 2023; 194:114710. [PMID: 36708774 DOI: 10.1016/j.addr.2023.114710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/07/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Plasmonic nanoparticles and their assemblies have been widely used in biosensing, optical imaging, and biomedicine over the past few decades. Especially in the field of radiotherapy, the physicochemical properties of high-Z plasmonic nanomaterials endow them with the ability to sensitize radiotherapy. Compared with single particles, the assembled structure with tunable properties leads to versatile applications in drug delivery and cancer treatment. In this review, we focus on plasmonic nanoparticles and their assemblies for cancer radiotherapy. First, the sensitization mechanism of plasmonic radiosensitizers is briefly introduced. Subsequently, the recent progress in cancer radiotherapy is systematically discussed according to the structure and shape classification. Finally, the current challenges and future perspectives in this field are also discussed in detail.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, PR China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, PR China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Wei Du
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, PR China.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| |
Collapse
|
13
|
Chemoradiation therapy of 4T1 cancer cells with methotrexate conjugated platinum nanoparticles under X-Ray irradiation. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
15
|
Li Y, Yang Z, Jalil AT, Saleh MM, Wu B. In Vivo and In Vitro Biocompatibility Study of CuS Nanoparticles: Photosensitizer for Glioblastoma Photothermal Therapy. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04313-3. [PMID: 36652089 DOI: 10.1007/s12010-023-04313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Although photothermal treatment (PTT) has made significant progress in the fight against cancer, certain types of malignant tumors are still difficult to eradicate. PTT uses photothermal transforming agents to absorb NIR light and convert it to thermal energy, causing cancer cell death. In this study, we synthesized alginate (Alg)-coated CuS nanoparticles (CuS@Alg) as photothermal transforming agents to kill glioblastoma cancer cells. Nanoparticles were synthesized via a facile method, then, were characterized with different techniques such as ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Nanoparticles show high stability, and are monodisperse. CuS@Alg was discovered to have a spherical shape, a hydrodynamic size of about 19.93 nm, and a zeta potential of - 9.74 mV. CuS@Alg is able to increase temperature of medium under NIR light. Importantly, in vitro investigations show that PTT based on CuS@Alg has a strong theraputic impact, resulting in much high effectiveness. The LD50 and histopathology assays were used to confirm the NPs' non-toxicity in vivo. Results from an in vivo subacute toxicity investigation showed that the fabricated NPs were perfectly safe to biomedical usage.
Collapse
Affiliation(s)
- Yin Li
- Department of Neurosurgery, Zhen'an Hospital, Shangluo, 711500, China
| | - Zhangkai Yang
- Department of Neurosurgery, Xi'an Children's Hospital, Xi'an, 710000, China
| | - Abduladheem Turki Jalil
- Medical Laboratory Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Bin Wu
- Department of Outpatient Comprehensive Surgery, Xi'an Children's Hospital, Xi'an, 710000, China.
| |
Collapse
|
16
|
Joseph TM, Kallingal A, Suresh AM, Mahapatra DK, Hasanin MS, Haponiuk J, Thomas S. 3D printing of polylactic acid: recent advances and opportunities. THE INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY 2023; 125:1015-1035. [PMID: 36644783 PMCID: PMC9822698 DOI: 10.1007/s00170-022-10795-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/29/2022] [Indexed: 05/12/2023]
Abstract
Bio-based polymers are a class of polymers made by living organisms, a few of them known and commercialized yet. Due to poor mechanical strength and economic constraints, they have not yet seen the extensive application. Instead, they have been an appropriate candidate for biological applications. Growing consumer knowledge of the environmental effect of polymers generated from petrochemical sources and a worldwide transition away from plastics with a lifespan of hundreds of years has resulted in greater interest in such hitherto unattainable sectors. Bio-based polymers come in various forms, including direct or "drop-in" replacements for their petrochemical counterparts with nearly identical properties or completely novel polymers that were previously unavailable, such as polylactide. Few of these bio-based polymers offer significantly improved technical specifications than their alternatives. Polylactic acid (PLA) has been well known in the last decade as a biodegradable thermoplastic source for use in 3DP by the "fused deposition modeling" method. The PLA market is anticipated to accomplish 5.2 billion US dollars in 2020 for its industrial usage. Conversely, 3DP is one of the emerging technologies with immense economic potential in numerous sectors where PLA is one of the critical options as the polymer source due to its environmentally friendly nature, glossiness, multicolor appearance, and ease of printing. The chemical structure, manufacturing techniques, standard features, and current market situation of PLA were examined in this study. This review looks at the process of 3DP that uses PLA filaments in extrusion-based 3DP technologies in particular. Several recent articles describing 3D-printed PLA items have been highlighted.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymers Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Akshay Maniyeri Suresh
- Laboratory of Bacterial Genetics, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur, 440037 Maharashtra India
| | - Mohamed S. Hasanin
- Department of Polymers Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
- Cellulose and Paper Department, National Research Centre, Dokki, Cairo, 12622 Egypt
| | - Józef Haponiuk
- Department of Polymers Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686560 India
| |
Collapse
|
17
|
Ashrafizadeh M, Zarrabi A, Karimi‐Maleh H, Taheriazam A, Mirzaei S, Hashemi M, Hushmandi K, Makvandi P, Nazarzadeh Zare E, Sharifi E, Goel A, Wang L, Ren J, Nuri Ertas Y, Kumar AP, Wang Y, Rabiee N, Sethi G, Ma Z. (Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10353. [PMID: 36684065 PMCID: PMC9842064 DOI: 10.1002/btm2.10353] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023] Open
Abstract
Urological cancers are among the most common malignancies around the world. In particular, bladder cancer severely threatens human health due to its aggressive and heterogeneous nature. Various therapeutic modalities have been considered for the treatment of bladder cancer although its prognosis remains unfavorable. It is perceived that treatment of bladder cancer depends on an interdisciplinary approach combining biology and engineering. The nanotechnological approaches have been introduced in the treatment of various cancers, especially bladder cancer. The current review aims to emphasize and highlight possible applications of nanomedicine in eradication of bladder tumor. Nanoparticles can improve efficacy of drugs in bladder cancer therapy through elevating their bioavailability. The potential of genetic tools such as siRNA and miRNA in gene expression regulation can be boosted using nanostructures by facilitating their internalization and accumulation at tumor sites and cells. Nanoparticles can provide photodynamic and photothermal therapy for ROS overgeneration and hyperthermia, respectively, in the suppression of bladder cancer. Furthermore, remodeling of tumor microenvironment and infiltration of immune cells for the purpose of immunotherapy are achieved through cargo-loaded nanocarriers. Nanocarriers are mainly internalized in bladder tumor cells by endocytosis, and proper design of smart nanoparticles such as pH-, redox-, and light-responsive nanocarriers is of importance for targeted tumor therapy. Bladder cancer biomarkers can be detected using nanoparticles for timely diagnosis of patients. Based on their accumulation at the tumor site, they can be employed for tumor imaging. The clinical translation and challenges are also covered in current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Orta MahalleIstanbulTurkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and EnvironmentUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical SciencesUniversity of JohannesburgJohannesburgSouth Africa
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicineTehran Medical Sciences, Islamic Azad UniversityTehranIran
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Pooyan Makvandi
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | | | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Arul Goel
- La Canada High SchoolLa Cañada FlintridgeCaliforniaUSA
| | - Lingzhi Wang
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Jun Ren
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Shanghai Institute of Cardiovascular Diseases, Department of CardiologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
| | - Alan Prem Kumar
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNew South Wales2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673South Korea
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
18
|
Maghsoudi S, Taghavi Shahraki B, Rameh F, Nazarabi M, Fatahi Y, Akhavan O, Rabiee M, Mostafavi E, Lima EC, Saeb MR, Rabiee N. A review on computer-aided chemogenomics and drug repositioning for rational COVID-19 drug discovery. Chem Biol Drug Des 2022; 100:699-721. [PMID: 36002440 PMCID: PMC9539342 DOI: 10.1111/cbdd.14136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
Application of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment-either experimentally or computationally-to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development of unprecedented drugs. The expensive and time-consuming process of traditional drug discovery is no longer feasible, for nowadays the identification of potential drug candidates is much easier for therapeutic targets through elaborate in silico approaches, allowing the prediction of the toxicity of drugs, such as drug repositioning (DR) and chemical genomics (chemogenomics). Coronaviruses (CoVs) are cross-species viruses that are able to spread expeditiously from the into new host species, which in turn cause epidemic diseases. In this sense, this review furnishes an outline of computational strategies and their applications in drug discovery. A special focus is placed on chemogenomics and DR as unique and emerging system-based disciplines on CoV drug and target discovery to model protein networks against a library of compounds. Furthermore, to demonstrate the special advantages of CADD methods in rapidly finding a drug for this deadly virus, numerous examples of the recent achievements grounded on molecular docking, chemogenomics, and DR are reported, analyzed, and interpreted in detail. It is believed that the outcome of this review assists developers of energy harvesting materials and systems for detection of future unexpected kinds of CoVs or other variants.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Faculty of Medicine, Department of Physiology and PathophysiologyUniversity of ManitobaWinnipegManitobaCanada
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba (CHRIM), University of ManitobaWinnipegManitobaCanada
| | | | | | - Masoomeh Nazarabi
- Faculty of Organic Chemistry, Department of ChemistryUniversity of KashanKashanIran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of PharmacyTehran University of Medical SciencesTehranIran
- Nanotechnology Research Center, Faculty of PharmacyTehran University of Medical SciencesTehranIran
| | - Omid Akhavan
- Department of PhysicsSharif University of TechnologyTehranIran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Eder C. Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS)Porto AlegreBrazil
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangSouth Korea
| |
Collapse
|
19
|
Modulation of Macrophages Using Nanoformulations with Curcumin to Treat Inflammatory Diseases: A Concise Review. Pharmaceutics 2022; 14:pharmaceutics14102239. [PMID: 36297677 PMCID: PMC9611033 DOI: 10.3390/pharmaceutics14102239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin (Cur), a traditional Chinese medicine extracted from natural plant rhizomes, has become a candidate drug for the treatment of diseases due to its anti-inflammatory, anticancer, antioxidant, and antibacterial activities. However, the poor water solubility and low bioavailability of Cur limit its therapeutic effects for clinical applications. A variety of nanocarriers have been successfully developed to improve the water solubility, in vivo distribution, and pharmacokinetics of Cur, as well as to enhance the ability of Cur to polarize macrophages and relieve macrophage oxidative stress or anti-apoptosis, thus accelerating the therapeutic effects of Cur on inflammatory diseases. Herein, we review the design and development of diverse Cur nanoformulations in recent years and introduce the biomedical applications and potential therapeutic mechanisms of Cur nanoformulations in common inflammatory diseases, such as arthritis, neurodegenerative diseases, respiratory diseases, and ulcerative colitis, by regulating macrophage behaviors. Finally, the perspectives of the design and preparation of future nanocarriers aimed at efficiently exerting the biological activity of Cur are briefly discussed.
Collapse
|
20
|
Mohammed DF, Madlool HA, Faris M, Shalan BH, Hasan HH, Azeez NF, Abbas FH. Harnessing inorganic nanomaterials for chemodynamic cancer therapy. Nanomedicine (Lond) 2022; 17:1891-1906. [PMID: 36647807 DOI: 10.2217/nnm-2022-0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The most important aspect of chemodynamic therapy (CDT) is the harnessing of Fenton or Fenton-like chemistry for cancer therapy within the tumor microenvironment, which occurs because of the moderate acidity and overexpressed H2O2 in the tumor microenvironment. Hydroxyl radicals (•OH) produced within tumor cells via Fenton and Fenton-like reactions cause cancer cell death. Reactive oxygen species-mediated CDT demonstrates a desired anticancer impact without the need for external stimulation or the development of drug resistance. Cancer therapy based on CDT is known as a viable cancer therapy modality. This review discusses the most recent CDT advancements and provides some typical instances. As a result, potential methods for further improving CDT efficiency under the guidance of Fenton chemistry are offered.
Collapse
Affiliation(s)
- Dhelal F Mohammed
- Department of Pharmacy, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Hussein A Madlool
- Radiological Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Mohammed Faris
- Department of Dentistry, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Bashar Hadi Shalan
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Huda Hadi Hasan
- Department of Business Administration, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Nidaa F Azeez
- Department of Medical Physics, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fatima Hashim Abbas
- Department of Medical Laboratory Techniques, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| |
Collapse
|
21
|
Nanoparticles Design for Theranostic Approach in Cancer Disease. Cancers (Basel) 2022; 14:cancers14194654. [PMID: 36230578 PMCID: PMC9564040 DOI: 10.3390/cancers14194654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Presently, there are no conclusive treatments for many types of cancer, mainly due to the advanced phase of the disease at the time of diagnosis and to the side effects of existing therapies. Present diagnostic and therapeutic procedures need to be improved to supply early detection abilities and perform a more specific therapy with reduced systemic toxicity. In this review, improvements in nanotechnology allowing the design of multifunctional nanoparticles for cancer detection, therapy, and monitoring are reported. Nanoparticles, thanks to the nanomaterials they are made of, can be used as contrast agents for various diagnostic techniques such as MRI, optical imaging, and photoacoustic imaging. Furthermore, when used as drug carriers, they can accumulate in tumor tissues through the passive or/and active targeting, protect encapsulated drugs from degradation, raise tumor exposure to chemotherapeutic agents improving treatment effects. In addition, nanocarriers can simultaneously deliver more than one therapeutic agent enhancing the effectiveness of therapy and can co-deliver imaging and therapy agents to provide integration of diagnostics, therapy, and follow-up. Furthermore, the use of nanocarriers allows to use different therapeutic approaches, such as chemotherapy and hyperthermia to exploit synergistic effects. Theranostic approach to diagnose and treat cancer show a great potential to improve human health, however, despite technological advances in this field, the transfer into clinical practice is still a long way off.
Collapse
|
22
|
Farshi P, Salarian R, Rabiee M, Alizadeh S, Gholipourmalekabadi M, Ahmadi S, Rabiee N. Design, preparation, and characterization of silk fibroin/carboxymethyl cellulose wound dressing for skin tissue regeneration applications. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Paniz Farshi
- Biomaterials Group, Department of Biomedical Engineering Amirkabir University of Technology Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Reza Salarian
- Biomedical Engineering Department Maziar University Mazandaran Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering Amirkabir University of Technology Tehran Iran
| | - Sanaz Alizadeh
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
| | - Mazaher Gholipourmalekabadi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Navid Rabiee
- Department of Physics Sharif University of Technology Tehran Iran
- School of Engineering Macquarie University Sydney New South Wales Australia
- Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk South Korea
| |
Collapse
|
23
|
Xing C, Chen H, Guan Y, Zhang S, Tong T, Ding N, Luo T, Kang Y, Pang J. Cyclodextrin-based supramolecular nanoparticles break the redox balance in chemodynamic therapy-enhanced chemotherapy. J Colloid Interface Sci 2022; 628:864-876. [PMID: 36029600 DOI: 10.1016/j.jcis.2022.08.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
Drug delivery based on abnormal features of the tumor microenvironment (TME) has attracted considerable interest worldwide. In this study, we proposed an applicable strategy to increase the reactive oxygen species (ROS) and inhibit glutathione (GSH), in an effort to amplify oxidative damage in prostate cancer cells. Specifically, we developed dual-responsive supramolecular self-assembled nanoparticles (NPs) based on polymerized methacrylic acid (MA) and polymerized poly(ethylene glycol) dimethyl acrylate-modified β-cyclodextrin (CD) with ferrocene (Fc)-connected (S) (+)-camptothecin (CPT) (designated as MA-CD/Fc-CPT NPs). The as-prepared negatively charged supramolecular NPs can be taken up by tumor cells successfully owing to their reversible negative-to-positive charge transition capacity at acidic pH. The supramolecular NPs increased ROS generation and decreased GSH to amplify oxidative stress and improve the therapeutic effect of chemotherapy. As expected, MA-CD/Fc-CPT NPs displayed good drug delivery capabilities to tumor cells or tissues. MA-CD/Fc-CPT NPs also inhibited cancer cell proliferation in both the cells and tissues. This result was partially due to increased ROS generation and decreased GSH, which contributed to more pronounced oxidative stress. The as-prepared supramolecular NPs displayed great biosafety to normal tissues. According to our results, negatively charged supramolecular MA-CD/Fc-CPT NPs are well-suited for drug delivery and improved cancer treatment in TMEs.
Collapse
Affiliation(s)
- Chengyuan Xing
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Huikun Chen
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yupeng Guan
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tongyu Tong
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ni Ding
- Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tingting Luo
- Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Kang
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
24
|
Zheng L, Seidi F, Liu Y, Wu W, Xiao H. Polymer-based and stimulus-responsive carriers for controlled release of agrochemicals. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Bagherzadeh M, Safarkhani M, Kiani M, Radmanesh F, Daneshgar H, Ghadiri AM, Taghavimandi F, Fatahi Y, Safari-Alighiarloo N, Ahmadi S, Rabiee N. MIL-125-based nanocarrier decorated with Palladium complex for targeted drug delivery. Sci Rep 2022; 12:12105. [PMID: 35840687 PMCID: PMC9287414 DOI: 10.1038/s41598-022-16058-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 01/10/2023] Open
Abstract
The aim of this work was to provide a novel approach to designing and synthesizing a nanocomposite with significant biocompatibility, biodegradability, and stability in biological microenvironments. Hence, the porous ultra-low-density materials, metal-organic frameworks (MOFs), have been considered and the MIL-125(Ti) has been chosen due to its distinctive characteristics such as great biocompatibility and good biodegradability immobilized on the surface of the reduced graphene oxide (rGO). Based on the results, the presence of transition metal complexes next to the drug not only can reinforce the stability of the drug on the structure by preparing π-π interaction between ligands and the drug but also can enhance the efficiency of the drug by preventing the spontaneous release. The effect of utilizing transition metal complex beside drug (Doxorubicin (DOX)) on the drug loading, drug release, and antibacterial activity of prepared nanocomposites on the P. aeruginosa and S. aureus as a model bacterium has been investigated and the results revealed that this theory leads to increasing about 200% in antibacterial activity. In addition, uptake, the release of the drug, and relative cell viabilities (in vitro and in vivo) of prepared nanomaterials and biomaterials have been discussed. Based on collected data, the median size of prepared nanocomposites was 156.2 nm, and their biological stability in PBS and DMEM + 10% FBS was screened and revealed that after 2.880 min, the nanocomposite's size reached 242.3 and 516 nm respectively. The MTT results demonstrated that immobilizing PdL beside DOX leads to an increase of more than 15% in the cell viability. It is noticeable that the AST:ALT result of prepared nanocomposite was under 1.5.
Collapse
Affiliation(s)
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Radmanesh
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Daneshgar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
26
|
Liu Y, Wang X, Si B, Wang T, Wu Y, Liu Y, Zhou Y, Tong H, Zheng X, Xu A. Zinc oxide/graphene oxide nanocomposites efficiently inhibited cadmium-induced hepatotoxicity via releasing Zn ions and up-regulating MRP1 expression. ENVIRONMENT INTERNATIONAL 2022; 165:107327. [PMID: 35667343 DOI: 10.1016/j.envint.2022.107327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Environmental cadmium (Cd) pollution has been verified to associated with various hepatic diseases, as Cd has been classified as one of the TOP 20 Hazardous Substances and liver is the main target of Cd poisoning. However, to design efficient hepatic antidotes with excellent detoxification capacity and reveal their underlying mechanism(s) are still challenges in Cd detoxification. Herein, ZnO/GO nanocomposites with favorable biocompatibility was uncovered their advanced function against Cd-elicited liver damage at the in situ level in vivo by 9.4 T magnetic resonance imaging (MRI). To explore the cellular detoxification mechanism, ZnO/GO nanocomposites was found to effectively inhibit the cyto- and geno-toxicity of Cd with the maximum antagonistic efficiency to be approximately 90%. Mechanistically, ZnO/GO nanocomposites competitively inhibited the cellular Cd uptake through releasing Zn ions, and significantly promoted Cd excretion via targeting the efflux pump of multidrug resistance associated protein1 (MRP1), which was confirmed by mass spectra and immunohistochemical analysis in kidney, a main excretion organ of Cd. Our data provided a novel approach against Cd-elicited hepatotoxic responses by constructed ZnO/GO nanocomposites both in vitro and in vivo, which may have promising application in prevention and detoxification for Cd poisoning.
Collapse
Affiliation(s)
- Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Xue Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Bo Si
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Yun Wu
- Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Ying Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Yemian Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Haiyang Tong
- Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China
| | - Xinwei Zheng
- Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China.
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
27
|
Multifunctional green synthesized Cu-Al layered double hydroxide (LDH) nanoparticles: anti-cancer and antibacterial activities. Sci Rep 2022; 12:9461. [PMID: 35676410 PMCID: PMC9177833 DOI: 10.1038/s41598-022-13431-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (DOX) is a potent anti-cancer agent and there have been attempts in developing nanostructures for its delivery to tumor cells. The nanoparticles promote cytotoxicity of DOX against tumor cells and in turn, they reduce adverse impacts on normal cells. The safety profile of nanostructures is an important topic and recently, the green synthesis of nanoparticles has obtained much attention for the preparation of biocompatible carriers. In the present study, we prepared layered double hydroxide (LDH) nanostructures for doxorubicin (DOX) delivery. The Cu–Al LDH nanoparticles were synthesized by combining Cu(NO3)2·3H2O and Al(NO3)3·9H2O, and then, autoclave at 110. The green modification of LDH nanoparticles with Plantago ovata (PO) was performed and finally, DOX was loaded onto nanostructures. The FTIR, XRD, and FESEM were employed for the characterization of LDH nanoparticles, confirming their proper synthesis. The drug release study revealed the pH-sensitive release of DOX (highest release at pH 5.5) and prolonged DOX release due to PO modification. Furthermore, MTT assay revealed improved biocompatibility of Cu–Al LDH nanostructures upon PO modification and showed controlled and low cytotoxicity towards a wide range of cell lines. The CLSM demonstrated cellular uptake of nanoparticles, both in the HEK-293 and MCF-7 cell lines; however, the results were showed promising cellular internalizations to the HEK-293 rather than MCF-7 cells. The in vivo experiment highlighted the normal histopathological structure of kidneys and no side effects of nanoparticles, further confirming their safety profile and potential as promising nano-scale delivery systems. Finally, antibacterial test revealed toxicity of PO-modified Cu–Al LDH nanoparticles against Gram-positive and -negative bacteria.
Collapse
|
28
|
Zhang Y, Zheng D, Talaei S, Abasi M. Albumin stabilized Pt nanoparticles as radiosensitizer for sensitization of breast cancer cells under X-ray radiation therapy. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Shokrani H, Shokrani A, Jouyandeh M, Seidi F, Gholami F, Kar S, Munir MT, Kowalkowska-Zedler D, Zarrintaj P, Rabiee N, Saeb MR. Green Polymer Nanocomposites for Skin Tissue Engineering. ACS APPLIED BIO MATERIALS 2022; 5:2107-2121. [PMID: 35504039 DOI: 10.1021/acsabm.2c00313] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements to green polymers. Green nanocomposites (either nanoscale natural macromolecules or biopolymers containing nanoparticles) are a class of scaffolds with acceptable biomedical properties window (drug delivery and cardiac, nerve, bone, cartilage as well as skin tissue engineering), enabling one to achieve the required level of skin regeneration and wound healing. In this review, we have collected, summarized, screened, analyzed, and interpreted the properties of green nanocomposites used in skin tissue engineering and wound dressing. We particularly emphasize the mechanical and biological properties that skin cells need to meet when seeded on the scaffold. In this regard, the latest state of the art studies directed at fabrication of skin tissue and bionanocomposites as well as their mechanistic features are discussed, whereas some unspoken complexities and challenges for future developments are highlighted.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 11155-4563 Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China
| | - Fatemeh Gholami
- New Technologies - Research Centre, University of West Bohemia, Veleslavínova 42, 301 00 Plzeň, Czech Republic
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Daria Kowalkowska-Zedler
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, United States
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran 145888-9694, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
30
|
Xu L, Tang S, Yang H, Liang M, Ren P, Wei D, He J, Kong W, Liu P, Zhang T. Sustained delivery of gemcitabine via in situ injectable mussel-inspired hydrogel for local therapy of pancreatic cancer. J Mater Chem B 2022; 10:6338-6350. [DOI: 10.1039/d1tb02858h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The issue on pervasively enhanced drug resistance of pancreatic cancer is fundamental to better understanding of gemcitabine-based chemotherapy. Currently available treatment plans containing injectable therapeutics are mainly engineered to improve...
Collapse
|