1
|
Xu H, Jia D, Guo S, Zheng X, Yang W, Chen H, Zhang Y, Yu Q. Dual-Aaction defense: A photothermal and controlled nitric oxide-releasing coating for preventing biofilm formation. J Colloid Interface Sci 2024; 679:191-200. [PMID: 39447462 DOI: 10.1016/j.jcis.2024.10.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Biofilms formed by pathogenic bacteria on biomedical devices and implants pose a considerable challenge due to their resistance to conventional treatments and their role in severe infections. Preventing biofilm formation is strategically more advantageous than attempting to eliminate the mature biofilms, particularly in addressing the persistence of such formations. In this context, a dual-action antibiofilm coating is developed, utilizing S-nitrosothiols functionalized candle soot (CS), which capitalizes on CS's strong light absorption for photothermal therapy and the controlled release of nitric oxide (NO) from S-nitrosothiols to inhibit biofilm formation. This coating exhibits stable and efficient light-to-heat conversion, along with the ability to release NO gradually at physiological temperatures and to rapidly release NO on demand when triggered by a near-infrared (NIR) laser. Under NIR irradition, the coating generates heat swiftly and releases substantial amounts of NO, which synergistically disrupts bacterial membranes, leading to the leakage of intracellular components and the effective eradication of surface-adhered bacteria. In the absence of NIR irradiation, the coating continuously releases low concentrations of NO, which depletes exopolysaccharides and impedes biofilm formation. The antibiofilm efficacy of this coating is assessed against Staphylococcus aureus and Pseudomonas aeruginosa, demonstrating marked reductions in bacterial viability and biofilm formation in vitro. Additionally, the coating exhibits minimal cytotoxicity and can be easily applied to diverse substrates. This study underscores the potential of this coating as a broad-spectrum, non-toxic approach for preventing biofilm-related complications in biomedical applications.
Collapse
Affiliation(s)
- Hu Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Dongxu Jia
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Shuaihang Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinyan Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Wei Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China.
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
2
|
Fan D, Liu X, Chen H. Endothelium-Mimicking Materials: A "Rising Star" for Antithrombosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53343-53371. [PMID: 39344055 DOI: 10.1021/acsami.4c12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The advancement of antithrombotic materials has significantly mitigated the thrombosis issue in clinical applications involving various medical implants. Extensive research has been dedicated over the past few decades to developing blood-contacting materials with complete resistance to thrombosis. However, despite these advancements, the risk of thrombosis and other complications persists when these materials are implanted in the human body. Consequently, the modification and enhancement of antithrombotic materials remain pivotal in 21st-century hemocompatibility studies. Previous research indicates that the healthy endothelial cells (ECs) layer is uniquely compatible with blood. Inspired by bionics, scientists have initiated the development of materials that emulate the hemocompatible properties of ECs by replicating their diverse antithrombotic mechanisms. This review elucidates the antithrombotic mechanisms of ECs and examines the endothelium-mimicking materials developed through single, dual-functional and multifunctional strategies, focusing on nitric oxide release, fibrinolytic function, glycosaminoglycan modification, and surface topography modification. These materials have demonstrated outstanding antithrombotic performance. Finally, the review outlines potential future research directions in this dynamic field, aiming to advance the development of antithrombotic materials.
Collapse
Affiliation(s)
- Duanqi Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
3
|
Aveyard J, Richards S, Li M, Pitt G, Hughes GL, Akpan A, Akhtar R, Kazaili A, D'Sa RA. Nitric oxide releasing coatings for the prevention of viral and bacterial infections. Biomater Sci 2024; 12:4664-4681. [PMID: 38980705 PMCID: PMC11385708 DOI: 10.1039/d4bm00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Healthcare associated infections (HCAI) represent a significant burden worldwide contributing to morbidity and mortality and result in substantial economic consequences equating to billions annually. Although the impacts of HCAI have been felt for many years, the coronavirus pandemic has had a profound effect, escalating rates of HCAI, even with extensive preventative measures such as vaccination, personal protective equipment, and deep cleaning regimes. Therefore, there is an urgent need for new solutions to mitigate this serious health emergency. In this paper, the fabrication of nitric oxide (NO) releasing dual action polymer coatings for use in healthcare applications is described. The coatings are doped with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) and release high payloads of NO in a sustained manner for in excess of 50 hours. These coatings are extensively characterized in multiple biologically relevant solutions and the antibacterial/antiviral efficacy is studied. For the first time, we assess antibacterial activity in a time course study (1, 2, 4 and 24 h) in both nutrient rich and nutrient poor conditions. Coatings exhibit excellent activity against Pseudomonas aeruginosa and methicillin resistant Staphylococcus aureus (MRSA), with up to complete reduction observed over 24 hours. Additionally, when tested against SARS-CoV-2, the coatings significantly reduced active virus in as little as 10 minutes. These promising results suggest that these coatings could be a valuable addition to existing preventative measures in the fight against HCAIs.
Collapse
Affiliation(s)
- Jenny Aveyard
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill, Liverpool, L69 3GH, UK.
| | - Siobhan Richards
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Man Li
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill, Liverpool, L69 3GH, UK.
| | - Graeme Pitt
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill, Liverpool, L69 3GH, UK.
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Asangaedem Akpan
- Department of Musculoskeletal & Ageing Sciences, University of Liverpool, Liverpool L69 3GL, UK
- Liverpool University Hospitals NHS FT, Liverpool L7 8XP, UK
| | - Riaz Akhtar
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill, Liverpool, L69 3GH, UK.
| | - Ahmed Kazaili
- Department of Biochemistry & Systems Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Raechelle A D'Sa
- School of Engineering, University of Liverpool, Harrison Hughes Building, Brownlow Hill, Liverpool, L69 3GH, UK.
| |
Collapse
|
4
|
Ye S, Jin N, Liu N, Cheng F, Hu L, Zhang G, Li Q, Jing J. Gases and gas-releasing materials for the treatment of chronic diabetic wounds. Biomater Sci 2024; 12:3273-3292. [PMID: 38727636 DOI: 10.1039/d4bm00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic non-healing wounds are a common consequence of skin ulceration in diabetic patients, with severe cases such as diabetic foot even leading to amputations. The interplay between pathological factors like hypoxia-ischemia, chronic inflammation, bacterial infection, impaired angiogenesis, and accumulation of advanced glycosylation end products (AGEs), resulting from the dysregulation of the immune microenvironment caused by hyperglycemia, establishes an unending cycle that hampers wound healing. However, there remains a dearth of sufficient and effective approaches to break this vicious cycle within the complex immune microenvironment. Consequently, numerous scholars have directed their research efforts towards addressing chronic diabetic wound repair. In recent years, gases including Oxygen (O2), Nitric oxide (NO), Hydrogen (H2), Hydrogen sulfide (H2S), Ozone (O3), Carbon monoxide (CO) and Nitrous oxide (N2O), along with gas-releasing materials associated with them have emerged as promising therapeutic solutions due to their ability to regulate angiogenesis, intracellular oxygenation levels, exhibit antibacterial and anti-inflammatory effects while effectively minimizing drug residue-induced damage and circumventing drug resistance issues. In this review, we discuss the latest advances in the mechanisms of action and treatment of these gases and related gas-releasing materials in diabetic wound repair. We hope that this review can provide different ideas for the future design and application of gas therapy for chronic diabetic wounds.
Collapse
Affiliation(s)
- Shuming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Neng Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Nan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Feixiang Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Liang Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
5
|
Cui T, Xu F, Wang J, Li W, Gao Y, Li X, Yang K, Zhang W, Ge F, Tao Y. Polydopamine Nanocarriers with Cascade-Activated Nitric Oxide Release Combined Photothermal Activity for the Therapy of Drug-Resistant Bacterial Infections. ACS Infect Dis 2024; 10:2018-2031. [PMID: 38743862 DOI: 10.1021/acsinfecdis.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Antibiotic abuse leads to increased bacterial resistance, and the surviving planktonic bacteria aggregate and secrete extracellular polymers to form biofilms. Conventional antibacterial agents find it difficult to penetrate the biofilm, remove the bacteria wrapped in it, and produce an excellent therapeutic effect. In this study, a dual pH- and NIR-responsive nanocomposite (A-Ca@PDA) was developed to remove drug-resistant bacteria through a cascade of catalytic nitric oxide (NO) release and photothermal clearance. NO can melt in the outer package of the biofilm, facilitating the nanocomposites to have better permeability. Thermal therapy further inhibits the growth of planktonic bacteria. The locally generated high temperature and the burst release of NO together aggravate the biofilm collapse and bacterial death after NIR irradiation. The nanocomposites achieved a remarkable photothermal conversion efficiency of 47.5%, thereby exhibiting significant advancements in energy conversion. The nanocomposites exhibited remarkable efficacy in inhibiting multidrug-resistant (MDR) Escherichia coli and MDR Staphylococcus aureus, thus achieving an inhibition rate of >90%. Moreover, these nanocomposites significantly improved the wound-healing process in the MDR S. aureus-infected mice. Thus, this novel nanocomposite offers a novel strategy to combat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Ting Cui
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Feiyang Xu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yuan Gao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Xing Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
6
|
Li S, Yang L, Zhao Z, Yang X, Lv H. A polyurethane-based hydrophilic elastomer with multi-biological functions for small-diameter vascular grafts. Acta Biomater 2024; 176:234-249. [PMID: 38218359 DOI: 10.1016/j.actbio.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Thrombosis and intimal hyperplasia (IH) are two major problems faced by the small-diameter vascular grafts. Mimicking the native endothelium and physiological elasticity of blood vessels is considered an ideal strategy. Polyurethane (PU) is suitable for vascular grafts in mechanics because of its molecular designability and elasticity; however, it generally lacks the endothelium-like biofunctions and hydrophilicity. To solve this contradiction, a hydrophilic PU elastomer is developed by crosslinking the hydrophobic hard-segment chains containing diselenide with diaminopyrimidine-capped polyethylene glycol (PEG). In this network, the hydrophobic aggregation occurs underwater due to the uninterrupted hard-segment chains, leading to a significant self-enhancement in mechanics, which can be tailored to the elasticity similar to natural vessels by adjusting the crosslinking density. A series of in vitro studies confirm that the hydrophilicity of PEG and biological activities of aminopyrimidine and diselenide give the PU multi-biological functions similar to the native endothelium, including stable catalytic release of nitric oxide (NO) in the physiological level; anti-adhesion and anti-activation of platelets; inhibition of migration, adhesion, and proliferation of smooth muscle cells (SMCs); and antibacterial effect. In vivo studies further prove the good histocompatibility with both significant reduction in immune response and calcium deposition. STATEMENT OF SIGNIFICANCE: Constructing small-diameter vascular grafts similar to the natural vessels is considered an ideal method to solve the restenosis caused by thrombosis and intimal hyperplasia (IH). Because of the long-term stability, bulk modification is more suitable for implanted materials, however, how to achieve the biofunctions, hydrophilicity, and elasticity simultaneously is still a big challenge. In this work, a kind of polyurethane-based elastomer has been designed and prepared by crosslinking the functional long hard-segment chains with PEG soft segments. The underwater elasticity based on hydration-induced stiffening and the multi-biological functions similar to the native endothelium are compatible with natural vessels. Both in vitro and in vivo experiments demonstrate the potential of this PU as small-diameter vascular grafts.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Lei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Zijian Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China.
| | - Hongying Lv
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China.
| |
Collapse
|
7
|
Hao DB, Li JL, Zhou XC, Li YY, Zhao ZX, Zhou R. Visible-Light-Driven NO Release from Postmodified MOFs via Photoinduced Electron Transfer for Antibacterial Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305943. [PMID: 37681501 DOI: 10.1002/smll.202305943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Photoresponsive nitric oxide (NO)-releasing materials (NORMs) enable the spatiotemporal delivery of NO to facilitate their potential applications in physiological conditions. Here two novel metal-organic frameworks (MOFs)-based photoactive NORMs achieved by the incorporation of prefunctionalized NO donors into the photosensitive Fe-MOFs via a postmodification strategy is reported. The modified Fe-MOFs display superior photoactivity of NO release when exposed to visible light (up to 720 nm). Significantly, the visible-light-driven NO release properties are further corroborated by their efficient antibacterial performance.
Collapse
Affiliation(s)
- De-Bo Hao
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, P. R. China
| | - Jia-Li Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhen-Xin Zhao
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, China
| | - Rui Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
8
|
Li P, Liang F, Wang L, Jin D, Shang Y, Liu X, Pan Y, Yuan J, Shen J, Yin M. Bilayer vascular grafts with on-demand NO and H 2S release capabilities. Bioact Mater 2024; 31:38-52. [PMID: 37601276 PMCID: PMC10432902 DOI: 10.1016/j.bioactmat.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) gasotransmitters exhibit potential therapeutic effects in the cardiovascular system. Herein, biomimicking multilayer structures of biological blood vessels, bilayer small-diameter vascular grafts (SDVGs) with on-demand NO and H2S release capabilities, were designed and fabricated. The keratin-based H2S donor (KTC) with good biocompatibility and high stability was first synthesized and then electrospun with poly (l-lactide-co-caprolactone) (PLCL) to be used as the outer layer of grafts. The electrospun poly (ε-caprolactone) (PCL) mats were aminolyzed and further chelated with copper (II) ions to construct glutathione peroxidase (GPx)-like structural surfaces for the catalytic generation of NO, which acted as the inner layer of grafts. The on-demand release of NO and H2S selectively and synergistically promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) while inhibiting the proliferation and migration of human umbilical artery smooth muscle cells (HUASMCs). Dual releases of NO and H2S gasotransmitters could enhance their respective production, resulting in enhanced promotion of HUVECs and inhibition of HUASMCs owing to their combined actions. In addition, the bilayer grafts were conducive to forming endothelial cell layers under flow shear stress. In rat abdominal aorta replacement models, the grafts remained patency for 6 months. These grafts were capable of facilitating rapid endothelialization and alleviating neointimal hyperplasia without obvious injury, inflammation, or thrombosis. More importantly, the grafts were expected to avoid calcification with the degradation of the grafts. Taken together, these bilayer grafts will be greatly promising candidates for SDVGs with rapid endothelialization and anti-calcification properties.
Collapse
Affiliation(s)
- Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| |
Collapse
|
9
|
Zhou X, Dong L, Zhao B, Hu G, Huang C, Liu T, Lu Y, Zheng M, Yu Y, Yang Z, Cheng S, Xiong Y, Luo G, Qian W, Yin R. A photoactivatable and phenylboronic acid-functionalized nanoassembly for combating multidrug-resistant gram-negative bacteria and their biofilms. BURNS & TRAUMA 2023; 11:tkad041. [PMID: 37849944 PMCID: PMC10578387 DOI: 10.1093/burnst/tkad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 07/19/2023] [Indexed: 10/19/2023]
Abstract
Background Multidrug-resistant (MDR) gram-negative bacteria-related infectious diseases have caused an increase in the public health burden and mortality. Moreover, the formation of biofilms makes these bacteria difficult to control. Therefore, developing novel interventions to combat MDR gram-negative bacteria and their biofilms-related infections are urgently needed. The purpose of this study was to develop a multifunctional nanoassembly (IRNB) based on IR-780 and N, N'-di-sec-butyl-N, N'- dinitroso-1,4-phenylenediamine (BNN6) for synergistic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. Methods The characterization and bacteria-targeting ability of IRNB were investigated. The bactericidal efficacy of IRNB against gram-negative bacteria and their biofilms was demonstrated by crystal violet staining assay, plate counting method and live/dead staining in vitro. The antibacterial efficiency of IRNB was examined on a subcutaneous abscess and cutaneous infected wound model in vivo. A cell counting kit-8 assay, Calcein/PI cytotoxicity assay, hemolysis assay and intravenous injection assay were performed to detect the biocompatibility of IRNB in vitro and in vivo. Results Herein, we successfully developed a multifunctional nanoassembly IRNB based on IR-780 and BNN6 for synergistic photothermal therapy (PTT), photodynamic therapy (PDT) and nitric oxide (NO) effect triggered by an 808 nm laser. This nanoassembly could accumulate specifically at the infected sites of MDR gram-negative bacteria and their biofilms via the covalent coupling effect. Upon irradiation with an 808 nm laser, IRNB was activated and produced both reactive oxygen species (ROS) and hyperthermia. The local hyperthermia could induce NO generation, which further reacted with ROS to generate ONOO-, leading to the enhancement of bactericidal efficacy. Furthermore, NO and ONOO- could disrupt the cell membrane, which converts bacteria to an extremely susceptible state and further enhances the photothermal effect. In this study, IRNB showed a superior photothermal-photodynamic-chemo (NO) synergistic therapeutic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. This resulted in effective control of associated infections, relief of inflammation, promotion of re-epithelization and collagen deposition, and regulation of angiogenesis during wound healing. Moreover, IRNB exhibited excellent biocompatibility, both in vitro and in vivo. Conclusions The present research suggests that IRNB can be considered a promising alternative for treating infections caused by MDR gram-negative bacteria and their biofilms.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Lanlan Dong
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Baohua Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Guangyun Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Can Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Tengfei Liu
- Department of Burn and Plastic Sugery, No. 906 Hospital of Joint Logistic Support Force of PLA, No. 377 Zhongshan East Road, Yinzhou District, Ningbo 315100, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Mengxue Zheng
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Yanlan Yu
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Shaowen Cheng
- Department of Wound Repair, the First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou 570102, China
| | - Yan Xiong
- Department of Orthopaedics, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| |
Collapse
|
10
|
Shang L, Yu Y, Jiang Y, Liu X, Sui N, Yang D, Zhu Z. Ultrasound-Augmented Multienzyme-like Nanozyme Hydrogel Spray for Promoting Diabetic Wound Healing. ACS NANO 2023; 17:15962-15977. [PMID: 37535449 DOI: 10.1021/acsnano.3c04134] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Treatment of diabetic foot ulcers (DFU) needs to reduce inflammation, relieve hypoxia, lower blood glucose, promote angiogenesis, and eliminate pathogenic bacteria, but the therapeutic efficacy is greatly limited by the diversity and synergy of drug functions as well as the DFU microenvironment itself. Herein, an ultrasound-augmented multienzyme-like nanozyme hydrogel spray was developed using hyaluronic acid encapsulated l-arginine and ultrasmall gold nanoparticles and Cu1.6O nanoparticles coloaded phosphorus doped graphitic carbon nitride nanosheets (ACPCAH). This nanozyme hydrogel spray possesses five types of enzyme-like activities, including superoxide dismutase (SOD)-, catalase (CAT)-, glucose oxidase (GOx)-, peroxidase (POD)-, and nitric oxide synthase (NOS)-like activities. The kinetics and reaction mechanism of the sonodynamic/sonothermal synergistic enhancement of the SOD-CAT-GOx-POD/NOS cascade reaction of ACPCAH are fully investigated. Both in vitro and in vivo tests demonstrate that this nanozyme hydrogel spray can be activated by the DFU microenvironment to reduce inflammation, relieve hypoxia, lower blood glucose, promote angiogenesis, and eliminate pathogenic bacteria, thus accelerating diabetic wound healing effectively. This study highlights a competitive approach based on multienzyme-like nanozymes for the development of all-in-one DFU therapies.
Collapse
Affiliation(s)
- Limin Shang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Yujie Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Xinyu Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Dongqin Yang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| |
Collapse
|
11
|
Yu YL, Wu JJ, Lin CC, Qin X, Tay FR, Miao L, Tao BL, Jiao Y. Elimination of methicillin-resistant Staphylococcus aureus biofilms on titanium implants via photothermally-triggered nitric oxide and immunotherapy for enhanced osseointegration. Mil Med Res 2023; 10:21. [PMID: 37143145 PMCID: PMC10158155 DOI: 10.1186/s40779-023-00454-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Treatment of methicillin-resistant Staphylococcus aureus (MRSA) biofilm infections in implant placement surgery is limited by the lack of antimicrobial activity of titanium (Ti) implants. There is a need to explore more effective approaches for the treatment of MRSA biofilm infections. METHODS Herein, an interfacial functionalization strategy is proposed by the integration of mesoporous polydopamine nanoparticles (PDA), nitric oxide (NO) release donor sodium nitroprusside (SNP) and osteogenic growth peptide (OGP) onto Ti implants, denoted as Ti-PDA@SNP-OGP. The physical and chemical properties of Ti-PDA@SNP-OGP were assessed by scanning electron microscopy, X-ray photoelectron spectroscope, water contact angle, photothermal property and NO release behavior. The synergistic antibacterial effect and elimination of the MRSA biofilms were evaluated by 2',7'-dichlorofluorescein diacetate probe, 1-N-phenylnaphthylamine assay, adenosine triphosphate intensity, o-nitrophenyl-β-D-galactopyranoside hydrolysis activity, bicinchoninic acid leakage. Fluorescence staining, assays for alkaline phosphatase activity, collagen secretion and extracellular matrix mineralization, quantitative real‑time reverse transcription‑polymerase chain reaction, and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the inflammatory response and osteogenic ability in bone marrow stromal cells (MSCs), RAW264.7 cells and their co-culture system. Giemsa staining, ELISA, micro-CT, hematoxylin and eosin, Masson's trichrome and immunohistochemistry staining were used to evaluate the eradication of MRSA biofilms, inhibition of inflammatory response, and promotion of osseointegration of Ti-PDA@SNP-OGP in vivo. RESULTS Ti-PDA@SNP-OGP displayed a synergistic photothermal and NO-dependent antibacterial effect against MRSA following near-infrared light irradiation, and effectively eliminated the formed MRSA biofilms by inducing reactive oxygen species (ROS)-mediated oxidative stress, destroying bacterial membrane integrity and causing leakage of intracellular components (P < 0.01). In vitro experiments revealed that Ti-PDA@SNP-OGP not only facilitated osteogenic differentiation of MSCs, but also promoted the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2-phenotype (P < 0.05 or P < 0.01). The favorable osteo-immune microenvironment further facilitated osteogenesis of MSCs and the anti-inflammation of RAW264.7 cells via multiple paracrine signaling pathways (P < 0.01). In vivo evaluation confirmed the aforementioned results and revealed that Ti-PDA@SNP-OGP induced ameliorative osseointegration in an MRSA-infected femoral defect implantation model (P < 0.01). CONCLUSIONS These findings suggest that Ti-PDA@SNP-OGP is a promising multi-functional material for the high-efficient treatment of MRSA infections in implant replacement surgeries.
Collapse
Affiliation(s)
- Yong-Lin Yu
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou China
| | - Jun-Jie Wu
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Chuan-Chuan Lin
- Department of Blood Transfusion, Laboratory of Radiation Biology, the Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037 China
| | - Xian Qin
- Department of Reproductive Endocrinology, Chongqing Health Center for Women and Children, Chongqing, 401147 China
| | - Franklin R. Tay
- The Graduate School, Augusta University, Augusta, GA 30912 USA
| | - Li Miao
- Department of Stomatology, the Seventh Medical Center of PLA General Hospital, Beijing, 100700 China
| | - Bai-Long Tao
- Laboratory Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yang Jiao
- Department of Stomatology, the Seventh Medical Center of PLA General Hospital, Beijing, 100700 China
| |
Collapse
|
12
|
Berthou M, Clarot I, Gouyon J, Steyer D, Monat MA, Boudier A, Pallotta A. Thiol sensing: From current methods to nanoscale contribution. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|