1
|
Frenzel T, Wels T, Pietsch H, Schöckel L, Seidensticker P, Endrikat J. Recent Developments and Future Perspectives in Magnetic Resonance Imaging and Computed Tomography Contrast Media. Invest Radiol 2025:00004424-990000000-00313. [PMID: 40163898 DOI: 10.1097/rli.0000000000001180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
ABSTRACT This review provides a comprehensive analysis of recent advancements in computed tomography (CT) and magnetic resonance imaging (MRI) contrast media, offering a critical evaluation of current trends and exploring future directions in the field. New clinical developments within the last 5-8 years are considered as well as clinical efficacy and safety aspects.For CT, the general safety of low- and iso-osmolar iodinated contrast agents and their effect on renal and thyroid function are reviewed. Special attention is given to contrast-enhanced mammography and a short outlook to photon-counting CT is provided.For MRI, a brief update on general safety, nephrogenic systemic fibrosis and the presence of gadolinium in the brain is given. The 2 new high-relaxivity gadolinium-based contrast agents, gadopiclenol and gadoquatrane (in late-stage clinical development), are highlighted.The review also describes targeted gadolinium-based contrast agents, superparamagnetic iron oxide particles, and developments of manganese-based contrast agents. It also introduces the emerging field of glymphatic imaging.
Collapse
Affiliation(s)
- Thomas Frenzel
- From the Bayer AG, Radiology, Berlin, Germany (T.F., H.P., L.S., J.E.); Wels - Omnino Medico, Rotkreuz, Switzerland (T.W.); Bayer U.S. LLC, Indianola, PA (P.S.); and Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany (J.E.)
| | | | | | | | | | | |
Collapse
|
2
|
Kirichenko AV, Lee D, Wagner P, Oh S, Lee H, Pavord D, Shamsesfandabadi P, Chen A, Machado L, Bunker M, Sanguino A, Shah C, Uemura T. Image-Guided Stereotactic Body Radiotherapy (SBRT) with Enhanced Visualization of Tumor and Hepatic Parenchyma in Patients with Primary and Metastatic Liver Malignancies. Cancers (Basel) 2025; 17:1088. [PMID: 40227630 PMCID: PMC11988117 DOI: 10.3390/cancers17071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
GOAL This study evaluates the feasibility and outcome of a personalized MRI-based liver SBRT treatment planning platform with the SPION contrast agent Ferumoxytol® (Sandoz Inc.; Princeton, NJ, USA) to maintain a superior real-time visualization of liver tumors and volumes of functional hepatic parenchyma for radiotherapy planning throughout multi-fractionated liver SBRT with online plan adaptations on an Elekta Unity 1.5 T MR-Linac (Elekta; Stockholm, Sweden). MATERIALS AND METHODS Patients underwent SPION-enhanced MRI on the Elekta Unity MR-Linac for improved tumor and functional hepatic parenchyma visualization. An automated contouring algorithm was applied for the delineation and subsequent guided avoidance of functional liver parenchyma volumes (FLVs) on the SPION-enhanced MR-Linac. Radiation dose constraints were adapted exclusively to FLV. Local control, toxicity, and survival were assessed with at least 6-month radiographic follow-up. Pre- and post-transplant outcomes were analyzed in the subset of patients with HCC and hepatic cirrhosis who completed SBRT as a bridge to liver transplant. Model of End-Stage Liver Disease (MELD-Na) was used to score hepatic function before and after SBRT. RESULTS With a median follow-up of 23 months (range: 3-40 months), 23 HCC patients (26 lesions treated) and 9 patients (14 lesions treated) with hepatic metastases received SBRT (mean dose: 48 Gy, range: 36-54 Gy) in 1-5 fractions. Nearly all patients in this study had pe-existing liver conditions, including hepatic cirrhosis (23), prior TACE (7), prior SBRT (18), or history of hepatic resection (2). Compared to the non-contrast images, SPIONs improved tumor visibility on post-SPION images on the background of negatively enhancing functionally active hepatic parenchyma. Prolonged SPION-contrast retention within hepatic parenchyma enabled per-fraction treatment adaptation throughout the entire multi-fraction treatment course. FLV loss (53%, p < 0.0001) was observed in cirrhotic patients, but functional and anatomic liver volumes remained consistent in non-cirrhotic patients. Mean dose to FLV was maintained within the liver threshold tolerance to radiation in all patients after the optimization of Step-and-Shoot Intensity-Modulated Radiotherapy (SS-IMRT) on the SPION-enhanced MRI-Linac. No radiation-induced liver disease was observed within 6 months post-SBRT, and the MELD-Na score in cirrhotic patients was not significantly elevated at 3-month intervals after SBRT completion. CONCLUSIONS SPION Ferumoxytol® administered intravenously as an alternative MRI contrast agent on the day of SBRT planning produces a long-lasting contrast effect between tumors and functional hepatic parenchyma for precision targeting and guided avoidance during the entire course of liver SBRT, enabling fast and accurate online plan adaptation on the 1.5 T Elekta Unity MR-Linac. This approach demonstrates a safe and effective bridging therapy for patients with hepatic cirrhosis, leading to low toxicity and favorable transplant outcomes.
Collapse
Affiliation(s)
- Alexander V. Kirichenko
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Danny Lee
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Patrick Wagner
- Division of Surgical Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA;
| | - Seungjong Oh
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Hannah Lee
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Daniel Pavord
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Parisa Shamsesfandabadi
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Allen Chen
- Division of Abdominal Transplantation, Allegheny General Hospital, Pittsburgh, PA 15212, USA; (A.C.); (L.M.); (T.U.)
| | - Lorenzo Machado
- Division of Abdominal Transplantation, Allegheny General Hospital, Pittsburgh, PA 15212, USA; (A.C.); (L.M.); (T.U.)
| | - Mark Bunker
- Department of Clinical Pathology, Allegheny General Hospital, Pittsburgh, PA 15212, USA; (M.B.); (A.S.)
| | - Angela Sanguino
- Department of Clinical Pathology, Allegheny General Hospital, Pittsburgh, PA 15212, USA; (M.B.); (A.S.)
| | - Chirag Shah
- Division of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (D.L.); (S.O.); (H.L.); (D.P.); (P.S.); (C.S.)
| | - Tadahiro Uemura
- Division of Abdominal Transplantation, Allegheny General Hospital, Pittsburgh, PA 15212, USA; (A.C.); (L.M.); (T.U.)
| |
Collapse
|
3
|
Zhang P, Ran Y, Han L, Li Y, Tian W, Sun X, Jiao M, Jing L, Luo X. Nanomaterial technologies for precision diagnosis and treatment of brain hemorrhage. Biomaterials 2025; 321:123269. [PMID: 40174300 DOI: 10.1016/j.biomaterials.2025.123269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Brain hemorrhage events present complex clinical challenges due to their rapid progression and the intricate interplay of oxidative stress, inflammation, and neuronal damage. Traditional diagnostic and therapeutic approaches often struggle to meet the demands for timely and effective intervention. This review explores the cutting-edge role of nanomaterials in transforming cerebral hemorrhage management, focusing on both diagnostic and therapeutic advancements. Nanomaterial-enabled imaging techniques, such as optical imaging, magnetic resonance imaging, and magnetic particle imaging, significantly enhance the accuracy of hemorrhage detection by providing real-time, high-resolution assessments of blood-brain barrier (BBB) integrity, cerebral perfusion, and hemorrhage progression, which is critical for guiding intervention strategies. On the therapeutic front, nanomaterial-based systems enable the precise delivery of drugs and bioactive molecules, fostering neural repair and functional recovery while minimizing systemic side effects. Furthermore, multifunctional nanomaterials not only address the primary injury but also offer precise control over secondary injuries, such as edema and oxidative stress. Their ability to enhance neuroprotection, prevent re-bleeding, and stimulate brain tissue regeneration provides a holistic approach and marks a significant advancement in brain hemorrhage therapy. As the field continues to advance, nanotechnology is set to fundamentally reshape the clinical management and long-term outcomes of brain hemorrhages, presenting a paradigm shift towards personalized and highly effective neurological care.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Yi'an Ran
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Lei Han
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Yao Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Wanru Tian
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Xiao Sun
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China.
| | - Lihong Jing
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China.
| |
Collapse
|
4
|
Li Y, Thamizhchelvan AM, Ma H, Padelford J, Zhang Z, Wu T, Gu Q, Wang Z, Mao H. A subtype specific probe for targeted magnetic resonance imaging of M2 tumor-associated macrophages in brain tumors. Acta Biomater 2025; 194:336-351. [PMID: 39805525 DOI: 10.1016/j.actbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs. The targeting specificity of M2pep-uIONP was validated in vitro, using M0, M1, and M2 macrophages, and in vivo, using an orthotopic patient-tissue-derived xenograft (PDX) mouse model of glioblastoma (GBM). MRI of the mice revealed hypointense contrast in T2-weighted images of intracranial tumors 24 h after receiving intravenous (i.v.) injection of M2pep-uIONP. In contrast, no noticeable contrast change was observed in mice receiving scrambled-sequence M2pep-conjugated uIONP (scM2pep-uIONP) or the commercially available iron oxide nanoparticle formulation, Ferumoxytol. Measurement of nanoparticle-induced T2 value changes in tumors showed 38 %, 9 %, and 2 % decrease for M2pep-uIONP, scM2pep-uIONP, and Ferumoxytol, respectively. Moreover, M2pep-uIONP exhibited 88.7-fold higher intra-tumoral accumulation compared to co-injected Ferumoxytol at 24 h post-injection. Immunofluorescence-stained tumor sections showed that CD68+/CD163+ M2 TAMs were highly co-localized with Cy7-M2pep-uIONP, but not with Cy7-scM2pep-uIONP and Cy7-Ferumoxytol. Flow cytometry analysis revealed 26 ± 10 % of M2 TAMs were targeted by M2pep-uIONP, which was significantly higher than Ferumoxytol (16 ± 1 %) and scM2pep-uIONP (13 ± 4 %) with the same dosage (20 mg Fe/kg). These findings demonstrate that M2pep-uIONP functions as a ligand-mediated MRI probe for targeted imaging of M2 TAMs in GBM, with potential applications for imaging of M2 TAM in other cancer types. STATEMENT OF SIGNIFICANCE: Targeting the pro-tumoral M2 subtype of tumor-associated macrophages (TAMs) to modulate the tumor immune microenvironment (TIME) is an emerging strategy for developing novel cancer therapies and enhancing the efficacy of existing treatments. In this study, we have developed a magnetic resonance imaging (MRI) probe using sub-5 nm ultrafine iron oxide nanoparticles (uIONP), which are coated with an anti-biofouling polymer and conjugated to an M2-specific peptide ligand (M2pep). Our results demonstrate that M2pep-uIONP exhibits an 88.7-fold higher accumulation in intracranial tumors in an orthotopic patient-derived xenograft (PDX) model of glioblastoma compared to the commercial iron oxide nanoparticle, Ferumoxytol. This enhanced accumulation enables M2pep-uIONP to induce significant MRI contrast, providing a non-invasive imaging tool to visualize M2 TAMs and monitor changes in the TIME of brain tumors and potentially other cancers.
Collapse
Affiliation(s)
- Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA; 5M Biomed, LLC, Atlanta, Georgia 30303, USA
| | - Anbu Mozhi Thamizhchelvan
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hedi Ma
- 5M Biomed, LLC, Atlanta, Georgia 30303, USA
| | | | - Zhaobin Zhang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Tianhe Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Quanquan Gu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Zi Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| |
Collapse
|
5
|
Scarciglia A, Papi C, Romiti C, Leone A, Di Gregorio E, Ferrauto G. Gadolinium-Based Contrast Agents (GBCAs) for MRI: A Benefit-Risk Balance Analysis from a Chemical, Biomedical, and Environmental Point of View. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400269. [PMID: 40071223 PMCID: PMC11891575 DOI: 10.1002/gch2.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/07/2025] [Indexed: 03/14/2025]
Abstract
Gadolinium-based contrast agents (GBCAs) have revolutionized medical imaging, enhancing the accuracy and diagnostic value of magnetic resonance imaging (MRI). The increasing use of GBCAs has raised concerns about the release of gadolinium (Gd)(III) into the environment and potential risks for human health. Initially, multiple administrations of GBCAs were associated only with nephrogenic system fibrosis disease in individuals with impaired kidney function. Even if the Gd(III) retention in tissues has not yet been correlated with any specific disease, caution is required for the extensive use of GBCAs. The concerns related to the employment of GBCAs, due to the possible deposition and retention, should be extended also to healthy individuals without renal impairments. To ensure the well-being of patients, there is a need to develop even more stable and better-performing GBCAs, new MRI approaches requiring lower doses of GBCAs and, finally, innovative methods for recovering Gd(III) from both patients' urines and the environment. This can have strong advantages for human health and for environmental sustainability, also considering Gd(III) scarcity, being a rare earth element, and the shared guideline to reduce, as much as possible, the use of rare metals.
Collapse
Affiliation(s)
- Angelo Scarciglia
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Chiara Papi
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Chiara Romiti
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Andrea Leone
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| |
Collapse
|
6
|
Xie D, Sun L, Wu M, Li Q. From detection to elimination: iron-based nanomaterials driving tumor imaging and advanced therapies. Front Oncol 2025; 15:1536779. [PMID: 39990682 PMCID: PMC11842268 DOI: 10.3389/fonc.2025.1536779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Iron-based nanomaterials (INMs), due to their particular magnetic property, excellent biocompatibility, and functionality, have been developed into powerful tools in both tumor diagnosis and therapy. We give an overview here on how INMs such as iron oxide nanoparticles, element-doped nanocomposites, and iron-based organic frameworks (MOFs) display versatility for tumor imaging and therapy improvement. In terms of imaging, INMs improve the sensitivity and accuracy of techniques such as magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) and support the development of multimodal imaging platforms. Regarding treatment, INMs play a key role in advanced strategies such as immunotherapy, magnetic hyperthermia, and synergistic combination therapy, which effectively overcome tumor-induced drug resistance and reduce systemic toxicity. The integration of INMs with artificial intelligence (AI) and radiomics further expands its capabilities for precise tumor identification, and treatment optimization, and amplifies treatment monitoring. INMs now link materials science with advanced computing and clinical innovations to enable next-generation cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Dong Xie
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Linglin Sun
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manxiang Wu
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Qiang Li
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Li J, Guo L, Feng Y, Li G, Sun H, Huang W, Tian J, Du Y, An Y. Optical-magnetic Imaging for Optimizing Lymphodepletion-TIL Combination Therapy in Breast Cancer. Mol Imaging Biol 2025:10.1007/s11307-025-01985-7. [PMID: 39909989 DOI: 10.1007/s11307-025-01985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/20/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
PURPOSE Lymphodepletion before tumor-infiltrating lymphocytes (TIL) infusion can activate the immune system, enhance the release of homeostatic cytokines, and decrease the number of immunosuppressive cells. This process is crucial for improving the therapeutic efficacy of TIL therapy. However, the challenge of in vivo assessing TILs targeting tumors limits the optimization of lymphodepleting conditioning regimen (LDC). PROCEDURES This study aims to employ magnetic particle imaging (MPI) and fluorescence molecular imaging (FMI) to monitor TIL biodistribution in vivo and optimize LDC in triple-negative breast cancer TIL therapy. MPI provides quantitative imaging capabilities without depth limitations, effectively complementing the high sensitivity of FMI. The efficacy of different LDCs in enhancing TIL therapy was assessed using FMI, and MPI quantified the number of TILs accumulated in the 4T1 tumor. RESULTS TILs preserved viability, phenotypes, and anti-tumor efficacy after being labeled with superparamagnetic iron oxide and fluorescence dye DiR. The dual-modality imaging system effectively discerned variations in LDC treatments that enhanced TIL therapy. Compared to TIL monotherapy, lymphodepletion with TIL therapy improves tumor dual-modality imaging signal intensity, increases the expression of monocyte chemotactic protein-1 in serum and tumor tissue, and enhances the therapeutic effect of TILs. CONCLUSION Our results confirm the utility of optical-magnetic dual-modality imaging for tracking the biodistribution of TILs in vivo. With the help of optical-magnetic dual-modality imaging, we successfully optimize TIL combination therapy. Optical-magnetic dual-modality imaging provides a new approach to develop personalized immunotherapy strategies and mine potential therapeutic mechanisms for TIL.
Collapse
Affiliation(s)
- Jiaqian Li
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lishuang Guo
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - Yuan Feng
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - Guanghui Li
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - He Sun
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jie Tian
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China.
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- The University of Chinese Academy of Sciences, Beijing, 100080, China.
| | - Yu An
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China.
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
8
|
Liu X, Yuan H. Responsive nanomaterials in biomedicine, patent path and prospect analysis. Front Bioeng Biotechnol 2025; 13:1539991. [PMID: 39968009 PMCID: PMC11832473 DOI: 10.3389/fbioe.2025.1539991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
In recent years, responsive nanomaterials have demonstrated tremendous potential in biomedical applications due to their unique advantages in precise drug delivery and controlled release. For complex diseases such as cancer, chronic inflammation, and genetic disorders, traditional treatment methods are often limited by insufficient targeting and significant side effects. Responsive nanotechnology, by sensing specific internal or external stimuli, has significantly enhanced the precision and efficiency of treatments. This study systematically summarizes the technological trajectory and emerging research directions of responsive nanomaterials through global patent and literature data, employing main path analysis, derivative path analysis, and keyword co-occurrence analysis. The results reveal the evolution of this field, from the optimization of early single-stimulus-responsive nano delivery systems to the rise of theranostics integration, followed by advancements in multi-stimuli-responsive synergistic therapies, and finally, the innovation in biomimetic material design. Each developmental phase has increasingly focused on adapting to complex biological environments, achieving superior targeting performance, and enhancing therapeutic efficacy. Keyword co-occurrence analysis highlights key research hotspots, including biomimetic design, multimodal synergistic therapies, and emerging response mechanisms. In the future, responsive nanomaterials are expected to play a pivotal role in personalized medicine, multifunctional carrier design, and complex disease management, providing novel insights and technological support for precision medicine.
Collapse
Affiliation(s)
| | - Hongmei Yuan
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Long M, Wang L, Kang L, Liu D, Long T, Ding H, Duan Y, He H, Xu B, Gu N. Prussian Blue Nanozyme Featuring Enhanced Superoxide Dismutase-like Activity for Myocardial Ischemia Reperfusion Injury Treatment. ACS NANO 2025; 19:4561-4581. [PMID: 39835774 DOI: 10.1021/acsnano.4c14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The blood flow, when restored clinically following a myocardial infarction (MI), disrupts the physiological and metabolic equilibrium of the ischemic myocardial area, resulting in secondary damage termed myocardial ischemia-reperfusion injury (MIRI). Reactive oxygen species (ROS) generation and inflammatory reactions stand as primary culprits behind MIRI. Current strategies focusing on ROS-scavenging and anti-inflammatory actions have limited remission of MIRI. Prussian blue nanozyme (PBNz) exhibits multiple enzyme-like activities including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), which are beneficial for ROS clearance and fighting inflammation. Herein, a formulation of PBNz coated with polydextrose-sorbitol carboxymethyl ether (PBNz@PSC) was developed to enhance its efficacy, biocompatibility, and safety for the treatment of MIRI. PBNz@PSC not only showed enhanced SOD-like activity due to its polysaccharide attributes but also could passively target the damaged myocardium through the enhanced permeability and retention (EPR) effect. Both in vitro and in vivo studies have validated their excellent biocompatibility, safety, ROS-scavenging ability, and capacity to drive macrophage polarization from M1 toward M2, thereby diminishing the levels of IL-1β, IL-6, and TNF-α to combat inflammation. Consequently, PBNz@PSC can reverse ischemia reperfusion-induced myocardial injury, reduce coronary microvascular obstruction (MVO), and improve myocardial remodeling and cardiac function. Moreover, PBNz@PSC showed more pronounced therapeutic effects for MIRI than a clinical drug, sulfotanshinone IIA sodium. Notably, our findings revealed the possible mechanism of PBNz@PSC in treating MIRI, which mediated AMPK activation. In conclusion, this study presents a pioneering strategy for addressing MIRI, promising improved ischemia-reperfusion outcomes.
Collapse
Affiliation(s)
- Mengmeng Long
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lintao Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P. R. China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P. R. China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, P. R. China
| | - Dongfang Liu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210003, P. R. China
| | - Tingting Long
- Anqing Municipal Hospital, Anqing Medical Center of Anhui Medical University, AnQing 246003, P. R. China
| | - He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yifan Duan
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Hongliang He
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P. R. China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
10
|
Li M, Li Y, Zheng J, Ma Z, Zhang J, Wu H, Zhu Y, Li P, Nie F. Ultrasound-responsive nanocarriers with siRNA and Fe 3O 4 regulate macrophage polarization and phagocytosis for augmented non-small cell lung cancer immunotherapy. J Nanobiotechnology 2024; 22:605. [PMID: 39375761 PMCID: PMC11460142 DOI: 10.1186/s12951-024-02883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
The immunosuppressive tumor microenvironment (TME) significantly inhibits the effective anti-tumor immune response, greatly affecting the efficacy of immunotherapy. Most tumor-associated macrophages (TAMs) belong to the M2 phenotype, which contributes significantly to the immunosuppressive effects in non-small cell lung cancer (NSCLC) TME. The interaction between signal regulatory protein α (SIRPα) expressed on macrophages and CD47, a transmembrane protein overexpressed on cancer cells, activates the "eat-me-not" signaling pathway, inhibiting phagocytosis. In this study, a folic acid (FA)-modified ultrasound responsive gene/drugs delivery system, named FA@ PFP @ Fe3O4 @LNB-SIRPα siRNA (FA-PFNB-SIRPα siRNA), was developed using 1,2-dioleoacyl-3-trimethylammonium-propane (DOTAP), FA-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [amino (polyethylene glycol)2000] (DSPE-PEG2000-FA), cholesterol, and perfluoropentane (PFP), for the delivery of siRNA encoding SIRPα mRNA and immune adjuvant Fe3O4 nanoparticles. Under ultrasound conditions, the nanobubbles effectively transfected macrophages, inhibiting SIRPα mRNA and protein expression, promoting the phagocytosis of TAMs, and synergistically reversing M2 polarization. This system promotes the infiltration of T cells, enhances the proliferation and activation of cytotoxic T cells, and inhibits the infiltration of immunosuppressive cells in tumor tissues. Administration of FA-PFNB-SIRPα siRNA combined with ultrasound significantly inhibits NSCLC progression. The study highlights the potential of ultrasound nanotechnology-enabled delivery of SIRPα siRNA and Fe3O4 as an effective strategy for macrophage-based immunotherapy to reshape the immunosuppressive TME for cancer therapy.
Collapse
Affiliation(s)
- Ming Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yuanyuan Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jun Zheng
- State Key Laboratory of Ultrasound in Medicine and Engineering, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhen Ma
- Peking University Third Hospital, Beijing, 100191, China
| | - Jianye Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Hao Wu
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yangyang Zhu
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Pan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| | - Fang Nie
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Zhao Y, Pan J, Han B, Hou W, Li B, Wang J, Wang G, He Y, Ma M, Zhou J, Yu C, Sun SK. Ultrahigh-Resolution Visualization of Vascular Heterogeneity in Brain Tumors via Magnetic Nanoparticles-Enhanced Susceptibility-Weighted Imaging. ACS NANO 2024. [PMID: 39094075 DOI: 10.1021/acsnano.4c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The precise assessment of vascular heterogeneity in brain tumors is vital for diagnosing, grading, predicting progression, and guiding treatment decisions. However, currently, there is a significant shortage of high-resolution imaging approaches. Herein, we propose a contrast-enhanced susceptibility-weighted imaging (CE-SWI) utilizing the minimalist dextran-modified Fe3O4 nanoparticles (Dextran@Fe3O4 NPs) for ultrahigh-resolution mapping of vasculature in brain tumors. The Dextran@Fe3O4 NPs are prepared via a facile coprecipitation method under room temperature, and exhibit small hydrodynamic size (28 nm), good solubility, excellent biocompatibility, and high transverse relaxivity (r2*, 159.7 mM-1 s-1) under 9.4 T magnetic field. The Dextran@Fe3O4 NPs-enhanced SWI can increase the contrast-to-noise ratio (CNR) of cerebral vessels to 2.5 times that before injection and achieves ultrahigh-spatial-resolution visualization of microvessels as small as 0.1 mm in diameter. This advanced imaging capability not only allows for the detailed mapping of both enlarged peritumoral drainage vessels and the intratumoral microvessels, but also facilitates the sensitive imaging detection of vascular permeability deterioration in a C6 cells-bearing rat glioblastoma model. Our proposed Dextran@Fe3O4 NPs-enhanced SWI provides a powerful imaging technique with great clinical translation potential for the precise theranostics of brain tumors.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bing Han
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenjing Hou
- Department of Diagnostic and Therapeutic Ultrasonography, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Bingjie Li
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiaojiao Wang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300204, China
| | - Yujing He
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Min Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Junzi Zhou
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300204, China
| |
Collapse
|
12
|
Li D, Zhang R, Le Y, Zhang T, Luo D, Zhang H, Li J, Zhao R, Hu Y, Kong X. Organoid-Based Assessment of Metal-Organic Framework (MOF) Nanomedicines for Ex Vivo Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33070-33080. [PMID: 38904394 DOI: 10.1021/acsami.4c05172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Nanomaterials have been extensively exploited in tumor treatment, leading to numerous innovative strategies for cancer therapy. While nanomedicines present immense potential, their application in cancer therapy is characterized by significant complexity and unpredictability, especially regarding biocompatibility and anticancer efficiency. These considerations underscore the essential need for the development of ex vivo research models, which provide invaluable insights and understanding into the biosafety and efficacy of nanomedicines in oncology. Fortunately, the emergence of organoid technology offers a novel approach to the preclinical evaluation of the anticancer efficacy of nanomedicines in vitro. Hence, in this study, we constructed intestine and hepatocyte organoid models (Intestine-orgs and Hep-orgs) for assessing intestinal and hepatic toxicity at the microtissue level. We utilized three typical metal-organic frameworks (MOFs), ZIF-8, ZIF-67, and MIL-125, as nanomedicines to further detect their interactions with organoids. Subsequently, the MIL-125 with biocompatibility loaded methotrexate (MTX), forming the nanomedicine (MIL-125-PEG-MTX), indicated a high loading efficiency (82%) and a well-release capability in an acid microenvironment. More importantly, the anticancer effect of the nanomedicine was investigated using an in vitro patient-derived organoids (PDOs) model, achieving inhibition rates of 48% and 78% for PDO-1 and PDO-2, respectively, demonstrating that PDOs could predict clinical response and facilitate prospective therapeutic selection. These achievements presented great potential for organoid-based ex vivo models for nano theragnostic evaluation in biosafety and function.
Collapse
Affiliation(s)
- Dan Li
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Rui Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yinpeng Le
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ting Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Dandan Luo
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Han Zhang
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jun Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Ruibo Zhao
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yeting Hu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Xiangdong Kong
- Institute for Smart Biomedical Materials, School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
13
|
Si G, Du Y, Tang P, Ma G, Jia Z, Zhou X, Mu D, Shen Y, Lu Y, Mao Y, Chen C, Li Y, Gu N. Unveiling the next generation of MRI contrast agents: current insights and perspectives on ferumoxytol-enhanced MRI. Natl Sci Rev 2024; 11:nwae057. [PMID: 38577664 PMCID: PMC10989670 DOI: 10.1093/nsr/nwae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 04/06/2024] Open
Abstract
Contrast-enhanced magnetic resonance imaging (CE-MRI) is a pivotal tool for global disease diagnosis and management. Since its clinical availability in 2009, the off-label use of ferumoxytol for ferumoxytol-enhanced MRI (FE-MRI) has significantly reshaped CE-MRI practices. Unlike MRI that is enhanced by gadolinium-based contrast agents, FE-MRI offers advantages such as reduced contrast agent dosage, extended imaging windows, no nephrotoxicity, higher MRI time efficiency and the capability for molecular imaging. As a leading superparamagnetic iron oxide contrast agent, ferumoxytol is heralded as the next generation of contrast agents. This review delineates the pivotal clinical applications and inherent technical superiority of FE-MRI, providing an avant-garde medical-engineering interdisciplinary lens, thus bridging the gap between clinical demands and engineering innovations. Concurrently, we spotlight the emerging imaging themes and new technical breakthroughs. Lastly, we share our own insights on the potential trajectory of FE-MRI, shedding light on its future within the medical imaging realm.
Collapse
Affiliation(s)
- Guangxiang Si
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yue Du
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Peng Tang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Gao Ma
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhaochen Jia
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 200126, China
| | - Dan Mu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yan Shen
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Yi Lu
- School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Mao
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Ning Gu
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
14
|
Shurin MR, Kirichenko VA, Shurin GV, Lee D, Crane C, Kirichenko AV. Radiomodulating Properties of Superparamagnetic Iron Oxide Nanoparticle (SPION) Agent Ferumoxytol on Human Monocytes: Implications for MRI-Guided Liver Radiotherapy. Cancers (Basel) 2024; 16:1318. [PMID: 38610996 PMCID: PMC11011128 DOI: 10.3390/cancers16071318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) have attracted great attention not only for therapeutic applications but also as an alternative magnetic resonance imaging (MRI) contrast agent that helps visualize liver tumors during MRI-guided stereotactic body radiotherapy (SBRT). SPION can provide functional imaging of liver parenchyma based upon its uptake by the hepatic resident macrophages or Kupffer cells with a relative enhancement of malignant tumors that lack Kupffer cells. However, the radiomodulating properties of SPION on liver macrophages are not known. Utilizing human monocytic THP-1 undifferentiated and differentiated cells, we characterized the effect of ferumoxytol (Feraheme®), a carbohydrate-coated ultrasmall SPION agent at clinically relevant concentration and therapeutically relevant doses of gamma radiation on cultured cells in vitro. We showed that ferumoxytol affected both monocytes and macrophages, increased the resistance of monocytes to radiation-induced cell death and inhibition of cell activity, and supported the anti-inflammatory phenotype of human macrophages under radiation. Its effect on human cells depended on the duration of SPION uptake and was radiation dose-dependent. The results of this pilot study support a strong mechanism-based optimization of SPION-enhanced MRI-guided liver SBRT for primary and metastatic liver tumors, especially in patients with liver cirrhosis awaiting a liver transplant.
Collapse
Affiliation(s)
- Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
| | - Vladimir A. Kirichenko
- Department of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA; (V.A.K.); (D.L.)
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA;
| | - Danny Lee
- Department of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA; (V.A.K.); (D.L.)
| | - Christopher Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Alexander V. Kirichenko
- Department of Radiation Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15224, USA; (V.A.K.); (D.L.)
| |
Collapse
|