1
|
Zhou J, Hu Y, Cao Y, Ding S, Zeng L, Zhang Y, Cao M, Duan G, Zhang X, Bian XW, Tian G. A Lactate-Depleting metal organic framework-based nanocatalyst reinforces intratumoral T cell response to boost anti-PD1 immunotherapy. J Colloid Interface Sci 2024; 660:869-884. [PMID: 38277843 DOI: 10.1016/j.jcis.2024.01.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Infiltration and activation of intratumoral T lymphocytes are critical for immune checkpoint blockade (ICB) therapy. Unfortunately, the low tumor immunogenicity and immunosuppressive tumor microenvironment (TME) induced by tumor metabolic reprogramming cooperatively hinder the ICB efficacy. Herein, we engineered a lactate-depleting MOF-based catalytic nanoplatform (LOX@ZIF-8@MPN), encapsulating lactate oxidase (LOX) within zeolitic imidazolate framework-8 (ZIF-8) coupled with a coating of metal polyphenol network (MPN) to reinforce T cell response based on a "two birds with one stone" strategy. LOX could catalyze the degradation of the immunosuppressive lactate to promote vascular normalization, facilitating T cell infiltration. On the other hand, hydrogen peroxide (H2O2) produced during lactate depletion can be transformed into anti-tumor hydroxyl radical (•OH) by the autocatalytic MPN-based Fenton nanosystem to trigger immunogenic cell death (ICD), which largely improved the tumor immunogenicity. The combination of ICD and vascular normalization presents a better synergistic immunopotentiation with anti-PD1, inducing robust anti-tumor immunity in primary tumors and recurrent malignancies. Collectively, our results demonstrate that the concurrent depletion of lactate to reverse the immunosuppressive TME and utilization of the by-product from lactate degradation via cascade catalysis promotes T cell response and thus improves the effectiveness of ICB therapy.
Collapse
Affiliation(s)
- Jingrong Zhou
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China.
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China
| | - Yu Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China
| | - Mianfu Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China
| | - Guangjie Duan
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China
| | - Xiao Zhang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China.
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, PR China; Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing 401329, PR China.
| |
Collapse
|
2
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
3
|
Wei W, Ai L, Li M, Hou F, Xiong C, Li Y, Wei A. Liquid Metal Encased in Biomimic Polydopamine Armor to Reinforce Photothermal Conversion and Photothermal Stability. Chem Asian J 2024:e202301038. [PMID: 38311860 DOI: 10.1002/asia.202301038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/06/2024]
Abstract
Liquid metal (LM) faces numerous obstacles like spontaneous coalescence, prone oxidizability, and deterioration in photothermal conversion, impeding the potential application as photothermal agent. To tackle these issues, several studies have focused on surface engineering strategy. Developing a feasible and efficient surface engineering strategy is crucial to prevent the aggregation and coalescence of LM, while also ensuring exceptional photothermal conversion and biosecurity. In order to achieve these goals in this work, the biomimetic polydopamine (PDA) armor was chosen to encase a typical LM (eutectic gallium-indium-tin alloy) via self-polymerization. Characterization results showed that the PDA encased LM nanoparticle exhibited enhanced photothermal stability, photothermal conversion, and biosecurity, which could be derived from the following factors: (1) The PDA protective shell acted as an "armor", isolating LM from dissolved oxygen and water, inhibiting heating-accelerated oxidation and shape morphing. (2) The exceptional near-infrared absorption of PDA was conducive to the photothermal conversion. (3) The biomimetic characteristic of polydopamine (PDA) was advantageous for improving the biosecurity. Hence, this work presented a new surface engineering strategy to reinforce LM for photothermal conversion application.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Libang Ai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Kunshan Innovation Institute of Xidian University, Suzhou, 215316, P. R. China
| | - Minhao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Fengming Hou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Can Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Nantong Institute of Nanjing University of Posts and Telecommunications Co. Ltd., Nantong, 226001, P. R. China
| | - Yihang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Ang Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
5
|
Wang B, Chen S, Sun X, Shan X, Zhu X, Yuan B, Wang H, Zhou G, Liu J. A Photothermally Enhanced Vancomycin-Coated Liquid Metal Antimicrobial Agent with Targeting Capability. Bioengineering (Basel) 2023; 10:748. [PMID: 37508775 PMCID: PMC10376194 DOI: 10.3390/bioengineering10070748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The targeted antimicrobial efficacy of Vancomycin decreases significantly over time due to bacterial resistance, whereas Ga-based liquid metals, which are less prone to inducing bacterial resistance, face challenges in achieving targeted antimicrobial effects. To tackle these issues, a highly efficient antimicrobial agent with targeting properties has been developed by combining Ga-based liquid metals and Vancomycin. Moreover, the performance of this antimicrobial agent can be greatly enhanced through the use of near-infrared light. Microscopic observations reveal that Vancomycin can be effectively encapsulated on the surface of liquid metal, facilitated by the presence of the oxide layer. The resulting core–shell structured antimicrobial agent demonstrates notable targeted antimicrobial effects against S. aureus. Antibacterial tests indicate that Vancomycin effectively improves the antibacterial properties of pure liquid metal. Additionally, this study unveils the excellent photothermal conversion capabilities of liquid metal, enabling the antimicrobial agent exposed to 808nm near-infrared light to exhibit significantly strengthened bactericidal performance. In this scenario, the antimicrobial agent can achieve nearly 100% effectiveness. This work enriches the investigation of integrating Ga-based antimicrobial agents with traditional antibiotics, showcasing promising antibacterial effects and establishing the groundwork for subsequent clinical applications.
Collapse
Affiliation(s)
- Bo Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (B.W.)
| | - Sen Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuyang Sun
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (B.W.)
| | - Xiaohui Shan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hongzhang Wang
- Center of Double Helix, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Beijing Key Lab of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Gang Zhou
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (B.W.)
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Lab of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Zu Y, Wang Z, Yao H, Yan L. Oxygen-generating biocatalytic nanomaterials for tumor hypoxia relief in cancer radiotherapy. J Mater Chem B 2023; 11:3071-3088. [PMID: 36920849 DOI: 10.1039/d2tb02751h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Radiotherapy (RT), the most commonly used treatment method in clinics, shows unique advantages such as strong penetration, high energy intensity, and low systemic side effects. However, in vivo tumor hypoxia seriously hinders the therapeutic effect of RT. Hypoxia is a common characteristic of locally advanced solid tumor microenvironments, which leads to the proliferation, invasion and metastasis of tumor cells. In addition, oxygen consumption during RT will further aggravate tumor hypoxia, causing a variety of adverse side effects. In recent years, various biocatalytic nanomaterials (BCNs) have been explored to regulate and reverse tumor hypoxia microenvironments during RT. In this review, the most recent efforts toward developing oxygen-generating BCNs in relieving tumor hypoxia in RT are focused upon. The classification, engineering nanocatalytical activity of oxygen-generating BCNs and combined therapy based on these BCNs are systematically introduced and discussed. The challenges and prospects of these oxygen-generating BCNs in RT applications are also summarized.
Collapse
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Ziyu Wang
- College of Medical and Biological lnformation Engineering, Northeastern University, Shenyang 110170, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Chen S, Zhao R, Sun X, Wang H, Li L, Liu J. Toxicity and Biocompatibility of Liquid Metals. Adv Healthc Mater 2023; 12:e2201924. [PMID: 36314401 DOI: 10.1002/adhm.202201924] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/15/2022] [Indexed: 01/27/2023]
Abstract
Recently, room-temperature liquid metals have attracted increasing attention from researchers owing to their excellent material properties. Systematic interpretation of the potential toxicity issues involved is essential for a wide range of applications, especially in the biomedical and healthcare fields. However, even with the exponential growth of related studies, investigation of the toxicological impact and possible hazards of liquid metals to organisms is still in its infancy. This review aims to provide a comprehensive summary of the current frontier of knowledge on liquid metal toxicology and biocompatibility in different environments. Based on recent studies, this review focuses on Ga and Bi-based in different states. It is necessary to evaluate their toxicity considering the rapid increase in research and utilization of such liquid metal composites. Finally, existing challenges are discussed and suggestions are provided for further investigation of liquid metal toxicology to clarify the toxicological mechanisms and strategies are provided to avoid adverse effects. In addition to resolving the doubts of public concern about the toxicity of liquid metals, this review is expected to promote the healthy and sustainable development of liquid metal-based materials and their use in diverse areas, especially those related to health care.
Collapse
Affiliation(s)
- Sen Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ruiqi Zhao
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuyang Sun
- School of Medicine Engineering, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
| | - Hongzhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Lei Li
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.,Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Microfluidic Synthesis of the Tumor Microenvironment-Responsive Nanosystem for Type-I Photodynamic Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238386. [PMID: 36500477 PMCID: PMC9736763 DOI: 10.3390/molecules27238386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Type I photosensitizers with aggregation-induced emission luminogens (AIE-gens) have the ability to generate high levels of reactive oxygen species (ROS), which have a good application prospect in cancer photodynamic therapy (PDT). However, the encapsulation and delivery of AIE molecules are unsatisfactory and seriously affect the efficiency of a practical therapy. Faced with this issue, we synthesized the metal-organic framework (MOF) in one step using the microfluidic integration technology and encapsulated TBP-2 (an AIE molecule) into the MOF to obtain the composite nanomaterial ZT. Material characterization showed that the prepared ZT had stable physical and chemical properties and controllable size and morphology. After being endocytosed by tumor cells, ZT was degraded in response to the acidic tumor microenvironment (TME), and then TBP-2 molecules were released. After stimulation by low-power white light, a large amount of •OH and H2O2 was generated by TBP-2 through type I PDT, thereby achieving a tumor-killing effect. Further in vitro cell experiments showed good biocompatibility of the prepared ZT. To the best of our knowledge, this report is the first on the microfluidic synthesis of multifunctional MOF for type I PDT in response to the TME. Overall, the preparation of ZT by the microfluidic synthesis method provides new insight into cancer therapy.
Collapse
|