1
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Mora-Castaño G, Domínguez-Robles J, Himawan A, Millán-Jiménez M, Caraballo I. Current trends in 3D printed gastroretentive floating drug delivery systems: A comprehensive review. Int J Pharm 2024; 663:124543. [PMID: 39094921 DOI: 10.1016/j.ijpharm.2024.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Gastrointestinal (GI) environment is influenced by several factors (gender, genetics, sex, disease state, food) leading to oral drug absorption variability or to low bioavailability. In this scenario, gastroretentive drug delivery systems (GRDDS) have been developed in order to solve absorption problems, to lead to a more effective local therapy or to allow sustained drug release during a longer time period than the typical oral sustained release dosage forms. Among all GRDDS, floating systems seem to provide a promising and practical approach for achieving a long intra-gastric residence time and sustained release profile. In the last years, a novel technique is being used to manufacture this kind of systems: three-dimensional (3D) printing technology. This technique provides a versatile and easy process to manufacture personalized drug delivery systems. This work presents a systematic review of the main 3D printing based designs proposed up to date to manufacture floating systems. We have also summarized the most important parameters involved in buoyancy and sustained release of the systems, in order to facilitate the scale up of this technology to industrial level. Finally, a section discussing about the influence of materials in drug release, their biocompatibility and safety considerations have been included.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain.
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
3
|
Uboldi M, Gelain A, Buratti G, Chiappa A, Gazzaniga A, Melocchi A, Zema L. Polyvinyl alcohol-based capsule shells manufactured by injection molding as ready-to-use moisture barriers for the development of delivery systems. Int J Pharm 2024; 661:124373. [PMID: 38909921 DOI: 10.1016/j.ijpharm.2024.124373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
In this work, feasibility of injection molding was demonstrated for manufacturing capsule shells. 600 µm-thick prototypes were successfully molded with pharmaceutical-grade low-viscosity polyvinyl alcohols (PVAs), possibly added with a range of different fillers. They showed reproducible weight and thickness (CV < 2 and 5, respectively), compliant behavior upon piercing (holes diameter analogous to the reference), tunable release performance (immediate and pulsatile), and moisture protection capability. To assess the latter, an on-line method relying on near infrared spectroscopy measurements was set-up and validated. Based on the data collected and considering the versatility IM would provide for product shape/thickness/composition, PVA-based molded shells could help widening the portfolio of ready-to-use capsules, representing an interesting alternative to those commercially available. Indeed, these capsules could be filled with various formulations, even those with stability issues, and intended either for oral administration or for pulmonary delivery via single-dose dry powder inhalers.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy
| | - Andrea Gelain
- Freund-Vector Corporation European Lab, via E. Mattei 2, 20852, Villasanta, MB, Italy
| | - Giuseppe Buratti
- Freund-Vector Corporation European Lab, via E. Mattei 2, 20852, Villasanta, MB, Italy
| | - Arianna Chiappa
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy; Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, MI, Italy(1)
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy.
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo 71, 20133 Milano, MI, Italy
| |
Collapse
|
4
|
Franzé S, Rama F, Scarpa E, Violatto MB, Peqini K, Gennari CGM, Anderluzzi G, Camastra R, Salmaso A, Moscatiello G, Pellegrino S, Rizzello L, Bigini P, Cilurzo F. Mucosa-penetrating liposomes for esophageal local drug delivery. Int J Pharm 2024; 661:124413. [PMID: 38960342 DOI: 10.1016/j.ijpharm.2024.124413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Local drug delivery to the esophagus is hampered by rapid transit time and poor permeability of the mucosa. If some strategies aimed to improve the residence time have been proposed, non-invasive approaches to increase the drug penetration in the mucosa have not been described so far. Herein, we designed mucosa-penetrating liposomes to favor the penetration and retention of curcumin (CURC) in the esophagus. A novel mucosa penetrating peptide (MPP), SLENKGP, was selected by Phage Display and conjugated to pegylated liposomes at different PEG and MPP's surface densities. Pegylation assured a long residence time of liposomes (at least 30 min) in the esophagus in vivo, but it did not favor the penetration of CURC in the mucosa. MPP-decorated liposomes instead delivered a significant higher amount of CURC in the mucosa compared to naked pegylated liposomes. Confocal microscopy studies showed that naked pegylated liposomes remain confined in the superficial layers of the mucosa whereas MPP-decorated liposomes penetrate the whole epithelium. In vitro, MPP reduced the interaction of PEG with mucin, meanwhile favoring the paracellular penetration of liposomes across epithelial cell multilayers. In conclusion, pegylated liposomes represent a valid approach to target the esophagus and the surface functionalization with MPP enhances their penetration in the mucosa.
Collapse
Affiliation(s)
- Silvia Franzé
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy.
| | - Francesco Rama
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Edoardo Scarpa
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Martina Bruna Violatto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Kaliroi Peqini
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | | | - Giulia Anderluzzi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Rebecca Camastra
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Anita Salmaso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Giulia Moscatiello
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Loris Rizzello
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| |
Collapse
|
5
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
6
|
Wang R, Yuan C, Cheng J, He X, Ye H, Jian B, Li H, Bai J, Ge Q. Direct 4D printing of ceramics driven by hydrogel dehydration. Nat Commun 2024; 15:758. [PMID: 38272972 PMCID: PMC10810896 DOI: 10.1038/s41467-024-45039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
4D printing technology combines 3D printing and stimulus-responsive materials, enabling construction of complex 3D objects efficiently. However, unlike smart soft materials, 4D printing of ceramics is a great challenge due to the extremely weak deformability of ceramics. Here, we report a feasible and efficient manufacturing and design approach to realize direct 4D printing of ceramics. Photocurable ceramic elastomer slurry and hydrogel precursor are developed for the fabrication of hydrogel-ceramic laminates via multimaterial digital light processing 3D printing. Flat patterned laminates evolve into complex 3D structures driven by hydrogel dehydration, and then turn into pure ceramics after sintering. Considering the dehydration-induced deformation and sintering-induced shape retraction, we develop a theoretical model to calculate the curvatures of bent laminate and sintered ceramic part. Then, we build a design flow for direct 4D printing of various complex ceramic objects. This approach opens a new avenue for the development of ceramic 4D printing technology.
Collapse
Affiliation(s)
- Rong Wang
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chao Yuan
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jianxiang Cheng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangnan He
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haitao Ye
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Bingcong Jian
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Honggeng Li
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qi Ge
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Uboldi M, Chiappa A, Rossi M, Briatico-Vangosa F, Melocchi A, Zema L. Development of a multi-component gastroretentive expandable drug delivery system (GREDDS) for personalized administration of metformin. Expert Opin Drug Deliv 2024; 21:131-149. [PMID: 38088371 DOI: 10.1080/17425247.2023.2294884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVES Efficacy and compliance of type II diabetes treatment would greatly benefit from dosage forms providing controlled release of metformin in the upper gastrointestinal tract. In this respect, the feasibility of a new system ensuring stomach-retention and personalized release of this drug at its absorption window for multiple days was investigated. METHODS The system proposed comprised of a drug-containing core and a viscoelastic umbrella-like skeleton, which were manufactured by melt-casting and 3D printing. Prototypes, alone or upon assembly and insertion into commercially-available capsules, were characterized for key parameters: thermo-mechanical properties, accelerated stability, degradation, drug release, deployment performance, and resistance to simulated gastric contractions. RESULTS Each part of the system was successfully manufactured using purposely-selected materials and the performance of final prototypes matched the desired one. This included: i) easy folding of the skeleton against the core in the collapsed administered shape, ii) rapid recovery of the cumbersome configuration at the target site, even upon storage, and iii) prolonged release of metformin. CONCLUSIONS Composition, geometry, and performance of the system developed in this work were deemed acceptable for stomach-retention and prolonged as well as customizable release of metformin in its absorption window, laying promising bases for further development steps.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Arianna Chiappa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Margherita Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Francesco Briatico-Vangosa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
8
|
Yan S, Zhang F, Luo L, Wang L, Liu Y, Leng J. Shape Memory Polymer Composites: 4D Printing, Smart Structures, and Applications. RESEARCH (WASHINGTON, D.C.) 2023; 6:0234. [PMID: 37941913 PMCID: PMC10629366 DOI: 10.34133/research.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
Shape memory polymers (SMPs) and their composites (SMPCs) are smart materials that can be stably deformed and then return to their original shape under external stimulation, thus having a memory of their shape. Three-dimensional (3D) printing is an advanced technology for fabricating products using a digital software tool. Four-dimensional (4D) printing is a new generation of additive manufacturing technology that combines shape memory materials and 3D printing technology. Currently, 4D-printed SMPs and SMPCs are gaining considerable research attention and are finding use in various fields, including biomedical science. This review introduces SMPs, SMPCs, and 4D printing technologies, highlighting several special 4D-printed structures. It summarizes the recent research progress of 4D-printed SMPs and SMPCs in various fields, with particular emphasis on biomedical applications. Additionally, it presents an overview of the challenges and development prospects of 4D-printed SMPs and SMPCs and provides a preliminary discussion and useful reference for the research and application of 4D-printed SMPs and SMPCs.
Collapse
Affiliation(s)
- Shiyu Yan
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| | - Lan Luo
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| | - Linlin Wang
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| | - Yanju Liu
- Department of Astronautic Science and Mechanics,
Harbin Institute of Technology (HIT), No. 92 West Dazhi Street, Harbin 150000, People’s Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| |
Collapse
|
9
|
Chiesa I, Ceccarini MR, Bittolo Bon S, Codini M, Beccari T, Valentini L, De Maria C. 4D Printing Shape-Morphing Hybrid Biomaterials for Advanced Bioengineering Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6661. [PMID: 37895643 PMCID: PMC10608699 DOI: 10.3390/ma16206661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Four-dimensional (4D) printing is an innovative additive manufacturing technology used to fabricate structures that can evolve over time when exposed to a predefined environmental stimulus. 4D printed objects are no longer static objects but programmable active structures that accomplish their functions thanks to a change over time in their physical/chemical properties that usually displays macroscopically as a shapeshifting in response to an external stimulus. 4D printing is characterized by several entangled features (e.g., involved material(s), structure geometry, and applied stimulus entities) that need to be carefully coupled to obtain a favorable fabrication and a functioning structure. Overall, the integration of micro-/nanofabrication methods of biomaterials with nanomaterials represents a promising approach for the development of advanced materials. The ability to construct complex and multifunctional triggerable structures capable of being activated allows for the control of biomedical device activity, reducing the need for invasive interventions. Such advancements provide new tools to biomedical engineers and clinicians to design dynamically actuated implantable devices. In this context, the aim of this review is to demonstrate the potential of 4D printing as an enabling manufacturing technology to code the environmentally triggered physical evolution of structures and devices of biomedical interest.
Collapse
Affiliation(s)
- Irene Chiesa
- Department of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.C.); (T.B.)
| | - Silvia Bittolo Bon
- Physics and Geology Department, University of Perugia, Via Pascoli, 06123 Perugia, Italy;
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.C.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.C.); (T.B.)
| | - Luca Valentini
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy;
| | - Carmelo De Maria
- Department of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| |
Collapse
|
10
|
Wang Z, Liang X, Wang G, Wang X, Chen Y. Emerging Bioprinting for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304738. [PMID: 37566537 DOI: 10.1002/adma.202304738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Bioprinting has attracted much attention due to its suitability for fabricating biomedical devices. In particular, bioprinting has become one of the growing centers in the field of wound healing, with various types of bioprinted devices being developed, including 3D scaffolds, microneedle patches, and flexible electronics. Bioprinted devices can be designed with specific biostructures and biofunctions that closely match the shape of wound sites and accelerate the regeneration of skin through various approaches. Herein, a comprehensive review of the bioprinting of smart wound dressings is presented, emphasizing the crucial effect of bioprinting in determining biostructures and biofunctions. The review begins with an overview of bioprinting techniques and bioprinted devices, followed with an in-depth discussion of polymer-based inks, modification strategies, additive ingredients, properties, and applications. The strategies for the modification of bioprinted devices are divided into seven categories, including chemical synthesis of novel inks, physical blending, coaxial bioprinting, multimaterial bioprinting, physical absorption, chemical immobilization, and hybridization with living cells, and examples are presented. Thereafter, the frontiers of bioprinting and wound healing, including 4D bioprinting, artificial intelligence-assisted bioprinting, and in situ bioprinting, are discussed from a perspective of interdisciplinary sciences. Finally, the current challenges and future prospects in this field are highlighted.
Collapse
Affiliation(s)
- Zijian Wang
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiao Liang
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Guanyi Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinghuan Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yun Chen
- Department of Biomedical Engineering, Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| |
Collapse
|
11
|
Rylski AK, Maraliga T, Wu Y, Recker EA, Arrowood AJ, Sanoja GE, Page ZA. Digital Light Processing 3D Printing of Soft Semicrystalline Acrylates with Localized Shape Memory and Stiffness Control. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37418641 DOI: 10.1021/acsami.3c07172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Multimaterial three-dimensional (3D) printing of objects with spatially tunable thermomechanical properties and shape-memory behavior provides an attractive approach toward programmable "smart" plastics with applications in soft robotics and electronics. To date, digital light processing 3D printing has emerged as one of the fastest manufacturing methods that maintains high precision and resolution. Despite the common utility of semicrystalline polymers in stimuli-responsive materials, few reports exist whereby such polymers have been produced via digital light processing (DLP) 3D printing. Herein, two commodity long-alkyl chain acrylates (C18, stearyl and C12, lauryl) and mixtures therefrom are systematically examined as neat resin components for DLP 3D printing of semicrystalline polymer networks. Tailoring the stearyl/lauryl acrylate ratio results in a wide breadth of thermomechanical properties, including tensile stiffness spanning three orders of magnitude and temperatures from below room temperature (2 °C) to above body temperature (50 °C). This breadth is attributed primarily to changes in the degree of crystallinity. Favorably, the relationship between resin composition and the degree of crystallinity is quadratic, making the thermomechanical properties reproducible and easily programmable. Furthermore, the shape-memory behavior of 3D-printed objects upon thermal cycling is characterized, showing good fatigue resistance and work output. Finally, multimaterial 3D-printed structures with vertical gradation in composition are demonstrated where concomitant localization of thermomechanical properties enables multistage shape-memory and strain-selective behavior. The present platform represents a promising route toward customizable actuators for biomedical applications.
Collapse
Affiliation(s)
- Adrian K Rylski
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tejas Maraliga
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yudian Wu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Elizabeth A Recker
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Anthony J Arrowood
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gabriel E Sanoja
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Ramezani M, Mohd Ripin Z. 4D Printing in Biomedical Engineering: Advancements, Challenges, and Future Directions. J Funct Biomater 2023; 14:347. [PMID: 37504842 PMCID: PMC10381284 DOI: 10.3390/jfb14070347] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
4D printing has emerged as a transformative technology in the field of biomedical engineering, offering the potential for dynamic, stimuli-responsive structures with applications in tissue engineering, drug delivery, medical devices, and diagnostics. This review paper provides a comprehensive analysis of the advancements, challenges, and future directions of 4D printing in biomedical engineering. We discuss the development of smart materials, including stimuli-responsive polymers, shape-memory materials, and bio-inks, as well as the various fabrication techniques employed, such as direct-write assembly, stereolithography, and multi-material jetting. Despite the promising advances, several challenges persist, including material limitations related to biocompatibility, mechanical properties, and degradation rates; fabrication complexities arising from the integration of multiple materials, resolution and accuracy, and scalability; and regulatory and ethical considerations surrounding safety and efficacy. As we explore the future directions for 4D printing, we emphasise the need for material innovations, fabrication advancements, and emerging applications such as personalised medicine, nanomedicine, and bioelectronic devices. Interdisciplinary research and collaboration between material science, biology, engineering, regulatory agencies, and industry are essential for overcoming challenges and realising the full potential of 4D printing in the biomedical engineering landscape.
Collapse
Affiliation(s)
- Maziar Ramezani
- Department of Mechanical Engineering, Auckland University of Technology, Auckland 1142, New Zealand
| | - Zaidi Mohd Ripin
- School of Mechanical Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| |
Collapse
|