1
|
Yang Y, Chen Z, Pan Y, Zhang Y, Le T. Interactions of metal-based nanozymes with aptamers, from the design of nanozyme to its application in aptasensor: Advances and perspectives. Talanta 2024; 286:127450. [PMID: 39724857 DOI: 10.1016/j.talanta.2024.127450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Nanozymes, characterized by enzyme-like activity, have been extensively used in quantitative analysis and rapid detection due to their small size, batch fabrication, and ease of modification. Researchers have combined aptamers, an emerging molecular probe, with nanozymes for biosensing to address the limited reaction specificity of nanozymes. Nanozyme aptasensors are currently experiencing significant growth, offering a promising solution to the lack of rapid detection methods across various fields. Unlike traditional nanozyme research, the development of nanozyme aptasensors is challenging as it requires the design of highly active nanozymes as well as the establishment of efficient and agile interactions between aptamers and nanozymes. Therefore, this review summarizes the active species and catalytic mechanisms of various nanozymes along with classical design options, discussing the future development of nanozyme aptasensors. It is anticipated that this review will inspire researchers in this domain, leading to the design of more enzymatically active nanozymes and advanced nanozyme aptasensors.
Collapse
Affiliation(s)
- Ying Yang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Zhuoer Chen
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Yangwei Pan
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Yongkang Zhang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China.
| |
Collapse
|
2
|
Li B, Yang J, Lu S, Zhao J, Du Y, Cai Y, Dong R. Chlorella-Based Biohybrid Microrobot for Removing Both Nutrient and Microalgae toward Efficient Water Eutrophication Treatment. NANO LETTERS 2024. [PMID: 39680918 DOI: 10.1021/acs.nanolett.4c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Excessive nutrients and explosive growth of harmful microalgae in water environments are key challenges in the treatment of eutrophication. The development of a low-cost, time-saving, and small-space-suitable research method that can simultaneously remove nutrients and microalgae is highly anticipated. This work first proposed applying microrobots to eutrophication treatment. Phosphate and Microcystisaeruginosa (M. aeruginosa) were selected as representative nutrients and harmful microalgae, respectively, to investigate the efficient removal effect of the microrobots on the two. The Chlorella@Fe3O4@ZIF-8 biohybrid microrobot can not only perform the dual removal of phosphates and M. aeruginosa but also take advantage of its small size and controllable motion to achieve targeted treatment of eutrophication of water in microenvironments such as microchannels, thereby achieving the effect of fundamentally treating the eutrophication. The Chlorella@Fe3O4@ZIF-8 microrobot reveals a new strategy for the treatment of eutrophication and also exploits a new perspective for application research of microrobots.
Collapse
Affiliation(s)
- Baichuan Li
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China
| | - Jie Yang
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China
| | - Sirui Lu
- Guangzhou Olympic Secondary School, Guangzhou 510645, China
| | - Jiaqi Zhao
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China
| | - Yonghui Du
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China
| | - Yuepeng Cai
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China
| | - Renfeng Dong
- School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou 510006, China
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| |
Collapse
|
3
|
Wen SH, Zhang H, Yu S, Ma J, Zhu JJ, Zhou Y. Nanozyme coating-gated multifunctional COF composite based dual-ratio enhanced dual-mode sensor for highly sensitive and reliable detection of organophosphorus pesticides in real samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135791. [PMID: 39265396 DOI: 10.1016/j.jhazmat.2024.135791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
The reliable detection of organophosphorus pesticides (OPs) in complex matrices remains an enormous challenge due to inevitable interference of sample matrices and testing factors. To address this issue, we designed a nanozyme-coated mesoporous COF with guest molecule loading, and successfully used it to construct a dual-ratio dual-mode sensor through target-regulated signal generation. The multifunctional COF-based composite (MB/COF@MnO2, MCM) featured high loading of methylene blue (MB), oxidase-like MnO2 coatings as gatekeepers, and specific recognition of thiocholine (TCh). TCh, a regulator produced from acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylthiocholine, could decompose MnO2 coatings, triggering the release of abundant MB and oxidation of few o-phenylenediamine (OPD). OPs, strong inhibitors of AChE, could restrain TCh production and MnO2 decomposition, thereby controlling the release of less MB and oxidation of more OPD. This regulation boosted the dual-ratio dual-mode assay of OPs by using the released MB and oxidized OPD in the solution as testing signals, measured by both fluorescent and electrochemical methods. Experimental results demonstrated the sensitive detection of dichlorvos with LODs of 0.083 and 0.026 ng/mL via the fluorescent/electrochemical mode, respectively. This study represented a creative endeavor to develop dual-ratio dual-mode sensors for OPs detection in complex samples, offering high sensitivity, excellent selectivity, and good reliability.
Collapse
Affiliation(s)
- Shao-Hua Wen
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hengyuan Zhang
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junping Ma
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
4
|
Ren Y, Wu F, Huo L, Wang X, Zhang Y, Fan M, Tan M, Zhao J, Cheng J, Zhao Z, Bao J. Switchable ROS generator and scavenger to prevent the cisplatin induced acute kidney injury and improve efficacy via synergistic chemodynamic/immune therapy. Mater Today Bio 2024; 29:101328. [PMID: 39569165 PMCID: PMC11576404 DOI: 10.1016/j.mtbio.2024.101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Acute kidney injury (AKI) induced by cisplatin (DDP), which is accompanied with the generation of reactive oxygen species (ROS), is a severe side effect during treatment and restricts the application of DDP. In this study, we develop ultrasmall Mn3O4 nanozyme (UMON) with tumor microenvironment (TME) responsive ROS scavenging and generating as adjuvant to alleviate DDP induced AKI with improved efficacy. In kidney, UMON with superoxide dismutase and catalase activity acts as ROS scavenger to eliminate ROS generated by DDP, successfully protecting the renal cells/tissue and alleviating AKI during DDP treatment. Alternatively, UMON rapidly responses to the high GSH level in TME and release Mn2+ in tumor. This unique feature endows it to generate hydroxyl radicals (∙OH) through a Fenton-like reaction and deplete GSH in tumor cell and tissue, achieving high efficient chemodynamic therapy (CDT). More importantly, the Mn2+ successfully activates the cGAS-STING pathway, initiating the immune response and effectively inhibiting the tumor metastases. The synergistic CDT and immune therapy effectively improve the anti-tumor efficacy of DDP in vitro and in vivo. This study demonstrates that TME responsive ROS scavenger/generator shows the potential to reduce side effects of DDP while improve its therapeutic efficacy, providing a new avenue to achieve efficient chemotherapy and promoting the progress of clinical chemotherapy.
Collapse
Affiliation(s)
- Yanan Ren
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Fei Wu
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Linlin Huo
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xiao Wang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Zhang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengke Fan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Mingya Tan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiayi Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenghuan Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
5
|
Lin X, Dong Q, Chang Y, Shi P, Zhang S. Transition-metal-based nanozymes for biosensing and catalytic tumor therapy. Anal Bioanal Chem 2024; 416:5933-5948. [PMID: 38782780 DOI: 10.1007/s00216-024-05345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Nanozymes, as an emerging class of enzyme mimics, have attracted much attention due to their adjustable catalytic activity, low cost, easy modification, and good stability. Researchers have made great efforts in developing and applying high-performance nanozymes. Recently, transition-metal-based nanozymes have been designed and widely developed because they possess unique photoelectric properties and high enzyme-like catalytic activities. To highlight these achievements and help researchers to understand the research status of transition-metal-based nanozymes, the development of transition-metal-based nanozymes from material characteristics to biological applications is summarized. Herein, we focus on introducing six categories of transition-metal-based nanozymes and highlight their progress in biomarker sensing and catalytic therapy for tumors. We hope that this review can guide the further development of transition-metal-based nanozymes and promote their practical applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xiangfang Lin
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China
| | - Qinhui Dong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China
| | - Yalin Chang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, People's Republic of China.
| |
Collapse
|
6
|
Min Y, Kong H, Ni T, Wu S, Wu J, Wang Y, Fu W, Zhang P. Two-dimensional β-MnOOH nanosheets with high oxidase-mimetic activity for smartphone-based colorimetric sensing. Colloids Surf B Biointerfaces 2024; 242:114075. [PMID: 38972256 DOI: 10.1016/j.colsurfb.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Manganese (Mn) is a versatile transition element with diverse oxidation states and significant biological importance. Mn-based nanozymes have emerged as promising catalysts in various applications. However, the direct use of manganese oxides as oxidase mimics remains limited and requires further improvement. In this study, we focus on hydroxylated manganese (MnOOH), specifically the layered form β-MnOOH which exhibits unique electronic and structural characteristics. The two-dimensional β-MnOOH nanosheets were synthesized through a hydrothermal approach and showed remarkable oxidase-like activity. These nanosheets effectively converted the oxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB), into its oxidized form by initiating the conversion of dissolved oxygen into ·O2-, 1O2 and ·OH. However, in the presence of L-cysteine (L-Cys), the catalytic activity of β-MnOOH was significantly inhibited, enabling highly sensitive detection of L-Cys. This sensing strategy was successfully applied for smartphone-based L-Cys assay, offering potential utility in the diagnosis of Cys-related diseases. The exploration of layered β-MnOOH nanosheets as highly active oxidase mimics opens up new possibilities for catalytic and biomedical applications.
Collapse
Affiliation(s)
- Yuanhong Min
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Haixia Kong
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Tingting Ni
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Shiyue Wu
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jiangling Wu
- Department of Clinical Laboratory, University Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Yi Wang
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Pu Zhang
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Mehta D, Singh S. Nanozymes and their biomolecular conjugates as next-generation antibacterial agents: A comprehensive review. Int J Biol Macromol 2024; 278:134582. [PMID: 39122068 DOI: 10.1016/j.ijbiomac.2024.134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Antimicrobial resistance (AMR), the ability of bacterial species to develop resistance against exposed antibiotics, has gained immense global attention in the past few years. Bacterial infections are serious health concerns affecting millions of people annually worldwide. Therefore, developing novel antibacterial agents that are highly effective and avoid resistance development is imperative. Among various strategies, recent developments in nanozyme technology have shown promising results as antibacterials in several antibiotic-sensitive and resistant bacterial species. Nanozymes offer several advantages over corresponding natural enzymes, such as inexpensive, stable, multifunctional, tunable catalytic properties, etc. Although the use of nanozymes as antibacterial agents has provided promising results, the specific biomolecule-conjugated nanozymes have shown further improvement in catalytic performance and associated antibacterial efficacy. The exclusive design of functional nanozymes with theranostic potential is found to simultaneously inhibit the growth and image of AMR bacterial species. This review comprehensively summarizes the history of nanozymes, their classification, biomolecules conjugated nanozyme, and their mechanism of enzyme-mimetic activity and associated antibacterial activity in antibiotic-sensitive and resistant species. The futureneeds to effectively engineer the existing or new nanozymes to curb AMR have also been discussed.
Collapse
Affiliation(s)
- Divya Mehta
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
8
|
Zhou T, Chen D, Li H, Ge D, Chen X. Enhanced oxidase mimic activity of raspberry-like N-doped Mn 3O 4 with oxygen vacancies for efficient colorimetric detection of gallic acid coupled with smartphone. Food Chem 2024; 447:138919. [PMID: 38452538 DOI: 10.1016/j.foodchem.2024.138919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The content of gallic acid (GA) is positively correlated with the quality grade of tea. Here, we developed a colorimetric method based on raspberry-like N-doped Mn3O4 nanospheres (N-Mn3O4 NSs) with oxidase-like activity for GA assay. Modulating the electronic structure of Mn3O4 by N doping could promote the catalysis ability, and the produced oxygen vacancies (OVs) can provide high surface energy and abundant active sites. The N-Mn3O4 NSs presented low Michaelis-Menten constant (Km) of 0.142 mM and maximum initial velocity (Vmax) of 9.8 × 10-6 M s-1. The sensor exhibited excellent analytical performance towards GA detection, including low LOD (0.028 μM) and promising linear range (5 ∼ 30 μM). It is attributed that OVs and O2- participated in TMB oxidation. Based on the reaction color changes, a visualized semi-quantitative GA detection could be realized via a smartphone-based system. It could be applied for evaluating GA quality in market-purchased black tea and green tea.
Collapse
Affiliation(s)
- Tao Zhou
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Daqing Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Haoran Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Danhua Ge
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
9
|
曾 佳, 黄 颂, 杜 方, 曹 素, 高 杨, 邱 逦, 唐 远. [Advances in the Application of Nanozymes in Joint Disease Therapy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:800-806. [PMID: 39170029 PMCID: PMC11334270 DOI: 10.12182/20240760105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Indexed: 08/23/2024]
Abstract
Nanozymes are nanoscale materials with enzyme-mimicking catalytic properties. Nanozymes can mimic the mechanism of natural enzyme molecules. By means of advanced chemical synthesis technology, the size, shape, and surface characteristics of nanozymes can be accurately regulated, and their catalytic properties can be customized according to the specific need. Nanozymes can mimic the function of natural enzymes, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), to scavenge reactive oxygen species (ROS). Reported findings have shown that nanozymes have the advantages of excellent stability, low cost, and adjustable catalytic activity, thereby showing great potential and broad prospects in the application of disease treatment. Herein, we reviewed the advances in the application of nanozymes in the treatment of joint diseases. The common clinical manifestations of joint diseases include joint pain, swelling, stiffness, and limited mobility. In severe cases, joint diseases may lead to joint destruction, deformity, and functional damage, entailing crippling socioeconomic burdens. ROS is a product of oxidative stress. Increased ROS in the joints can induce macrophage M1 type polarization, which in turn induces and aggravates arthritis. Therefore, the key to the treatment of joint diseases lies in ROS scavenging and increasing oxygen (O2) content. Nanozymes have demonstrated promising application potential in the treatment of joint diseases, including rheumatoid arthritis, osteoarthritis, and gouty arthritis. However, how to ensure their biosafety, reduce the toxicity, and increase enzyme activity remains the main challenge in current research. Precise control of the chemical composition, size, shape, and surface modification of nanomaterials is the main development direction for the future.
Collapse
Affiliation(s)
- 佳 曾
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 颂雅 黄
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 方雪 杜
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 素娇 曹
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 杨 高
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 逦 邱
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 远姣 唐
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| |
Collapse
|
10
|
Garcia-Sanz C, Andreu A, Pawlyta M, Vukoičić A, Milivojević A, de las Rivas B, Bezbradica D, Palomo JM. Artificial Manganese Metalloenzymes with Laccase-like Activity: Design, Synthesis, and Characterization. ACS APPLIED BIO MATERIALS 2024; 7:4760-4771. [PMID: 38916249 PMCID: PMC11253090 DOI: 10.1021/acsabm.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Laccase is an oxidase of great industrial interest due to its ability to catalyze oxidation processes of phenols and persistent organic pollutants. However, it is susceptible to denaturation at high temperatures, sensitive to pH, and unstable in the presence of high concentrations of solvents, which is a issue for industrial use. To solve this problem, this work develops the synthesis in an aqueous medium of a new Mn metalloenzyme with laccase oxidase mimetic catalytic activity. Geobacillus thermocatenulatus lipase (GTL) was used as a scaffold enzyme, mixed with a manganese salt at 50 °C in an aqueous medium. This leads to the in situ formation of manganese(IV) oxide nanowires that interact with the enzyme, yielding a GTL-Mn bionanohybrid. On the other hand, its oxidative activity was evaluated using the ABTS assay, obtaining a catalytic efficiency 300 times higher than that of Trametes versicolor laccase. This new Mn metalloenzyme was 2 times more stable at 40 °C, 3 times more stable in the presence of 10% acetonitrile, and 10 times more stable in 20% acetonitrile than Novozym 51003 laccase. Furthermore, the site-selective immobilized GTL-Mn showed a much higher stability than the soluble form. The oxidase-like activity of this Mn metalloenzyme was successfully demonstrated against other substrates, such as l-DOPA or phloridzin, in oligomerization reactions.
Collapse
Affiliation(s)
- Carla Garcia-Sanz
- Instituto
de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Alicia Andreu
- Instituto
de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Mirosława Pawlyta
- Faculty
of Mechanical Technology, Silesian Technical
University, Stanisława
Konarskiego 18A, 44-100 Gliwice, Poland
| | - Ana Vukoičić
- Innovation
Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Ana Milivojević
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Blanca de las Rivas
- Department
of Microbial Biotechnology, Institute of
Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
| | - Dejan Bezbradica
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jose M. Palomo
- Instituto
de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, Campus UAM Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
11
|
Lai H, Huang R, Weng X, Huang B, Yao J, Pian Y. Classification and applications of nanomaterials in vitro diagnosis. Heliyon 2024; 10:e32314. [PMID: 38868029 PMCID: PMC11168482 DOI: 10.1016/j.heliyon.2024.e32314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/19/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
With the rapid development of clinical diagnosis and treatment, many traditional and conventional in vitro diagnosis technologies are unable to meet the demands of clinical medicine development. In this situation, nanomaterials are rapidly developing and widely used in the field of in vitro diagnosis. Nanomaterials have distinct size-dependent physical or chemical properties, and their optical, magnetic, electrical, thermal, and biological properties can be modulated at the nanoscale by changing their size, shape, chemical composition, and surface functional groups, particularly because they have a larger specific surface area than macromaterials. They provide an amount of space to modify different molecules on their surface, allowing them to detect small substances, nucleic acids, proteins, and microorganisms. Combining nanomaterials with in vitro diagnosis is expected to result in lower detection limits, higher sensitivity, and stronger selectivity. In this review, we will discuss the classfication and properties of some common nanomaterials, as well as their applications in protein, nucleic acids, and other aspect detection and analysis for in vitro diagnosis, especially on aging-related nanodiagnostics. Finally, it is summarized with guidelines for in vitro diagnosis.
Collapse
Affiliation(s)
- Huiying Lai
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Rongfu Huang
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Xin Weng
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Baoshan Huang
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, PR China
| | - Jianfeng Yao
- Quanzhou Maternity and Child Healthcare Hospital, Quanzhou, PR China
| | - Yaya Pian
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, PR China
| |
Collapse
|
12
|
Hu C, Yuan X, Zhao R, Hong B, Chen C, Zhu Q, Zheng Y, Hu J, Yuan Y, Wu Z, Zhang J, Tang C. Scale-Up Preparation of Manganese-Iron Prussian Blue Nanozymes as Potent Oral Nanomedicines for Acute Ulcerative Colitis. Adv Healthc Mater 2024; 13:e2400083. [PMID: 38447228 DOI: 10.1002/adhm.202400083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Prussian blue (PB) nanozymes are demonstrated as effective therapeutics for ulcerative colitis (UC), yet an unmet practical challenge remains in the scalable production of these nanozymes and uncertainty over their efficacy. With a novel approach, a series of porous manganese-iron PB (MnPB) colloids, which are shown to be efficient scavengers for reactive oxygen species (ROS) including hydroxyl radical, superoxide anion, and hydrogen peroxide, are prepared. In vitro cellular experiments confirm the capability of the nanozyme to protect cells from ROS attack. In vivo, the administration of MnPB nanozyme through gavage at a dosage of 10 mg kg-1 per day for three doses in total potently ameliorates the pathological symptoms of acute UC in a murine model, resulting in mitigated inflammatory responses and improved viability rate. Significantly, the nanozyme produced at a large scale can be achieved at an unprecedented yield weighting ≈11 g per batch of reaction, demonstrating comparable anti-ROS activities and treatment efficacy to its small-scale counterpart. This work represents the first demonstration of the scale-up preparation of PB analog nanozymes for UC without compromising treatment efficacy, laying the foundation for further testing of these nanozymes on larger animals and promising clinical translation.
Collapse
Affiliation(s)
- Chengyun Hu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xue Yuan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ronghua Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Biao Hong
- College & Hospital of Stomatology, Anhui Provincial Key Laboratory of Oral Diseases Research, Anhui Medical University, Hefei, 230032, China
| | - Chuang Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Qingjun Zhu
- Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yanmin Zheng
- Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Yuan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhengyan Wu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chaoliang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
13
|
Wang Z, Wang X, Dai X, Xu T, Qian X, Chang M, Chen Y. 2D Catalytic Nanozyme Enables Cascade Enzyodynamic Effect-Boosted and Ca 2+ Overload-Induced Synergistic Ferroptosis/Apoptosis in Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312316. [PMID: 38501540 DOI: 10.1002/adma.202312316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Indexed: 03/20/2024]
Abstract
The introduction of glucose oxidase, exhibiting characteristics of glucose consumption and H2O2 production, represents an emerging antineoplastic therapeutic approach that disrupts nutrient supply and promotes efficient generation of reactive oxygen species (ROS). However, the instability of natural enzymes and their low therapeutic efficacy significantly impede their broader application. In this context, 2D Ca2Mn8O16 nanosheets (CMO NSs) designed and engineered to serve as a high-performance nanozyme, enhancing the enzyodynamic effect for a ferroptosis-apoptosis synergistic tumor therapy, are presented. In addition to mimicking activities of glutathione peroxidase, catalase, oxidase, and peroxidase, the engineered CMO NSs exhibit glucose oxidase-mimicking activities. This feature contributes to their antitumor performance through cascade catalytic reactions, involving the disruption of glucose supply, self-supply of H2O2, and subsequent efficient ROS generation. The exogenous Ca2+ released from CMO NSs, along with the endogenous Ca2+ enrichment induced by ROS from the peroxidase- and oxidase-mimicking activities of CMO NSs, collectively mediate Ca2+ overload, leading to apoptosis. Importantly, the ferroptosis process is triggered synchronously through ROS output and glutathione consumption. The application of exogenous ultrasound stimulation further enhances the efficiency of ferroptosis-apoptosis synergistic tumor treatment. This work underscores the crucial role of enzyodynamic performance in ferroptosis-apoptosis synergistic therapy against tumors.
Collapse
Affiliation(s)
- Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xue Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianming Xu
- Department of Orthopedics, 905th Hospital of PLA Navy, Naval Medical University, Shanghai, 200050, P. R. China
| | - Xiaoqin Qian
- Department of Ultrasound Medicine, Northern Jiangsu People's Hospital, Yangzhou, 225009, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, 325088, P. R. China
| |
Collapse
|
14
|
Fu Z, Fan K, He X, Wang Q, Yuan J, Lim KS, Tang JN, Xie F, Cui X. Single-Atom-Based Nanoenzyme in Tissue Repair. ACS NANO 2024; 18:12639-12671. [PMID: 38718193 DOI: 10.1021/acsnano.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Since the discovery of ferromagnetic nanoparticles Fe3O4 that exhibit enzyme-like activity in 2007, the research on nanoenzymes has made significant progress. With the in-depth study of various nanoenzymes and the rapid development of related nanotechnology, nanoenzymes have emerged as a promising alternative to natural enzymes. Within nanozymes, there is a category of metal-based single-atom nanozymes that has been rapidly developed due to low cast, convenient preparation, long storage, less immunogenicity, and especially higher efficiency. More importantly, single-atom nanozymes possess the capacity to scavenge reactive oxygen species through various mechanisms, which is beneficial in the tissue repair process. Herein, this paper systemically highlights the types of metal single-atom nanozymes, their catalytic mechanisms, and their recent applications in tissue repair. The existing challenges are identified and the prospects of future research on nanozymes composed of metallic nanomaterials are proposed. We hope this review will illuminate the potential of single-atom nanozymes in tissue repair, encouraging their sequential clinical translation.
Collapse
Affiliation(s)
- Ziliang Fu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kexin Fan
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xingjian He
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518001, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Jun-Nan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fangxi Xie
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
15
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
16
|
Liu S, Bai Q, Jiang Y, Gao Y, Chen Z, Shang L, Zhang S, Yu L, Yang D, Sui N, Zhu Z. Multienzyme-Like Nanozyme Encapsulated Ocular Microneedles for Keratitis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308403. [PMID: 38098457 DOI: 10.1002/smll.202308403] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Indexed: 05/25/2024]
Abstract
Keratitis, an inflammation of the cornea caused by bacterial or fungal infections, is one of the leading causes of severe visual disability and blindness. Keratitis treatment requires both the prevention of infection and the reduction of inflammation. However, owing to their limited therapeutic functions, in addition to the ocular barrier, existing conventional medications are characterized by poor efficacy and low bioavailability, requiring high dosages or frequent topical treatment, which represents a burden on patients and increases the risk of side effects. In this study, manganese oxide nanocluster-decorated graphdiyne nanosheets (MnOx/GDY) are developed as multienzyme-like nanozymes for the treatment of infectious keratitis and loaded into hyaluronic acid and polymethyl methacrylate-based ocular microneedles (MGMN). MGMN not only exhibits antimicrobial and anti-inflammatory effects owing to its multienzyme-like activities, including oxidase, peroxidase, catalase, and superoxide dismutase mimics but also crosses the ocular barrier and shows increased bioavailability via the microneedle system. Moreover, MGMN is demonstrated to eliminate pathogens, prevent biofilm formation, reduce inflammation, alleviate ocular hypoxia, and promote the repair of corneal epithelial damage in in vitro, ex vivo, and in vivo experiments, thus providing a better therapeutic effect than commercial ophthalmic voriconazole, with no obvious microbial resistance or cytotoxicity.
Collapse
Affiliation(s)
- Shen Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Yujie Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Yonghui Gao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Zhen Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Limin Shang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Siying Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Linrong Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Dongqin Yang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| |
Collapse
|
17
|
Wang JL, Chen GY, Chai TQ, Chen LX, Chen H, Yang FQ. Construction of Mn-decorated zeolitic imidazolate framework-90 nanostructure as superior oxidase-like mimic for colorimetric detection of glucose and choline. Talanta 2024; 271:125708. [PMID: 38295443 DOI: 10.1016/j.talanta.2024.125708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
A Mn decorated zeolitic imidazolate framework-90 (ZIF-90) nanozyme (Mn/ZIF-90) was constructed through an effective and rapid post-synthetic strategy for the first time. The Mn in Mn/ZIF-90 exists in mixed valence states, which is doped to the ZIF-90 through the formation of Mn-O bond. The Zn-N coordination structure of ZIF-90 may change the electronic arrangement of oxygen atoms in the free carbonyl groups (-CHO), allowing the coordination of Mn with O. The prepared Mn/ZIF-90 possesses outstanding oxidase-like activity and remarkable stability. Besides, the catalytic activity of Mn/ZIF-90 can be inhibited in the presence of H2O2. Therefore, using the Mn/ZIF-90-triggered chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) as an amplifier, a versatile enzyme cascade-based colorimetric method for the detection of glucose and choline with good sensitivity and selectivity was developed. The linear ranges for glucose and choline are 6.25-500 μM and 5-1000 μM, respectively. Furthermore, the developed method was applied in the detection of glucose and choline in rabbit plasma samples, and the recoveries are 89.5-107.3 % and 96.0-109.3 %, respectively. In short, the simple and efficient post-synthetic doping method may provide a new thought for the rational designs of enzyme mimics with improved catalytic performance. Moreover, the colorimetric method based on the excellent catalytic activity of Mn/ZIF-90 may be extended to detect other H2O2-generating or consuming molecules and evaluate the activity of bio-enzymes that can catalyze the generation of glucose or choline.
Collapse
Affiliation(s)
- Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Ling-Xiao Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
18
|
Tang Q, Zhou C, Shi L, Zhu X, Liu W, Li B, Jin Y. Multifunctional Manganese-Nucleotide Laccase-Mimicking Nanozyme for Degradation of Organic Pollutants and Visual Assay of Epinephrine via Smartphone. Anal Chem 2024; 96:4736-4744. [PMID: 38465621 DOI: 10.1021/acs.analchem.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
As a natural green catalyst, laccase has extensive application in the fields of environmental monitoring and pollutant degradation. However, susceptibility to environmental influences and poor reusability seriously hinder its application. To address these concerns, for the first time, manganese ion replaced copper ion as the active center to coordinate with guanosine monophosphate (GMP) for synthesizing mimic laccase with high catalytic activity. Compared with natural laccase, the laccase-like nanozyme (Mn-GMPNS) demonstrated superior thermal stability, acid-base resistance, salt tolerance, reusability, and substrate universality. Benefiting from the high catalytic activity of Mn-GMPNS, epinephrine, a significant neurotransmitter and hormone associated with numerous diseases, was visually detected within 10 min and a portable assay by smartphone. More encouragingly, Mn-GMPNS can efficiently degrade dye pollutants, achieving a decolorization rate over 70% within 30 min. Thus, the coordination between manganese ion and nucleotide demonstrated the potential in rational design of nanozymes with high catalytic activity, low cost, good stability, and good biocompatibility.
Collapse
Affiliation(s)
- Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119China
| | - Caihong Zhou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119China
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119China
| | - Xinyu Zhu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an710119China
| |
Collapse
|
19
|
Huang XL, Harmer JR, Schenk G, Southam G. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Front Chem 2024; 12:1349020. [PMID: 38389729 PMCID: PMC10881703 DOI: 10.3389/fchem.2024.1349020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Jeffrey R Harmer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Southam
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Pan Y, Zhang Z, Cun JE, Fan X, Pan Q, Gao W, Luo K, He B, Pu Y. Oxidase-like manganese oxide nanoparticles: a mechanism of organic acids/aldehydes as electron acceptors and potential application in cancer therapy. NANOSCALE 2024; 16:2860-2867. [PMID: 38231414 DOI: 10.1039/d3nr05127g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Identifying the underlying catalytic mechanisms of synthetic nanocatalysts or nanozymes is important in directing their design and applications. Herein, we revisited the oxidation process of 4,4'-diamino-3,3',5,5'-tetramethylbiphenyl (TMB) by Mn3O4 nanoparticles and revealed that it adopted an organic acid/aldehyde-triggered catalytic mechanism at a weakly acidic or neutral pH, which is O2-independent and inhibited by the pre-addition of H2O2. Importantly, similar organic acid/aldehyde-mediated oxidation was applied to other substrates of peroxidase in the presence of nanoparticulate or commercially available MnO2 and Mn2O3 but not MnO. The selective oxidation of TMB by Mn3O4 over MnO was further supported by density functional theory calculations. Moreover, Mn3O4 nanoparticles enabled the oxidation of indole 3-acetic acid, a substrate that can generate cytotoxic singlet oxygen upon single-electron transfer oxidation, displaying potential in nanocatalytic tumor therapy. Overall, we revealed a general catalytic mechanism of manganese oxides towards the oxidation of peroxidase substrates, which could boost the design and various applications of these manganese-based nanoparticles.
Collapse
Affiliation(s)
- Yang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610044, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
21
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
22
|
Yang L, Dong S, Gai S, Yang D, Ding H, Feng L, Yang G, Rehman Z, Yang P. Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes. NANO-MICRO LETTERS 2023; 16:28. [PMID: 37989794 PMCID: PMC10663430 DOI: 10.1007/s40820-023-01224-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/23/2023] [Indexed: 11/23/2023]
Abstract
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007, nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity, low cost, mild reaction conditions, good stability, and suitable for large-scale production. Recently, with the cross fusion of nanomedicine and nanocatalysis, nanozyme-based theranostic strategies attract great attention, since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects. Thus, various nanozymes have been developed and used for tumor therapy. In this review, more than 270 research articles are discussed systematically to present progress in the past five years. First, the discovery and development of nanozymes are summarized. Second, classification and catalytic mechanism of nanozymes are discussed. Third, activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory, machine learning, biomimetic and chemical design. Then, synergistic theranostic strategy of nanozymes are introduced. Finally, current challenges and future prospects of nanozymes used for tumor theranostic are outlined, including selectivity, biosafety, repeatability and stability, in-depth catalytic mechanism, predicting and evaluating activities.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Guixin Yang
- Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| |
Collapse
|
23
|
Hu S, Wang L, Li J, Li D, Zeng H, Chen T, Li L, Xiang X. Catechol-Modified and MnO 2-Nanozyme-Reinforced Hydrogel with Improved Antioxidant and Antibacterial Capacity for Periodontitis Treatment. ACS Biomater Sci Eng 2023; 9:5332-5346. [PMID: 37642176 DOI: 10.1021/acsbiomaterials.3c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Periodontitis is an inflammatory disease characterized by tooth loss and alveolar bone resorption. Bacteria are the original cause of periodontitis, and excess reactive oxygen species (ROS) encourage and intensify inflammation. In this study, a mussel-inspired and MnO2 NPs-reinforced adhesive hydrogel capable of alleviating periodontitis with improved antibacterial and antioxidant abilities was developed. The hydrogel was created by combining polyvinyl alcohol (PVA), 3,4-dihydroxy-d-phenylalanine (DOPA), and MnO2 nanoparticles (NPs) (named PDMO hydrogel). The hydrogel was demonstrated to be able to scavenge various free radicals (including total ROS─O2•- and OH•) and relieve the hypoxia in an inflammatory microenvironment by scavenging excess ROS and generating O2 due to its superoxide dismutase (SOD)/catalase (CAT)-like activity. Besides, under 808 nm near-infrared (NIR) light, the photothermal performance of the PDMO hydrogel displayed favorable antibacterial and antibiofilm effects toward Escherichia coli, Staphylococcus aureus, and Porphyromonas gingivalis (up to nearly 100% antibacterial rate). Furthermore, the PDMO hydrogel exhibited favorable therapeutic efficacy in alleviating gingivitis in Sprague-Dawley rats, even comparable to or better than the commercial PERIO. In addition, in the periodontitis models, the PDMO2 group showed the height of the residual alveolar bone and the smallest shadow area of low density among other groups, indicating the positive role of the PDMO2 hydrogel in bone regeneration. Finally, the biosafety of the PDMO hydrogel was comprehensively investigated, and the hydrogel was demonstrated to have good biocompatibility. Therefore, the developed PDMO hydrogel provided an effective solution to resolve biofilm recolonization and oxidative stress in periodontitis and could be a superior candidate for local drug delivery system in the clinical management of periodontitis with great potential for future clinical translation.
Collapse
Affiliation(s)
- Shanshan Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Liping Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Jiao Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Huan Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Lingjie Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Xuerong Xiang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| |
Collapse
|
24
|
Han X, Ju LS, Irudayaraj J. Oxygenated Wound Dressings for Hypoxia Mitigation and Enhanced Wound Healing. Mol Pharm 2023; 20:3338-3355. [PMID: 37338289 PMCID: PMC10324602 DOI: 10.1021/acs.molpharmaceut.3c00352] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Oxygen is a critical factor that can regulate the wound healing processes such as skin cell proliferation, granulation, re-epithelialization, angiogenesis, and tissue regeneration. However, hypoxia, a common occurrence in the wound bed, can impede normal healing processes. To enhance wound healing, oxygenation strategies that could effectively increase wound oxygen levels are effective. The present review summarizes wound healing stages and the role of hypoxia in wound healing and overviews current strategies to incorporate various oxygen delivery or generating materials for wound dressing, including catalase, nanoenzyme, hemoglobin, calcium peroxide, or perfluorocarbon-based materials, in addition to photosynthetic bacteria and hyperbaric oxygen therapy. Mechanism of action, oxygenation efficacy, and potential benefits and drawbacks of these dressings are also discussed. We conclude by highlighting the importance of design optimization in wound dressings to address the clinical needs to improve clinical outcomes.
Collapse
Affiliation(s)
- Xiaoxue Han
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green St., Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Beckman
Institute, Holonyak Micro and Nanotechnology Laboratory, Carle R. Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| | - Leah Suyeon Ju
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green St., Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green St., Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Beckman
Institute, Holonyak Micro and Nanotechnology Laboratory, Carle R. Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| |
Collapse
|
25
|
Chen X, Zhao C, Liu D, Lin K, Lu J, Zhao S, Yang J, Lin H. Intelligent Pd 1.7Bi@CeO 2 Nanosystem with Dual-Enzyme-Mimetic Activities for Cancer Hypoxia Relief and Synergistic Photothermal/Photodynamic/Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21804-21818. [PMID: 37129251 DOI: 10.1021/acsami.3c00056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species-mediated therapeutic strategies, including chemodynamic therapy (CDT) and photodynamic therapy (PDT), have exhibited translational promise for effective cancer management. However, monotherapy often ends up with the incomplete elimination of the entire tumor due to inherent limitations. Herein, we report a core-shell-structured Pd1.7Bi@CeO2-ICG (PBCI) nanoplatform constructed by a facile and effective strategy for synergistic CDT, PDT, and photothermal therapy. In the system, both Pd1.7Bi and CeO2 constituents exhibit peroxidase- and catalase-like characteristics, which not only generate cytotoxic hydroxyl radicals (•OH) for CDT but also produce O2 in situ and relieve tumor hypoxia for enhanced PDT. Furthermore, upon 808 nm laser irradiation, Pd1.7Bi@CeO2 and indocyanine green (ICG) coordinately prompt favorable photothermia, resulting in thermodynamically amplified catalytic activities. Meanwhile, PBCI is a contrast agent for near-infrared fluorescence imaging to determine the optimal laser therapeutic window in vivo. Consequently, effective tumor elimination was realized through the above-combined functions. The as-synthesized unitary PBCI theranostic nanoplatform represents a potential one-size-fits-all approach in multimodal synergistic therapy of hypoxic tumors.
Collapse
Affiliation(s)
- Xiaoyu Chen
- State Key Laboratory of Oncology in South China, Department of Radiotherapy, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chunhua Zhao
- State Key Laboratory of Oncology in South China, Department of Radiotherapy, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dingxin Liu
- State Key Laboratory of Oncology in South China, Department of Radiotherapy, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kunpeng Lin
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingnan Lu
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shuang Zhao
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Department of Radiotherapy, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huanxin Lin
- State Key Laboratory of Oncology in South China, Department of Radiotherapy, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
26
|
Ding X, Zhao Z, Zhang Y, Duan M, Liu C, Xu Y. Activity Regulating Strategies of Nanozymes for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207142. [PMID: 36651009 DOI: 10.1002/smll.202207142] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
On accounts of the advantages of inherent high stability, ease of preparation and superior catalytic activities, nanozymes have attracted tremendous potential in diverse biomedical applications as alternatives to natural enzymes. Optimizing the activity of nanozymes is significant for widening and boosting the applications into practical level. As the research of the catalytic activity regulation strategies of nanozymes is boosting, it is essential to timely review, summarize, and analyze the advances in structure-activity relationships for further inspiring ingenious research into this prosperous area. Herein, the activity regulation methods of nanozymes in the recent 5 years are systematically summarized, including size and morphology, doping, vacancy, surface modification, and hybridization, followed by a discussion of the latest biomedical applications consisting of biosensing, antibacterial, and tumor therapy. Finally, the challenges and opportunities in this rapidly developing field is presented for inspiring more and more research into this infant yet promising area.
Collapse
Affiliation(s)
- Xiaoteng Ding
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Zhen Zhao
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yanfang Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Meilin Duan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Chengzhen Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| |
Collapse
|