1
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
2
|
van den Nieuwenhof DWA, Moroni L, Chou J, Hinkelbein J. Cellular response in three-dimensional spheroids and tissues exposed to real and simulated microgravity: a narrative review. NPJ Microgravity 2024; 10:102. [PMID: 39505879 PMCID: PMC11541851 DOI: 10.1038/s41526-024-00442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
The rising aging population underscores the need for advances in tissue engineering and regenerative medicine. Alterations in cellular response in microgravity might be pivotal in unraveling the intricate cellular mechanisms governing tissue and organ regeneration. Microgravity could improve multicellular spheroid, tissue, and organ formation. This review summarizes microgravity-induced cellular alterations and highlights the potential of tissue engineering in microgravity for future breakthroughs in space travel, transplantation, drug testing, and personalized medicine.
Collapse
Affiliation(s)
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - Joshua Chou
- University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Jochen Hinkelbein
- Department of Anesthesiology, Intensive Care Medicine and Emergency Medicine, Johannes Wesling Klinikum Minden, University Hospital Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Liu S, Chen Y, Wang Z, Liu M, Zhao Y, Tan Y, Qu Z, Du L, Wu C. The cutting-edge progress in bioprinting for biomedicine: principles, applications, and future perspectives. MedComm (Beijing) 2024; 5:e753. [PMID: 39314888 PMCID: PMC11417428 DOI: 10.1002/mco2.753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Bioprinting is a highly promising application area of additive manufacturing technology that has been widely used in various fields, including tissue engineering, drug screening, organ regeneration, and biosensing. Its primary goal is to produce biomedical products such as artificial implant scaffolds, tissues and organs, and medical assistive devices through software-layered discrete and numerical control molding. Despite its immense potential, bioprinting technology still faces several challenges. It requires concerted efforts from researchers, engineers, regulatory bodies, and industry stakeholders are principal to overcome these challenges and unlock the full potential of bioprinting. This review systematically discusses bioprinting principles, applications, and future perspectives while also providing a topical overview of research progress in bioprinting over the past two decades. The most recent advancements in bioprinting are comprehensively reviewed here. First, printing techniques and methods are summarized along with advancements related to bioinks and supporting structures. Second, interesting and representative cases regarding the applications of bioprinting in tissue engineering, drug screening, organ regeneration, and biosensing are introduced in detail. Finally, the remaining challenges and suggestions for future directions of bioprinting technology are proposed and discussed. Bioprinting is one of the most promising application areas of additive manufacturing technology that has been widely used in various fields. It aims to produce biomedical products such as artificial implant scaffolds, tissues and organs, and medical assistive devices. This review systematically discusses bioprinting principles, applications, and future perspectives, which provides a topical description of the research progress of bioprinting.
Collapse
Affiliation(s)
- Shuge Liu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yating Chen
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Zhiyao Wang
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Minggao Liu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yundi Zhao
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Yushuo Tan
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Zhan Qu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Liping Du
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| | - Chunsheng Wu
- Department of BiophysicsInstitute of Medical EngineeringSchool of Basic Medical SciencesHealth Science CenterXi'an Jiaotong UniversityXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of Education of ChinaXi'anShaanxiChina
| |
Collapse
|
4
|
Chiang CC, Liu CH, Rethi L, Nguyen HT, Chuang AEY. Phototactic/Photosynthetic/Magnetic-Powered Chlamydomonas Reinhardtii-Metal-Organic Frameworks Micro/Nanomotors for Intelligent Thrombolytic Management and Ischemia Alleviation. Adv Healthc Mater 2024:e2401383. [PMID: 39155411 DOI: 10.1002/adhm.202401383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Thrombosis presents a critical health threat globally, with high mortality and incidence rates. Clinical treatment faces challenges such as low thrombolytic agent bioavailability, thrombosis recurrence, ischemic hypoxia damage, and neural degeneration. This study developed biocompatible Chlamydomonas Reinhardtii micromotors (CHL) with photo/magnetic capabilities to address these needs. These CHL micromotors, equipped with phototaxis and photosynthesis abilities, offer promising solutions. A core aspect of this innovation involves incorporating polysaccharides (glycol chitosan (GCS) and fucoidan (F)) into ferric Metal-organic frameworks (MOFs), loaded with urokinase (UK), and subsequently self-assembled onto the multimodal CHL, forming a core-shell microstructure (CHL@GCS/F-UK-MOF). Under light-navigation, CHL@GCS/F-UK-MOF is shown to penetrate thrombi, enhancing thrombolytic biodistribution. Combining CHL@GCS/F-UK-MOF with the magnetic hyperthermia technique achieves stimuli-responsive multiple-release, accelerating thrombolysis and rapidly restoring blocked blood vessels. Moreover, this approach attenuates thrombi-induced ischemic hypoxia disorder and tissue damage. The photosynthetic and magnetotherapeutic properties of CHL@GCS/F-UK-MOF, along with their protective effects, including reduced apoptosis, enhanced behavioral function, induced Heat Shock Protein (HSP), polarized M2 macrophages, and mitigated hypoxia, are confirmed through biochemical, microscopic, and behavioral assessments. This multifunctional biomimetic platform, integrating photo-magnetic techniques, offers a comprehensive approach to cardiovascular management, advancing related technologies.
Collapse
Affiliation(s)
- Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, 700000, Vietnam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| |
Collapse
|
5
|
Mo X, Zhang Y, Wang Z, Zhou X, Zhang Z, Fang Y, Fan Z, Guo Y, Zhang T, Xiong Z. Satellite-Based On-Orbit Printing of 3D Tumor Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309618. [PMID: 38145905 DOI: 10.1002/adma.202309618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Space three dimension (3D) bioprinting provides a precise and bionic tumor model for evaluating the compound effect of the space environment on tumors, thereby providing insight into the progress of the disease and potential treatments. However, space 3D bioprinting faces several challenges, including prelaunch uncertainty, possible liquid leakage, long-term culture in space, automatic equipment control, data acquisition, and transmission. Here, a novel satellite-based 3D bioprinting device with high structural strength, small volume, and low weight (<6 kg) is developed. A microgel-based biphasic thermosensitive bioink and suspension medium that supports the on-orbit printing and in situ culture of complex tumor models is developed. An intelligent control algorithm that enables the automatic control of 3D printing, autofocusing, fluorescence imaging, and data transfer back to the ground is developed. To the authors' knowledge, this is the first time that on-orbit printing of tumor models is achieved in space with stable morphology and moderate viability via a satellite. It is found that 3D tumor models are more sensitive to antitumor drugs in space than on Earth. This study opens up a new avenue for 3D bioprinting in space and offers new possibilities for future research in space life science and medicine.
Collapse
Affiliation(s)
- Xingwu Mo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yanmei Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zixuan Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Xianhao Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhenrui Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zilian Fan
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yihan Guo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Jergitsch M, Alluè-Mengual Z, Perez RA, Mateos-Timoneda MA. A systematic approach to improve printability and cell viability of methylcellulose-based bioinks. Int J Biol Macromol 2023; 253:127461. [PMID: 37852401 DOI: 10.1016/j.ijbiomac.2023.127461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Printability in 3D extrusion bioprinting encompasses extrudability, filament formation, and shape fidelity. Rheological properties can predict the shape fidelity of printed hydrogels. In particular, tan(δ), the ratio between loss (G'') and storage (G') modulus (G''/G'), is a powerful indicator of printability. This study explores the effect of different salt, sucrose, and MC concentrations on tan(δ), and therefore the printability of methylcellulose (MC) hydrogels. Salt and sucrose increased G', lowering tan(δ) and enabling printing of scaffolds with high shape fidelity. Conversely, MC concentration increased G'' and G', having a lesser effect on tan(δ). Shape fidelity of three formulations with similar G' but varying tan(δ) values were compared. Higher tan(δ) led to reduced height, while lower tan(δ) improved shape fidelity. Cell viability increased when reducing MC content, extrusion rate, and nozzle gauge. Higher MC concentration (G' > 1.5 kPa) increased the influence of needle size and extrusion rate on cell viability. Hydrogels with G' < 1 kPa could be extruded at high rates with small nozzles, minimally affecting cell viability. This work shows a direct relationship between tan(δ) and printability of MC-based hydrogels. Lowering the complex modulus of hydrogels, mitigates extrusion stress, thus improving cell survival.
Collapse
Affiliation(s)
- Maximilian Jergitsch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain; Department of Basic Sciences, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, JosepTrueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Zoe Alluè-Mengual
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain; Department of Basic Sciences, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, JosepTrueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Roman A Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain; Department of Basic Sciences, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, JosepTrueta, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Miguel A Mateos-Timoneda
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta, 08195 Sant Cugat del Vallès, Barcelona, Spain; Department of Basic Sciences, Faculty of Medicine and Health Science, Universitat Internacional de Catalunya, JosepTrueta, 08195 Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
7
|
Van Ombergen A, Chalupa‐Gantner F, Chansoria P, Colosimo BM, Costantini M, Domingos M, Dufour A, De Maria C, Groll J, Jungst T, Levato R, Malda J, Margarita A, Marquette C, Ovsianikov A, Petiot E, Read S, Surdo L, Swieszkowski W, Vozzi G, Windisch J, Zenobi‐Wong M, Gelinsky M. 3D Bioprinting in Microgravity: Opportunities, Challenges, and Possible Applications in Space. Adv Healthc Mater 2023; 12:e2300443. [PMID: 37353904 PMCID: PMC11468760 DOI: 10.1002/adhm.202300443] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Indexed: 06/25/2023]
Abstract
3D bioprinting has developed tremendously in the last couple of years and enables the fabrication of simple, as well as complex, tissue models. The international space agencies have recognized the unique opportunities of these technologies for manufacturing cell and tissue models for basic research in space, in particular for investigating the effects of microgravity and cosmic radiation on different types of human tissues. In addition, bioprinting is capable of producing clinically applicable tissue grafts, and its implementation in space therefore can support the autonomous medical treatment options for astronauts in future long term and far-distant space missions. The article discusses opportunities but also challenges of operating different types of bioprinters under space conditions, mainly in microgravity. While some process steps, most of which involving the handling of liquids, are challenging under microgravity, this environment can help overcome problems such as cell sedimentation in low viscous bioinks. Hopefully, this publication will motivate more researchers to engage in the topic, with publicly available bioprinting opportunities becoming available at the International Space Station (ISS) in the imminent future.
Collapse
Affiliation(s)
- Angelique Van Ombergen
- SciSpacE TeamDirectorate of Human and Robotic Exploration Programmes (HRE)European Space Agency (ESA)Keplerlaan 1Noordwijk2201AGThe Netherlands
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
| | - Franziska Chalupa‐Gantner
- Research Group 3D Printing and BiofabricationInstitute of Materials Science and TechnologyAustrian Cluster for Tissue RegenerationTU WienGetreidemarkt 9/E308Vienna1060Austria
| | - Parth Chansoria
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH Zurich Otto‐Stern‐Weg 7Zürich8093Switzerland
| | - Bianca Maria Colosimo
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of Mechanical EngineeringPolitecnico di MilanoVia La Masa 1Milano20156Italy
| | - Marco Costantini
- Institute of Physical ChemistryPolish Academy of SciencesUl. Kasprzaka 44/52Warsaw01–224Poland
| | - Marco Domingos
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of MechanicalAerospace and Civil EngineeringSchool of EngineeringFaculty of Science and Engineering & Henry Royce InstituteUniversity of ManchesterM13 9PLManchesterUK
| | - Alexandre Dufour
- 3d.FAB – ICBMSCNRS UMR 5246University Claude Bernard‐Lyon 1 and University of Lyon1 rue Victor GrignardVilleurbanne69100France
| | - Carmelo De Maria
- Department of Information Engineering (DII) and Research Center “E. Piaggio”University of PisaLargo Lucio Lazzarino 1Pisa56122Italy
| | - Jürgen Groll
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Riccardo Levato
- Department of OrthopaedicsUniversity Medical Center UtrechtDepartment of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CXThe Netherlands
| | - Jos Malda
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of OrthopaedicsUniversity Medical Center UtrechtDepartment of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrecht3584 CXThe Netherlands
| | - Alessandro Margarita
- Department of Mechanical EngineeringPolitecnico di MilanoVia La Masa 1Milano20156Italy
| | - Christophe Marquette
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- 3d.FAB – ICBMSCNRS UMR 5246University Claude Bernard‐Lyon 1 and University of Lyon1 rue Victor GrignardVilleurbanne69100France
| | - Aleksandr Ovsianikov
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Research Group 3D Printing and BiofabricationInstitute of Materials Science and TechnologyAustrian Cluster for Tissue RegenerationTU WienGetreidemarkt 9/E308Vienna1060Austria
| | - Emma Petiot
- 3d.FAB – ICBMSCNRS UMR 5246University Claude Bernard‐Lyon 1 and University of Lyon1 rue Victor GrignardVilleurbanne69100France
| | - Sophia Read
- Department of MechanicalAerospace and Civil EngineeringSchool of EngineeringFaculty of Science and Engineering & Henry Royce InstituteUniversity of ManchesterM13 9PLManchesterUK
| | - Leonardo Surdo
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Space Applications Services NV/SA for the European Space Agency (ESA)Keplerlaan 1Noordwijk2201AGThe Netherlands
| | - Wojciech Swieszkowski
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Biomaterials GroupMaterials Design DivisionFaculty of Materials Science and EngineeringWarsaw University of TechnologyWoloska Str. 141Warsaw02–507Poland
| | - Giovanni Vozzi
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Department of Information Engineering (DII) and Research Center “E. Piaggio”University of PisaLargo Lucio Lazzarino 1Pisa56122Italy
| | - Johannes Windisch
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital and Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenFetscherstr. 7401307DresdenGermany
| | - Marcy Zenobi‐Wong
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH Zurich Otto‐Stern‐Weg 7Zürich8093Switzerland
| | - Michael Gelinsky
- ESA Topical Team on “3D Bioprinting of living tissue for utilization in space exploration and extraterrestrial human settlements”01307DresdenGermany
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital and Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenFetscherstr. 7401307DresdenGermany
| |
Collapse
|