1
|
Xia HY, Zhao Y, Meng RY, Chen AZ, Wang SB, Kankala RK. Transition Metal (Molybdenum)-Doped Drug-like Conformational Nanoarchitectonics with Altered Valence States (Mn 2+/Mn 4+ and Mo 5+/Mo 6+) for Augmented Cancer Theranostics. Mol Pharm 2024; 21:5864-5879. [PMID: 39378327 DOI: 10.1021/acs.molpharmaceut.4c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Despite the advancements in cancer therapy, delivering active pharmaceutical ingredients (APIs) using nanoparticles remains challenging due to the failed conveyance of the required drug payload, poor targeting ability, and poor biodistribution, hampering their clinical translation. Recently, the appropriate design of materials with intrinsic therapeutic functionalities has garnered enormous interest in the development of various intelligent therapeutic nanoplatforms. In this study, we demonstrate the fabrication of transition metal (molybdenum, Mo)-doped manganese dioxide (MnO2) nanoarchitectures, exhibiting diagnostic (magnetic resonance imaging, MRI) and therapeutic (chemodynamic therapy, CDT) functionalities. The facile hydrothermal approach-assisted Mo-doped MnO2 flower-like nanostructures offered tailorable morphologies in altered dimensions, precise therapeutic effects, exceptional biocompatibility, and biodegradability in the tumor microenvironment. The resultant defects due to doped Mo species exhibited peroxidase and oxidase activities, improving glutathione (GSH) oxidation. The two sets of variable valence metal ion pairs (Mn2+/Mn4+ and Mo5+/Mo6+) and their interplay could substantially improve the Fenton-like reaction and generate toxic hydroxyl radicals (•OH), thus achieving CDT-assisted antitumor effects. As inherent T1-MRI agents, these MnO2 nanoparticles displayed excellent MRI efficacy in vitro. Together, we believe that these conformational Mo-doped MnO2 nanoarchitectures with two pairs of variable valence states could potentiate drugless therapy in pharmaceutics.
Collapse
Affiliation(s)
- Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Ying Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Ruo-Yin Meng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
| |
Collapse
|
2
|
Cai W, Sun T, Qiu C, Sheng H, Chen R, Xie C, Kou L, Yao Q. Stable triangle: nanomedicine-based synergistic application of phototherapy and immunotherapy for tumor treatment. J Nanobiotechnology 2024; 22:635. [PMID: 39420366 PMCID: PMC11488210 DOI: 10.1186/s12951-024-02925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
In recent decades, cancer has posed a challenging obstacle that humans strive to overcome. While phototherapy and immunotherapy are two emerging therapies compared to traditional methods, they each have their advantages and limitations. These limitations include easy metastasis and recurrence, low response rates, and strong side effects. To address these issues, researchers have increasingly focused on combining these two therapies by utilizing a nano-drug delivery system due to its superior targeting effect and high drug loading rate, yielding remarkable results. The combination therapy demonstrates enhanced response efficiency and effectiveness, leading to a preparation that is highly targeted, responsive, and with low recurrence rates. This paper reviews several main mechanisms of anti-tumor effects observed in combination therapy based on the nano-drug delivery system over the last five years. Furthermore, the challenges and future prospects of this combination therapy are also discussed.
Collapse
Affiliation(s)
- Wenjing Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Tuyue Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Huixiang Sheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, 325027, China.
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou, 325000, China.
- Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou, 325000, China.
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Modi SK, Mohapatra P, Bhatt P, Singh A, Parmar AS, Roy A, Joshi V, Singh MS. Targeting tumor microenvironment with photodynamic nanomedicine. Med Res Rev 2024. [PMID: 39152568 DOI: 10.1002/med.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Photodynamic therapy (PDT) is approved for the treatment of certain cancers and precancer lesions. While early Photosensitizers (PS) have found their way to the clinic, research in the last two decades has led to the development of third-generation PS, including photodynamic nanomedicine for improved tumor delivery and minimal systemic or phototoxicity. In terms of nanoparticle design for PDT, we are witnessing a shift from passive to active delivery for improved outcomes with reduced PS dosage. Tumor microenvironment (TME) comprises of a complex and dynamic landscape with myriad potential targets for photodynamic nanocarriers that are surface-modified with ligands. Herein, we review ways to improvise PDT by actively targeting nanoparticles (NPs) to intracellular organelles such as mitochondria or lysosomes and so forth, overcoming the limitations caused by PDT-induced hypoxia, disrupting the blood vascular networks in tumor tissues-vascular targeted PDT (VTP) and targeting immune cells for photoimmunotherapy. We propose that a synergistic outlook will help to address challenges such as deep-seated tumors, metastasis, or relapse and would lead to robust PDT response in patients.
Collapse
Affiliation(s)
- Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, London, UK
| | - Pragyan Mohapatra
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Priya Bhatt
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Aishleen Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Manu Smriti Singh
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Zhang X, Lai Y, Zhang L, Chen Z, Zhao J, Wang S, Li Z. Chitosan-modified molybdenum selenide mediated efficient killing of Helicobacter pylori and treatment of gastric cancer. Int J Biol Macromol 2024; 275:133599. [PMID: 38960263 DOI: 10.1016/j.ijbiomac.2024.133599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Helicobacter pylori (H. pylori) is one of the major causes of gastrointestinal diseases, including gastric cancer. However, the acidic environment of the stomach and H. pylori resistance severely impair the antimicrobial efficacy of oral drugs. Here, a biocompatible chitosan-modified molybdenum selenide (MoSe2@CS) was designed for the simultaneous photothermal treatment of H. pylori infection and gastric cancer. MoSe2@CS showed a photothermal conversion efficiency was as high as 45.7 %. In the H. pylori-infected mice model, MoSe2@CS displayed a high bacteriostasis ratio of 99.9 % upon near-infrared irradiation. The antimicrobial functionality was also proved by transcriptomic sequencing study, which showed that MoSe2@CS combined with NIR laser irradiation modulated the gene expression of a variety of H. pylori bioprocesses, including cell proliferation and inflammation-related pathways. Further gut flora analysis results indicated that MoSe2@CS mediated PTT of H. pylori did not affect the homeostasis of gut flora, which highlights its advantages over traditional antibiotic therapy. In addition, MoSe2@CS exhibited a good photothermal ablation effect and significantly inhibited gastric tumor growth in vitro and in vivo. The comprehensive application of MoSe2@CS in the PTT of H. pylori infection and gastric cancer provides a new avenue for the clinical treatment of H. pylori infection and related diseases.
Collapse
Affiliation(s)
- Xinyuan Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Yongkang Lai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China; Department of Gastroenterology, Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Liang Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| | - Zhaoshen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
5
|
Tyagi N, Arya RKK, Bisht D, Wadhwa P, Kumar Upadhyay T, Kumar Sethiya N, Jindal DK, Pandey S, Kumar D. Mechanism and potentialities of photothermal and photodynamic therapy of transition metal dichalcogenides (TMDCs) against cancer. LUMINESCENCE 2024; 39:e4770. [PMID: 38751216 DOI: 10.1002/bio.4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/20/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
The ultimate goal of nanoparticle-based phototherapy is to suppress tumor growth. Photothermal therapy (PTT) and photothermal photodynamic therapy (PDT) are two types of physicochemical therapy that use light radiation with multiple wavelength ranges in the near-infrared to treat cancer. When a laser is pointed at tissue, photons are taken in the intercellular and intracellular regions, converting photon energy to heat. It has attracted much interest and research in recent years. The advent of transition materials dichalcogenides (TMDCs) is a revolutionary step in PDT/PTT-based cancer therapy. The TMDCs is a multilayer 2D nano-composite. TMDCs contain three atomic layers in which two chalcogens squash in the transition metal. The chalcogen atoms are highly reactive, and the surface characteristics of TMDCs help them to target deep cancer cells. They absorb Near Infrared (NIR), which kills deep cancer cells. In this review, we have discussed the history and mechanism of PDT/PTT and the use of TMDCs and nanoparticle-based systems, which have been practiced for theranostics purposes. We have also discussed PDT/PTT combined with immunotherapy, in which the cancer cell apoptosis is done by activating the immune cells, such as CD8+.
Collapse
Affiliation(s)
- Neha Tyagi
- Department of Pharmaceutical Sciences, Indraprastha Institute of Management & Technology Saharanpur, U.P., India
| | - Rajeshwar Kamal Kant Arya
- Department of Pharmaceutical Sciences, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand, India
| | - Dheeraj Bisht
- Department of Pharmaceutical Sciences, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand, India
- Devsthali Vidyapeeth College of Pharmacy (Veer Madho Singh Bhandari Uttarakhand Technical University Dehradun), Rudrapur, Uttarakhand, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | | | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Sadanand Pandey
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
- Department of Chemistry, College of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
6
|
Yu H, He X, Yao J, Gu X, Zhou L, Gao L, Wang J. Potential Exploration of Biocompatible Carbon-Coated MoSe 2 Nanoparticles for Exploration of the Photothermal Potential in the Treatment of Human Choriocarcinoma. Int J Nanomedicine 2024; 19:2359-2375. [PMID: 38476276 PMCID: PMC10929259 DOI: 10.2147/ijn.s444738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Background Molybdenum diselenide (MoSe2), as a nano near-infrared absorber, has been widely studied in the field of photothermal therapy of cancer. However, there is little research on its application in the treatment of human choriocarcinoma. Methods and Results In this paper, a new type of carbon-coated MoSe2 (MEC) nanoparticles was prepared by a one-step hydrothermal method. The chemical characterization including SEM, TEM, EDS, XRD, FT-IR, TGA, Roman, and XPS showed that MEC was successfully synthesized. MEC exhibited a high photothermal conversion efficiency (50.97%) and extraordinary photothermal stability under laser irradiation. The cell experiment results showed that MEC had good biocompatibility on normal cells while significant photothermal effect on human choriocarcinoma (JEG-3) cells, achieving a good anticancer effect. The level of reactive oxygen species (ROS) in JEG-3 cells was significantly increased under the combination of MEC nanoparticles and near-infrared radiation. MEC nanoparticles could induce apoptosis of JEG-3 cells in combination with near-infrared radiation. Finally, transcriptomic analysis verified that MEC combined with laser radiation could inhibit DNA replication and induce apoptosis, thus improving its therapeutic effect on human choriocarcinoma. Conclusion MEC nanoparticles exert an excellent photothermal effect and may become an important candidate drug for the treatment of human choriocarcinoma.
Collapse
Affiliation(s)
- Hui Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xinyi He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jinmeng Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaoya Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Lin Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Li Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jia Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
7
|
Li J, Wang Y, Tang M, Zhang C, Fei Y, Li M, Li M, Gui S, Guo J. New insights into nanotherapeutics for periodontitis: a triple concerto of antimicrobial activity, immunomodulation and periodontium regeneration. J Nanobiotechnology 2024; 22:19. [PMID: 38178140 PMCID: PMC10768271 DOI: 10.1186/s12951-023-02261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by the local microbiome and the host immune response, resulting in periodontal structure damage and even tooth loss. Scaling and root planning combined with antibiotics are the conventional means of nonsurgical treatment of periodontitis, but they are insufficient to fully heal periodontitis due to intractable bacterial attachment and drug resistance. Novel and effective therapeutic options in clinical drug therapy remain scarce. Nanotherapeutics achieve stable cell targeting, oral retention and smart release by great flexibility in changing the chemical composition or physical characteristics of nanoparticles. Meanwhile, the protectiveness and high surface area to volume ratio of nanoparticles enable high drug loading, ensuring a remarkable therapeutic efficacy. Currently, the combination of advanced nanoparticles and novel therapeutic strategies is the most active research area in periodontitis treatment. In this review, we first introduce the pathogenesis of periodontitis, and then summarize the state-of-the-art nanotherapeutic strategies based on the triple concerto of antibacterial activity, immunomodulation and periodontium regeneration, particularly focusing on the therapeutic mechanism and ingenious design of nanomedicines. Finally, the challenges and prospects of nano therapy for periodontitis are discussed from the perspective of current treatment problems and future development trends.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Maomao Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Chengdong Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yachen Fei
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Meng Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Mengjie Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department, Hefei, 230012, Anhui, China.
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department, Hefei, 230012, Anhui, China.
| |
Collapse
|
8
|
Yu Y, Fan P, Li J, Wang S. Preparation of Biocompatible Manganese Selenium-Based Nanoparticles with Antioxidant and Catalytic Functions. Molecules 2023; 28:4498. [PMID: 37298973 PMCID: PMC10254917 DOI: 10.3390/molecules28114498] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The specificity of the tumor microenvironment (TME) severely limits the effectiveness of tumor treatment. In this study, we prepared a composite nanoparticle of manganese dioxide and selenite by a one-step redox method, and their stability under physiological conditions was improved with a bovine serum protein modification to obtain MnO2/Se-BSA nanoparticles (SMB NPs). In the SMB NPs, manganese dioxide and selenite endowed the SMB NPs with acid-responsive and catalytic, and antioxidant properties, respectively. The weak acid response, catalytic activity, and antioxidant properties of composite nanoparticles were verified experimentally. Moreover, in an in vitro hemolysis assay, different concentrations of nanoparticles were incubated with mouse erythrocytes, and the hemolysis ratio was less than 5%. In the cell safety assay, the cell survival ratio was as high as 95.97% after the co-culture with L929 cells at different concentrations for 24 h. In addition, the good biosafety of composite nanoparticles was verified at the animal level. Thus, this study helps to design high-performance and comprehensive therapeutic reagents that are responsive to the hypoxia, weak acidity, hydrogen peroxide overexpression nature of TME and overcome the limitations of TME.
Collapse
Affiliation(s)
| | | | | | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|