1
|
Liu C, Zhang S, Dai Y, Wu F, Liu J, Zhao J. Multinuclear Antimony-Bismuth-Lanthanide Cluster-Connected Polyoxometalate for the Detection of 5-Hydroxyindoleacetic Acid via Luminescence. Inorg Chem 2024. [PMID: 39680578 DOI: 10.1021/acs.inorgchem.4c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The judicious selection and combination of multicomponents provide great potential for the further exploration of new polyoxometalate (POM) materials. Here, a delicate control on tungstate, SbIII and BiIII sources, Eu3+ ions, and organic molecules led to the discovery of a novel multimetal cluster-embedded POM [H2N(CH3)2]9Na8H5{[Eu4(H2O)6Sb4Bi2W2O12](SbW9O33)2(SbW8O31)2}·78H2O (1). The polyoxoanion of 1 was constructed from four in situ-formed [SbW8O31]11- and [SbW9O33]9- building blocks connected by two hexa-metallic [Eu2(H2O)3Sb2BiWO6]9+ clusters, to be a rare member of Sb- and Bi-coexisting POM. The most impressive characteristic of 1 is the intricate [Eu2(H2O)3Sb2BiWO6]9+ cluster linker, which contains a SbIII-BiIII coinserted [Sb2BiWO6]3+ core grasping one [Eu1(H2O)2]3+ cation and one [Eu2(H2O)]3+ cation on both sides through Sb-O-Eu and Bi-O-Eu bonds. Functionalized by luminescence centers of Eu3+ ions, 1 can emit intense emission in water and be capable of detecting the biomarker of carcinoids, 5-hydroxyindoleacetic acid (5-HIAA) with a low limit of detection of 0.43 μM, high selectivity, and excellent anti-interference, as well as fast response (12 s). The high detectability of 1 for 5-HIAA is relevant to the underlying dynamic quenching and energy-transfer mechanism. In urine conditions, remarkable recognition of 1 for 5-HIAA and satisfactory recoveries were achieved, indicative of the possibility of 1 in detecting 5-HIAA in a real environment. This work reveals the special clustering effect of SbIII and BiIII atoms in the assembly of neoteric POM species and also promotes the application of POMs as potential diagnostic tool in the early detection of carcinoids.
Collapse
Affiliation(s)
- Chenyun Liu
- School of Energy Science and Technology, Henan University, Zhengzhou, Henan 450046, China
| | - Siyu Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yongchao Dai
- School of Energy Science and Technology, Henan University, Zhengzhou, Henan 450046, China
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Fan Wu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiancai Liu
- School of Energy Science and Technology, Henan University, Zhengzhou, Henan 450046, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
2
|
Jiang Y, Du Z, Qiu H, Lin X, Yang Y, Zeng C. Regulation of the Metal Center in Lanthanide Nanoparticles to Achieve Multifunctional Sensing. Anal Chem 2024; 96:12692-12700. [PMID: 39058516 DOI: 10.1021/acs.analchem.4c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Development of a multifunctional sensor is highly desirable. In this work, traces of a carcinoid cancer biomarker of 5-hydroxyindole-3-acetic acid (5-HIAA) in real human urine can be detected by lanthanide nanoparticle Eu-CFC (CFC = 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid) and the sensing devices of the test paper and agarose gel, achieving an ultralow LOD of 0.8 × 10-3 ppm within a sensing time of 2.0 min. Interestingly, by metal center regulation of Tb and Eu codoping, nanoparticle TbEu2-CFC shows high-sensitivity and low-LOD (0.019% v/v) sensing of water in ethanol. The sensing mechanisms are revealed by both experiments and quantum chemical studies.
Collapse
Affiliation(s)
- Yefei Jiang
- Department of Chemistry and Materials and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China
| | - Ziyi Du
- Department of Chemistry and Materials and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China
| | - Hongdeng Qiu
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xiaoming Lin
- Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, No. 378 Outer Ring West Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Yangyi Yang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chenghui Zeng
- Department of Chemistry and Materials and Nanofiber Engineering Center of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, PR China
| |
Collapse
|
3
|
Han Z, Wang M, Shi W. Postsynthetic Modification of Hydrogen-Bonded Frameworks. Chemistry 2024; 30:e202401276. [PMID: 38802325 DOI: 10.1002/chem.202401276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Hydrogen-bonded frameworks have garnered significant attention due to their flexible structures with tailored porosity, making them a promising class of porous framework materials. However, the direct synthesis of hydrogen-bonded frameworks with specific functions is highly challenging due to the unpredictable formation of hydrogen-bonded frameworks. In response, postsynthetic modification has emerged as a potent strategy to imbue desired functions into hydrogen-bonded frameworks. Recent advances have demonstrated the effectiveness of postsynthetic modification in hydrogen-bonded frameworks for studying their mechanical, luminescent, electrochemical, and chiral properties. In this concept, we comprehensively summarize the methodologies and outcomes of postsynthetic modification to hydrogen-bonded frameworks, providing a highlight of this exciting research area.
Collapse
Affiliation(s)
- Zongsu Han
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Mengmeng Wang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Wei Shi
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
4
|
Liu Y, Zhu K, Yan B. Food and environmental safety monitoring platform based on Tb(III) functionalized HOF hybrids for ultrafast detection of thiabendazole and 2-chlorophenol. Talanta 2024; 272:125829. [PMID: 38422907 DOI: 10.1016/j.talanta.2024.125829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Development of efficient and intelligent method for detecting harmful agrochemicals in resource-limited settings remains an urgent need to ensure food and environmental safety. Herein, a novel dual-emitting Tb3+-modified hydrogen-bonded organic framework (Tb@TBTC, TBTC is the ligand of HOF-TBTC.) with visible green fluorescence has been prepared through coordination post-synthetic modification. Tb@TBTC can be designed as a fluorescence sensor for the identification of two harmful carcinogenic pesticides, thiabendazole (TBZ) and 2-chlorophenol (2-CP) with high sensitivity, high efficiency and excellent selectivity. Tb@TBTC can also adsorb 2-CP with high adsorption rate. In realistic fruit juice and river water samples, the detection limits of Tb@TBTC toward TBZ and 2-CP are as low as 2.73 μM and 2.18 μM, respectively, demonstrating the feasibility in practical application. Furthermore, an intelligent real-time and on-site monitoring platform for 2-CP detection is constructed based on Tb@TBTC-agarose hydrogel films with the assistance of back propagation neural network, which can efficiently and accurately determine the concentration of 2-CP from fluorescence images through human-machine interaction. This work presents a facile pathway to prepare Tb@HOF fluorescent sensor for food and ecological environment safety, which is highly promising for preventing human disease and improving global public health.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Kai Zhu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China.
| |
Collapse
|
5
|
Zhu K, Yan B. Multifunctional Eu(III)-modified HOFs: roxarsone and aristolochic acid carcinogen monitoring and latent fingerprint identification based on artificial intelligence. MATERIALS HORIZONS 2023; 10:5782-5795. [PMID: 37814901 DOI: 10.1039/d3mh01253k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The exploration of multifunctional materials and intelligent technologies used for fluorescence sensing and latent fingerprint (LFP) identification is a research hotspot of material science. In this study, an emerging crystalline luminescent material, Eu3+-functionalized hydrogen-bonded organic framework (Eu@HOF-BTB, Eu@1), is fabricated successfully. Eu@1 can emit purple red fluorescence with a high photoluminescence quantum yield of 36.82%. Combined with artificial intelligence (AI) algorithms including support vector machine, principal component analysis, and hierarchical clustering analysis, Eu@1 as a sensor can concurrently distinguish two carcinogens, roxarsone and aristolochic acid, based on different mechanisms. The sensing process exhibits high selectivity, high efficiency, and excellent anti-interference. Meanwhile, Eu@1 is also an excellent eikonogen for LFP identification with high-resolution and high-contrast. Based on an automatic fingerprint identification system, the simultaneous differentiation of two fingerprint images is achieved. Moreover, a simulation experiment of criminal arrest is conducted. By virtue of the Alexnet-based fingerprint analysis platform of AI, unknown LFPs can be compared with a database to identify the criminal within one second with over 90% recognition accuracy. With AI technology, HOFs are applied for the first time in the LFP identification field, which provides a new material and solution for investigators to track criminal clues and handle cases efficiently.
Collapse
Affiliation(s)
- Kai Zhu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| |
Collapse
|
6
|
Hu Z, Yan B. Portable, Intelligent Fluorescence Sensing Platform for Dense Convolutional Network-Capable Detection of Indophenol Sulfate and Methylmalonic Acid Using a Luminescent Eu@HOF Film. ACS Sens 2023; 8:4344-4352. [PMID: 37944941 DOI: 10.1021/acssensors.3c01729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Indophenol sulfate (IS) and methylmalonic acid (MMA) are biomarkers of chronic kidney disease (CKD) and diabetes polyneuropathy (DPN), respectively. Portable and accurate monitoring of IS and MMA is very important to ensuring human health. The dense convolutional network (DenseNet) with image recognition has great potential in fluorescence sensing, but developing a platform with high precision and portability to diagnose the disease still faces huge challenges. Herein, we developed a high-sensitivity platform with a fluorescence material, a smartphone, and the DenseNet to monitor IS and MMA. A red-emitting Eu@PFC-13 (1) is prepared, and 1 shows high selectivity and low detection limits (DLs) to detect IS and MMA. The sensing mechanism of 1 toward IS and MMA is investigated by experiments and theoretical calculation. For detecting IS and MMA in serum and urine, 1 is fabricated into an Eu@PFC-13/AG (2) film with DLs of 1.4 and 1.6 μM, respectively. In addition, a portable smartphone platform is designed to monitor IS and MMA with high precision. Moreover, the DenseNet is constructed by Python, which can output the concentration of analytes by identifying fluorescence images and judge whether any is in a dangerous range. This work not only proposes a novel method that integrates a fluorescence material, a smartphone, and deep learning to detect analytes but also opens a new way for the diagnosis of CKD and DPN.
Collapse
Affiliation(s)
- Zhongqian Hu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
7
|
Zhang Z, Yan B. Convolution Neural Network-Assisted Smart Fluorescent-Tongue Based on Lanthanide Ion-Induced Forming MOF/HOF Composite for Differentiation of Flavor Compounds and Wine Identification. ACS Sens 2023; 8:3585-3594. [PMID: 37612786 DOI: 10.1021/acssensors.3c01273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Wine flavor is a vital quality characteristic in wine, influenced by those flavor components with low sensory thresholds. It is crucial to recognize and classify the wine components related to their flavor contribution. The integration of fluorescent sensors and artificial intelligence shows huge potential in flavor recognition by emulation of the gustatory perception system. Meanwhile, achieving information identification of wine based on multiple information barcodes has hopeful applications in anticounterfeiting. In this study, we present a simple method in which organic linkers are weaved into a hydrogen-bonded organic framework (HOF) for the available transformation of a metal-bonded organic framework (MOF) induced by lanthanide ions (Ln3+). The fluorescent Ln-MOF/HOF composite exhibits high sensitivity, rapid response, and good recyclability for detecting seven flavor compounds in wine, including tannic acid, ionone, vanillin, anethole, anisaldehyde, hydroxybenzaldehyde, and 4-hydroxy-2-methylacetophenone. Depending on its satisfactory detectability, a novel strategy is provided in which a fluorescent sensor is able to function as a smart fluorescent-tongue (F-tongue) by the aid of convolutional neural network to differentiate these seven flavor compounds. In addition, the Ln-MOF/HOF composite has been used to prepare multiple information barcodes for wine information identification on the basis of dynamic fluorescence response toward tannic acid. The mimetic gustatory perception system developed in this study may offer a promising strategy for flavor recognition in food and further food anticounterfeiting.
Collapse
Affiliation(s)
- Zishuo Zhang
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|