1
|
Mitri N, Rahme K, Fracasso G, Ghanem E. Human blood biocompatibility and immunogenicity of scFvD2B PEGylated gold nanoparticles. NANOTECHNOLOGY 2022; 33:315101. [PMID: 35417900 DOI: 10.1088/1361-6528/ac66ef] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Single chain variable D2B antibody fragments (scFvD2Bs) exhibit high affinity binding to prostate specific membrane antigens overexpressed in metastatic prostate cancer (PC). Conjugation of scFvD2B to gold nanoparticles (AuNPs) would enhance its stability and plasma half-life circulation to shuttle theranostic agents in PC. In this study, we synthesized PEGylated scFvD2B-AuNPs (AuNPs-scFvD2B-PEG) and tested their integrity, biocompatibility, and immunogenicity in freshly withdrawn human blood. Prior to blood incubation, Zeta potential measurements, UV-Vis spectroscopy, and dynamic light scattering (DLS) were used to assess the physicochemical properties of our nano-complexes in the presence or absence of PEGylation. A surface plasmon resonance band shift of 2 and 4 nm confirmed the successful coating for AuNPs-scFvD2B and AuNPs-scFvD2B-PEG, respectively. Likewise, DLS revealed a size increase of ∼3 nm for AuNPs-scFvD2B and ∼19 nm for AuNPs-scFvD2B-PEG. Zeta potential increased from -34 to -19 mV for AuNPs-scFvD2B and reached -3 mV upon PEGylation. Similar assessment measures were applied post-incubation in human blood with additional immunogenicity tests, such as hemolysis assay, neutrophil function test, and pyridine formazan extraction. Interestingly, grafting PEG chains on AuNPs-scFvD2B precluded the binding of blood plasma proteins and reduced neutrophil activation level compared with naked AuNPs-citrate counterparts. Most likely, a hydrated negative PEG cloud shielded the NPs rendering blood compatiblility with less than 10% hemolysis. In conclusion, the biocompatible AuNPs-scFvD2B-PEG presents promising characteristics for PC targeted therapy, with minimal protein adsorption affinity, low immunorecognition, and reduced hemolytic activity.
Collapse
Affiliation(s)
- Nadim Mitri
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, PO Box: 72, Lebanon
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, PO Box: 72, Lebanon
| | | | - Esther Ghanem
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, PO Box: 72, Lebanon
| |
Collapse
|
2
|
Lu Q, Choi K, Nam JD, Choi HJ. Magnetic Polymer Composite Particles: Design and Magnetorheology. Polymers (Basel) 2021; 13:512. [PMID: 33567794 PMCID: PMC7915058 DOI: 10.3390/polym13040512] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
As a family of smart functional hybrid materials, magnetic polymer composite particles have attracted considerable attention owing to their outstanding magnetism, dispersion stability, and fine biocompatibility. This review covers their magnetorheological properties, namely, flow curve, yield stress, and viscoelastic behavior, along with their synthesis. Preparation methods and characteristics of different types of magnetic composite particles are presented. Apart from the research progress in magnetic polymer composite synthesis, we also discuss prospects of this promising research field.
Collapse
Affiliation(s)
- Qi Lu
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea;
- Program of Environmental and Polymer Engineering, Inha University, Incheon 22212, Korea
| | - Kisuk Choi
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (K.C.); (J.-D.N.)
| | - Jae-Do Nam
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea; (K.C.); (J.-D.N.)
| | - Hyoung Jin Choi
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea;
- Program of Environmental and Polymer Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|
3
|
Modak M, Bobbala S, Lescott C, Liu YG, Nandwana V, Dravid VP, Scott EA. Magnetic Nanostructure-Loaded Bicontinuous Nanospheres Support Multicargo Intracellular Delivery and Oxidation-Responsive Morphological Transitions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55584-55595. [PMID: 33259182 DOI: 10.1021/acsami.0c15920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic nanostructures (MNS) have a wide range of biological applications due to their biocompatibility, superparamagnetic properties, and customizable composition that includes iron oxide (Fe3O4), Zn2+, and Mn2+. However, several challenges to the biomedical usage of MNS must still be addressed, such as formulation stability, inability to encapsulate therapeutic payloads, and variable clearance rates in vivo. Here, we enhance the utility of MNS during controlled delivery applications via encapsulation within polymeric bicontinuous nanospheres (BCNs) composed of poly(ethylene glycol)-block-poly(propylene sulfide) (PEG-b-PPS) copolymers. PEG-b-PPS BCNs have demonstrated versatile encapsulation and delivery capabilities for both hydrophilic and hydrophobic payloads due to their unique and highly organized cubic phase nanoarchitecture. MNS-embedded BCNs (MBCNs) were thus coloaded with physicochemically diverse molecular payloads using the technique of flash nanoprecipitation and characterized in terms of their structure and in vivo biodistribution following intravenous administration. Retention of the internal aqueous channels and cubic architecture of MBCNs were verified using cryogenic transmission electron microscopy and small-angle X-ray scattering, respectively. MBCNs demonstrated improvement in magnetic resonance imaging (MRI) contrast enhancement (r2 relaxivity) as compared to free MNS, which in combination with scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy evidenced the clustering and continued access to water of MNS following encapsulation. Furthermore, MBCNs were found to be noncytotoxic and able to deliver their hydrophilic and hydrophobic small-molecule payloads both in vitro and in vivo. Finally, the oxidation sensitivity of the hydrophobic PPS block allowed MBCNs to undergo a unique, triggerable transition in morphology into MNS-bearing micellar nanocarriers. In summary, MBCNs are an attractive platform for the delivery of molecular and nanoscale payloads for diverse on-demand and sustained drug delivery applications.
Collapse
Affiliation(s)
- Mallika Modak
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chamille Lescott
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yu-Gang Liu
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Vikas Nandwana
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Sharifi AH, Zahmatkesh I, Mozhdehi AM, Morsali A, Bamoharram FF. Stability appraisement of the alumina-brine nanofluid in the presence of ionic and non-ionic disparents on the alumina nanoparticles surface as heat transfer fluids: Quantum mechanical study and Taguchi-optimized experimental analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Huang L, Li Z, Zhang C, Kong L, Wang B, Huang S, Sharma V, Ma H, Yuan Q, Liu Y, Shen G, Wu K, Li L. Sacrificial oxidation of a self-metal source for the rapid growth of metal oxides on quantum dots towards improving photostability. Chem Sci 2019; 10:6683-6688. [PMID: 31367322 PMCID: PMC6625490 DOI: 10.1039/c9sc01233h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/28/2019] [Indexed: 11/21/2022] Open
Abstract
Growth of metal oxide layers on quantum dots (QDs) has been regarded as a good way to improve the photostability of QDs. However, direct growth of metal oxides on individual QD remains a great challenge. Here we report a novel approach to rapidly anchor metal oxides on QD surfaces through a sacrificial oxidation of a self-metal source strategy. As typical core/shell QDs, CdSe/CdS or aluminum doped CdSe/CdS (CdSe/CdS:Al) QDs were chosen and treated with peroxide (benzoyl peroxide). Self-metal sources (cadmium or/and aluminum) can be easily sacrificially oxidized, leading to the quick growth of cadmium oxide (CdO) or aluminum/cadmium hybrid oxides (Al2O3/CdO) on the surface of individual QD for improved photostability. Compared with CdO, Al2O3 possesses excellent barrier properties against moisture and oxygen. Therefore, CdSe/CdS QDs with the protection of an Al2O3/CdO hybrid layer show much superior photostability. Under strong illumination with blue light, the QDs coated with the Al2O3/CdO hybrid layer retained 100% of the original photoluminescence intensity after 70 h, while that of the untreated CdSe/CdS:Al, the treated CdSe/CdS and the CdSe/CdS QDs dropped to 65%, 45%, and 5%, respectively. Furthermore, we demonstrate that this method can be extended to other metal-doped QD systems, even including some inactive metals difficult to be oxidized spontaneously in an ambient atmosphere, which provides a new way to stabilize QDs for diverse optoelectronic applications.
Collapse
Affiliation(s)
- Lu Huang
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
- School of Agriculture and Biology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Zhichun Li
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| | - Congyang Zhang
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| | - Long Kong
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| | - Bo Wang
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| | - Shouqiang Huang
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| | - Vaishali Sharma
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| | - Houyu Ma
- School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Qingchen Yuan
- School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Yue Liu
- School of Materials Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Guoqing Shen
- School of Agriculture and Biology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Kaifeng Wu
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116021 , China
| | - Liang Li
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China .
| |
Collapse
|
6
|
Gruzdev MS, Chervonova UV, Vorobeva VE, Ksenofontov AA, Kolker AM. Liquid crystalline poly(propylene imine) dendrimer-based iron oxide nanoparticles. RSC Adv 2019; 9:22499-22512. [PMID: 35519484 PMCID: PMC9066696 DOI: 10.1039/c9ra03732b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022] Open
Abstract
Poly(propylene imine) dendromesogens (generations from 1 to 4) have been utilized for the synthesis and stabilization of ferrimagnetic Fe2O3 nanoparticles. Reduction of Fe(iii) with further oxidation of Fe(ii) results in the formation of highly soluble nanocomposites of iron oxides in a dendrimer, which are stable under a wide range of temperatures. The magnetic iron oxide nanoparticles were investigated by MALDI-ToF MS spectrometry and elemental analysis. To establish the type of mesophase, X-ray measurements were performed at different temperatures. The calculations of X-ray results demonstrate a hexagonal columnar packing of the molecules in the mesophase. Observation of the samples by TEM gives information about the size of the compounds as well as direct evidence of the implementation of Fe2O3 nanoparticles into dendrimers. Physical parameters of the magnetic nanoparticles (magnetic moment, effective magnetic anisotropy) have been determined from analyses of the EPR data.
Collapse
Affiliation(s)
- M S Gruzdev
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences Ivanovo 153045 Russian Federation
| | - U V Chervonova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences Ivanovo 153045 Russian Federation
| | - V E Vorobeva
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of Russian Academy of Science Kazan 420029 Russian Federation
- Kazan National Research Technological University Kazan 420015 Russian Federation
| | - A A Ksenofontov
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences Ivanovo 153045 Russian Federation
| | - A M Kolker
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences Ivanovo 153045 Russian Federation
| |
Collapse
|
7
|
Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Tan L, Liu B, Siemensmeyer K, Glebe U, Böker A. Synthesis of thermo-responsive nanocomposites of superparamagnetic cobalt nanoparticles/poly(N-isopropylacrylamide). J Colloid Interface Sci 2018; 526:124-134. [PMID: 29729424 DOI: 10.1016/j.jcis.2018.04.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022]
Abstract
Novel nanocomposites of superparamagnetic cobalt nanoparticles (Co NPs) and poly(N-isopropylacrylamide) (PNIPAM) were fabricated through surface-initiated atom-transfer radical polymerization (SI-ATRP). We firstly synthesized a functional ATRP initiator, containing an amine (as anchoring group) and a 2-bromopropionate group (SI-ATRP initiator). Oleic acid- and trioctylphosphine oxide-coated Co NPs were then modified with the initiator via ligand exchange. The process is facile and rapid for efficient surface functionalization and afterwards the Co NPs can be dispersed into polar solvent DMF without aggregation. Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and dynamic light scattering measurements confirmed the success of ligand exchange. The following polymerization of NIPAM was conducted on the surface of Co NPs. Temperature-dependent dynamic light scattering study showed the responsive behavior of PNIPAM-coated Co NPs. The combination of superparamagnetic and thermo-responsive properties in these hybrid nanoparticles is promising for future applications e.g. in biomedicine.
Collapse
Affiliation(s)
- Li Tan
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany; Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476 Potsdam-Golm, Germany
| | - Bing Liu
- Institute of Chemistry Chinese Academy of Sciences, 100864 Beijing, China
| | | | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany.
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany; Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
9
|
Daneshvar M, Hosseini MR. From the iron boring scraps to superparamagnetic nanoparticles through an aerobic biological route. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:393-400. [PMID: 29913371 DOI: 10.1016/j.jhazmat.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
A straightforward, highly efficient, and low-cost biological route was introduced for the synthesis of magnetic nanoparticles. Three urease-positive bacteria namely, Bacillus subtilis, B. pasteurii, and B. licheniformis were used to biosynthesize ammonia and biosurfactants required for the nanoparticle production. Also, the features of the applied biological approach was compared with a chemical co-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), vibrating-sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FTIR) were applied to characterize the synthesized nanoparticles. Results indicated that the biologically fabricated powders had a single domain structure, and their mean particle size was in the range of 37 to 97 nm. The production capacity of the biological processes was double the chemical method, and the biosynthesized superparamagnetic nanoparticles had higher saturation magnetization up to 132 emu/g. Finally, the removal of Cr(VI) from a synthetic solution was investigated using the four products. The maximum elimination of chromium (over 99%) was achieved by the particles synthesized by B. pasteurii, with the adsorption capacity of 190 mg/g.
Collapse
Affiliation(s)
- Majid Daneshvar
- Department of Mining Engineering, Isfahan University of Technology (IUT), Isfahan 8415683111, Iran
| | - Mohammad Raouf Hosseini
- Department of Mining Engineering, Isfahan University of Technology (IUT), Isfahan 8415683111, Iran.
| |
Collapse
|
10
|
Singh P, Sharma S, Chauhan K, Singhal RK. Fabrication of Economical Thiol-Tethered Bifunctional Iron Composite as Potential Commercial Applicant for Arsenic Sorption Application. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prem Singh
- School of Chemistry, Shoolini University, Solan 173229, India
| | - Sumit Sharma
- School of Chemistry, Shoolini University, Solan 173229, India
| | - Kalpana Chauhan
- School of Chemistry, Shoolini University, Solan 173229, India
| | - Rakesh Kumar Singhal
- Analytical Chemistry Division, Bhabha Atomic Research Center, Mumbai, 4000085, India
| |
Collapse
|
11
|
Keshavarz M, Abdoli-Senejani M, Hojati SF, Askari S. Fe3O4 magnetic nanoparticles coated with a copolymer: a novel reusable catalyst for one-pot three-component synthesis of 2-amino-4H-chromene. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1361-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Thapa B, Diaz-Diestra D, Beltran-Huarac J, Weiner BR, Morell G. Enhanced MRI T 2 Relaxivity in Contrast-Probed Anchor-Free PEGylated Iron Oxide Nanoparticles. NANOSCALE RESEARCH LETTERS 2017; 12:312. [PMID: 28454478 PMCID: PMC5407416 DOI: 10.1186/s11671-017-2084-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/16/2017] [Indexed: 05/19/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs, ~11-nm cores) were PEGylated without anchoring groups and studied as efficient MRI T 2 contrast agents (CAs). The ether group of PEG is efficiently and directly linked to the positively charged surface of SPIONs, and mediated through a dipole-cation covalent interaction. Anchor-free PEG-SPIONs exhibit a spin-spin relaxivity of 123 ± 6 mM-1s-1, which is higher than those of PEG-SPIONs anchored with intermediate biomolecules, iron oxide nanoworms, or Feridex. They do not induce a toxic response for Fe concentrations below 2.5 mM, as tested on four different cell lines with and without an external magnetic field. Magnetic resonance phantom imaging studies show that anchor-free PEG-SPIONs produce a significant contrast in the range of 0.1-0.4 [Fe] mM. Our findings reveal that the PEG molecules attached to the cores immobilize water molecules in large regions of ~85 nm, which would lead to blood half-life of a few tens of minutes. This piece of research represents a step forward in the development of next-generation CAs for nascent-stage cancer detection. Contrast-probed anchor-free PEGylated iron oxide contrast agent.
Collapse
Affiliation(s)
- Bibek Thapa
- Department of Physics, University of Puerto Rico, San Juan, PR 00931 USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926 USA
- Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 USA
| | - Daysi Diaz-Diestra
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926 USA
- Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 USA
- Department of Chemistry, University of Puerto Rico, San Juan, PR 00931 USA
| | - Juan Beltran-Huarac
- Department of Physics, University of Puerto Rico, San Juan, PR 00931 USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926 USA
| | - Brad R. Weiner
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926 USA
- Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 USA
- Department of Chemistry, University of Puerto Rico, San Juan, PR 00931 USA
| | - Gerardo Morell
- Department of Physics, University of Puerto Rico, San Juan, PR 00931 USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926 USA
- Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 USA
| |
Collapse
|
13
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
14
|
Bañobre-López M, Bran C, Rodríguez-Abreu C, Gallo J, Vázquez M, Rivas J. A colloidally stable water dispersion of Ni nanowires as an efficient T2-MRI contrast agent. J Mater Chem B 2017; 5:3338-3347. [DOI: 10.1039/c7tb00574a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A colloidally stable dispersion of anisotropic Ni nanowires in water has been achieved showing good performance as a T2-contrast agent in MRI.
Collapse
Affiliation(s)
- Manuel Bañobre-López
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
| | - Cristina Bran
- Institute of Materials Science of Madrid
- CSIC
- 28049 Madrid
- Spain
| | - Carlos Rodríguez-Abreu
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
- Instituto de Química Avanzada de Cataluña
| | - Juan Gallo
- International Iberian Nanotechnology Laboratory
- Av. Mestre José Veiga s/n
- 4715-330 Braga
- Portugal
| | - Manuel Vázquez
- Institute of Materials Science of Madrid
- CSIC
- 28049 Madrid
- Spain
| | - José Rivas
- Department of Applied Physics
- Technological Research Institute
- Nanotechnology and Magnetism Lab
- Universidade de Santiago de Compostela
- Spain
| |
Collapse
|
15
|
Sun W, Mignani S, Shen M, Shi X. Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications. Drug Discov Today 2016; 21:1873-1885. [DOI: 10.1016/j.drudis.2016.06.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/26/2016] [Accepted: 06/28/2016] [Indexed: 01/10/2023]
|
16
|
Mitcova L, Buffeteau T, Le Bourdon G, Babot O, Vellutini L, Heuzé K. Positive Dendritic Effect on Maleimide Surface Modification of Core-Shell (γ-Fe2O3/Polymer) Nanoparticles for Bio-Immobilization. ChemistrySelect 2016. [DOI: 10.1002/slct.201600764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Liubov Mitcova
- Univ. Bordeaux, ISM UMR 5255; F-33400 Talence
- CNRS, ISM UMR 5255; F-33400 Talence
| | - Thierry Buffeteau
- Univ. Bordeaux, ISM UMR 5255; F-33400 Talence
- CNRS, ISM UMR 5255; F-33400 Talence
| | - Gwénaëlle Le Bourdon
- Univ. Bordeaux, ISM UMR 5255; F-33400 Talence
- CNRS, ISM UMR 5255; F-33400 Talence
| | - Odile Babot
- Univ. Bordeaux, ISM UMR 5255; F-33400 Talence
- CNRS, ISM UMR 5255; F-33400 Talence
| | - Luc Vellutini
- Univ. Bordeaux, ISM UMR 5255; F-33400 Talence
- CNRS, ISM UMR 5255; F-33400 Talence
| | - Karine Heuzé
- Univ. Bordeaux, ISM UMR 5255; F-33400 Talence
- CNRS, ISM UMR 5255; F-33400 Talence
| |
Collapse
|
17
|
Guo X, Wang W, Yang Y, Tian Q. Designing a large scale synthesis strategy for high quality magnetite nanocrystals on the basis of a solution behavior regulated formation mechanism. CrystEngComm 2016. [DOI: 10.1039/c6ce01963c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Li D, Li SJ, Zhang Y, Jiang JJ, Gong WJ, Wang JH, Zhang ZD. Monodisperse water-soluble -Fe2O3/polyvinylpyrrolidone nanoparticles for a magnetic resonance imaging contrast agent. ACTA ACUST UNITED AC 2015. [DOI: 10.1179/1432891715z.0000000001428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- D. Li
- Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - S. J. Li
- Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Y. Zhang
- College of Pharmaceutical EngineeringShenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - J. J. Jiang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - W. J. Gong
- Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - J. H. Wang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Z. D. Zhang
- Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
19
|
Plouffe BD, Murthy SK, Lewis LH. Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:016601. [PMID: 25471081 PMCID: PMC4310825 DOI: 10.1088/0034-4885/78/1/016601] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic sorting using magnetic beads has become a routine methodology for the separation of key cell populations from biological suspensions. Due to the inherent ability of magnets to provide forces at a distance, magnetic cell manipulation is now a standardized process step in numerous processes in tissue engineering, medicine, and in fundamental biological research. Herein we review the current status of magnetic particles to enable isolation and separation of cells, with a strong focus on the fundamental governing physical phenomena, properties and syntheses of magnetic particles and on current applications of magnet-based cell separation in laboratory and clinical settings. We highlight the contribution of cell separation to biomedical research and medicine and detail modern cell-separation methods (both magnetic and non-magnetic). In addition to a review of the current state-of-the-art in magnet-based cell sorting, we discuss current challenges and available opportunities for further research, development and commercialization of magnetic particle-based cell-separation systems.
Collapse
Affiliation(s)
- Brian D Plouffe
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA. The Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | | | | |
Collapse
|
20
|
Miller KP, Wang L, Benicewicz BC, Decho AW. Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev 2015; 44:7787-807. [DOI: 10.1039/c5cs00041f] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotics delivered to bacteria using engineered nanoparticles (NP), offer a powerful and efficient means to kill or control bacteria, especially those already resistant to antibiotics.
Collapse
Affiliation(s)
- Kristen P. Miller
- Department of Environmental Health Sciences
- Arnold School of Public Health
- University of South Carolina
- Columbia
- USA
| | - Lei Wang
- Department of Chemistry and Biochemistry
- College of Arts and Sciences
- University of South Carolina
- Columbia
- USA
| | - Brian C. Benicewicz
- Department of Chemistry and Biochemistry
- College of Arts and Sciences
- University of South Carolina
- Columbia
- USA
| | - Alan W. Decho
- Department of Environmental Health Sciences
- Arnold School of Public Health
- University of South Carolina
- Columbia
- USA
| |
Collapse
|
21
|
Tiwari I, Gupta M, Pandey CM. Application of Cationic Poly(lactic-co-glycolic acid) Iron Oxide/Chitosan-Based Nanocomposite for the Determination of Paraoxon. ChemElectroChem 2014. [DOI: 10.1002/celc.201402255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Zhang H, Zhu C, Chen Y, Gao H. Growth of Fe3O4Nanorod Arrays on Graphene Sheets for Application in Electromagnetic Absorption Fields. Chemphyschem 2014; 15:2261-6. [DOI: 10.1002/cphc.201402088] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Indexed: 11/09/2022]
|
23
|
Li Y, Krentz TM, Wang L, Benicewicz BC, Schadler LS. Ligand engineering of polymer nanocomposites: from the simple to the complex. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6005-6021. [PMID: 24476387 DOI: 10.1021/am405332a] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
One key to optimizing the performance of polymer nanocomposites for high-tech applications is surface ligand engineering of the nanofiller, which has been used to either tune the nanofiller morphology or introduce additional functionalities. Ligand engineering can be relatively simple such as a single population of short molecules on the nanoparticle surface designed for matrix compatibility. It can also have complexity that includes bimodal (or multimodal) populations of ligands that enable relatively independent control of enthalpic and entropic interactions between the nanofiller and matrix as well as introduce additional functionality and dynamic control. In this Spotlight on Applications, we provide a brief review into the use of brush ligands to tune the thermodynamic interactions between nanofiller and matrix and then focus on the potential for surface ligand engineering to create exciting nanocomposites properties for optoelectronic and dielectric applications.
Collapse
Affiliation(s)
- Ying Li
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | | | | | |
Collapse
|
24
|
Tang Z, Zhou Y, Sun H, Li D, Zhou S. Biodegradable magnetic calcium phosphate nanoformulation for cancer therapy. Eur J Pharm Biopharm 2014; 87:90-100. [DOI: 10.1016/j.ejpb.2014.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 12/26/2013] [Accepted: 01/17/2014] [Indexed: 12/01/2022]
|
25
|
Cormode DP, Sanchez-Gaytan BL, Mieszawska AJ, Fayad ZA, Mulder WJM. Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality. NMR IN BIOMEDICINE 2013; 26:766-80. [PMID: 23303729 PMCID: PMC3674179 DOI: 10.1002/nbm.2909] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 10/23/2012] [Accepted: 11/21/2012] [Indexed: 05/18/2023]
Abstract
Inorganic nanocrystals have myriad applications in medicine, including their use as drug or gene delivery complexes, therapeutic hyperthermia agents, in diagnostic systems and as contrast agents in a wide range of medical imaging techniques. In MRI, nanocrystals can produce contrast themselves, with iron oxides having been the most extensively explored, or can be given a coating that generates MR contrast, for example gold nanoparticles coated with gadolinium chelates. These MR-active nanocrystals can be used for imaging of the vasculature, liver and other organs, as well as molecular imaging, cell tracking and theranostics. As a result of these exciting applications, the synthesis and rendering of these nanocrystals as water soluble and biocompatible are therefore highly desirable. We discuss aqueous phase and organic phase methods for the synthesis of inorganic nanocrystals, such as gold, iron oxides and quantum dots. The pros and cons of the various methods are highlighted. We explore various methods for making nanocrystals biocompatible, i.e. direct synthesis of nanocrystals coated with biocompatible coatings, ligand substitution, amphiphile coating and embedding in carrier matrices that can be made biocompatible. Various examples are highlighted and their applications explained. These examples signify that the synthesis of biocompatible nanocrystals with controlled properties has been achieved by numerous research groups and can be applied to a wide range of applications. Therefore, we expect to see reports of preclinical applications of ever more complex MRI-active nanoparticles and their wider exploitation, as well as in novel clinical settings.
Collapse
Affiliation(s)
- David P. Cormode
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1234, New York, NY 10029, Tel. +1-212-241-6549, Fax +1-240-368-8096
- Radiology Department, University of Pennsylvania, 3400 Spruce Street, 1 Silverstein, Philadelphia, PA, 19104
| | - Brenda L. Sanchez-Gaytan
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1234, New York, NY 10029, Tel. +1-212-241-6549, Fax +1-240-368-8096
| | - Aneta J. Mieszawska
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1234, New York, NY 10029, Tel. +1-212-241-6549, Fax +1-240-368-8096
| | - Zahi A. Fayad
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1234, New York, NY 10029, Tel. +1-212-241-6549, Fax +1-240-368-8096
| | - Willem J. M. Mulder
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1234, New York, NY 10029, Tel. +1-212-241-6549, Fax +1-240-368-8096
| |
Collapse
|
26
|
Pandey CM, Sharma A, Sumana G, Tiwari I, Malhotra BD. Cationic poly(lactic-co-glycolic acid) iron oxide microspheres for nucleic acid detection. NANOSCALE 2013; 5:3800-3807. [PMID: 23515585 DOI: 10.1039/c3nr34355c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.64 and charge transfer rate constant (k(s)) of 61.73 s(-1). Under the optimal conditions, this biosensor shows a detection limit of 8.7 × 10(-14) M and is found to retain about 81% of the initial activity after 9 cycles of use.
Collapse
Affiliation(s)
- Chandra Mouli Pandey
- Biomedical Instrumentation Section, National Physical Laboratory (Council of Scientific & Industrial Research), New Delhi-110012, India
| | | | | | | | | |
Collapse
|
27
|
Wang N, Guan Y, Yang L, Jia L, Wei X, Liu H, Guo C. Magnetic nanoparticles (MNPs) covalently coated by PEO–PPO–PEO block copolymer for drug delivery. J Colloid Interface Sci 2013; 395:50-7. [DOI: 10.1016/j.jcis.2012.11.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 02/06/2023]
|
28
|
Saha I, Chaffee KE, Duanmu C, Woods BM, Stokes AM, Buck LE, Walkup LL, Sattenapally N, Huggenvik J, Gao Y, Goodson BM. pH-Sensitive MR Responses Induced by Dendron-Functionalized SPIONs. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2013; 117:1893-1903. [PMID: 23494078 PMCID: PMC3594091 DOI: 10.1021/jp306128v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report a series of investigations of the pH-sensitive magnetic resonance (MR) responses of various surface-functionalized SPIONs (superparamagnetic iron oxide nanoparticles). First, functionalization of ~12 nm highly monocrystalline SPION cores with three different generations of melamine-dendrons was optimized to give agents with high molar relaxivities (e.g. R2m ~300 mM-1·s-1 at 7 T and R1m ~20-30 mM-1·s-1 at 0.5 T) and excellent aqueous stabilities. Molar relaxivities were found to exhibit great sensitivity to pH at physiologically-relevant ionic strengths, with sharp inflections observed at pH values near the pKa of the melamine monomer. The strength of the effect was observed to grow with increasing dendron generation (with concomitant shift in the position of the main pH inflection). Opposing behavior in R2m and R2m * trends may be exploited to provide a ratiometric MR response to pH. Combined with TEM and corresponding MR measurements from solutions of varying ionic strengths, these results are consistent with the pH-sensitive behavior originating from transient, reversible SPION clustering modulated by an interplay between SPION surface charge density and solution ionic strength. Studies of SPION cellular uptake and MR response in HeLa cell cultures are also presented. Finally, comparisons with the MR responses of SPIONs with alternative functionalities-derivatives of nitrilotriacetic acid or poly(1-vinylimidazole)-indicate that these types of pH-sensitive MR responses can be highly dependent upon the chemical composition of the surface species (and thus amenable to modulation through rational design).
Collapse
Affiliation(s)
- Indrajit Saha
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901
| | - Kathleen E. Chaffee
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901
| | - Chuansong Duanmu
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901
| | - Brooke M. Woods
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901
| | | | - Laura E. Buck
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901
| | - Laura L. Walkup
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901
| | - Narsimha Sattenapally
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901
| | - Jodi Huggenvik
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901
| | - Yong Gao
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901
| |
Collapse
|
29
|
Yang HM, Park CW, Bae PK, Ahn T, Seo BK, Chung BH, Kim JD. Folate-conjugated cross-linked magnetic nanoparticles as potential magnetic resonance probes for in vivo cancer imaging. J Mater Chem B 2013; 1:3035-3043. [DOI: 10.1039/c3tb20295j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Yan K, Li P, Zhu H, Zhou Y, Ding J, Shen J, Li Z, Xu Z, Chu PK. Recent advances in multifunctional magnetic nanoparticles and applications to biomedical diagnosis and treatment. RSC Adv 2013. [DOI: 10.1039/c3ra40348c] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
31
|
Nguyen TD. Portraits of colloidal hybrid nanostructures: controlled synthesis and potential applications. Colloids Surf B Biointerfaces 2012; 103:326-44. [PMID: 23247263 DOI: 10.1016/j.colsurfb.2012.10.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/28/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
Abstract
Inorganic hybrid nanostructures containing two or more nanocomponents have been emerging in many areas of materials science in recent years. The particle-particle interactions in a hybrid particle system could significantly improve existing local electronic structure and induce tunable physiochemical responses. The current work reviews the diverse inorganic hybrid nanostructures formed by adhesion of the different single components via seed-mediated method. The hybrid nanomaterials have great potentials for real applications in many other fields. The nanohybrids have been used as efficient heterocatalysts for carbon monoxide conversion and photodegradation of organic contaminants. The enhanced catalytic activity of these hybrid nanocatalysts could be attributed the formation of oxygen vacancies and electron transfer across the structural junction in a hybrid system as a result of the interfacial particle-particle interactions. The synergistic combination of up-converting and semiconducting properties in an up-converting semiconducting hybrid particle results in appearance of sub-band-gap photoconductivity. This behavior has a great significance for the design of photovoltaic devices for effective solar energy conversion. The functionalization and subsequent bioconjugation of the hybrid nanostructures to afford the multifunctional nanomedical platforms for simultaneous diagnosis and therapy are reviewed. The conjugated multifunctional hybrid nanostructures exhibit high biocompatibility and highly selective binding with functional groups-fabricated alive organs through delivering them to the tumor sites. The clever combinations of multifunctional features and antibody conjugation within these vehicles make them to generally offer new opportunities for clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Thanh-Dinh Nguyen
- Department of Chemical Engineering, Laval University, Quebec G1K 7P4, Canada.
| |
Collapse
|
32
|
Zhou Y, Tang Z, Shi C, Shi S, Qian Z, Zhou S. Polyethylenimine functionalized magnetic nanoparticles as a potential non-viral vector for gene delivery. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2697-708. [PMID: 22826003 DOI: 10.1007/s10856-012-4720-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/07/2012] [Indexed: 05/25/2023]
Abstract
Polyethylenimine (PEI) functionalized magnetic nanoparticles were synthesized as a potential non-viral vector for gene delivery. The nanoparticles could provide the magnetic-targeting, and the cationic polymer PEI could condense DNA and avoid in vitro barriers. The magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, dynamic light scattering measurements, transmission electron microscopy, vibrating sample magnetometer and atomic force microscopy. Agarose gel electrophoresis was used to asses DNA binding and perform a DNase I protection assay. The Alamar blue assay was used to evaluate negative effects on the metabolic activity of cells incubated with PEI modified magnetic nanoparticles and their complexes with DNA both in the presence or absence of an external magnetic field. Flow cytometry and fluorescent microscopy were also performed to investigate the transfection efficiency of the DNA-loaded magnetic nanoparticles in A549 and B16-F10 tumor cells with (+M) or without (-M) the magnetic field. The in vitro transfection efficiency of magnetic nanoparticles was improved obviously in a permanent magnetic field. Therefore, the magnetic nanoparticles show considerable potential as nanocarriers for gene delivery.
Collapse
Affiliation(s)
- Yangbo Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Rosario-Amorin D, Gaboyard M, Clérac R, Vellutini L, Nlate S, Heuzé K. Metallodendritic Grafted Core-Shell γ-Fe2O3Nanoparticles Used as Recoverable Catalysts in Suzuki CC Coupling Reactions. Chemistry 2012; 18:3305-15. [DOI: 10.1002/chem.201103147] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Indexed: 12/21/2022]
|
34
|
Wang J, Xia T, Wu C, Feng J, Meng F, Shi Z, Meng J. Self-assembled magnetite peony structures with petal-like nanoslices: one-step synthesis, excellent magnetic and water treatment properties. RSC Adv 2012. [DOI: 10.1039/c2ra01229d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Xia T, Wang J, Wu C, Meng F, Shi Z, Lian J, Feng J, Meng J. Novel complex-coprecipitation route to form high quality triethanolamine-coated Fe3O4 nanocrystals: Their high saturation magnetizations and excellent water treatment properties. CrystEngComm 2012. [DOI: 10.1039/c2ce25813g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Peng E, Ding J, Xue JM. Succinic anhydride functionalized alkenoic ligands: a facile route to synthesize water dispersible nanocrystals. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30942d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Amstad E, Textor M, Reimhult E. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. NANOSCALE 2011; 3:2819-43. [PMID: 21629911 DOI: 10.1039/c1nr10173k] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.
Collapse
Affiliation(s)
- Esther Amstad
- Laboratory for Surface Science and Technology, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
38
|
Bronstein LM, Shifrina ZB. Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chem Rev 2011; 111:5301-44. [PMID: 21718045 DOI: 10.1021/cr2000724] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Chung HJ, Lee H, Bae KH, Lee Y, Park J, Cho SW, Hwang JY, Park H, Langer R, Anderson D, Park TG. Facile synthetic route for surface-functionalized magnetic nanoparticles: cell labeling and magnetic resonance imaging studies. ACS NANO 2011; 5:4329-36. [PMID: 21619063 PMCID: PMC4060805 DOI: 10.1021/nn201198f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Currently available methods to stably disperse iron oxide nanoparticles (IONPs) in aqueous solution need to be improved due to potential aggregation, reduction of superparamagnetism, and the use of toxic reagents. Herein, we present a facile strategy for aqueous transfer and dispersion of organic-synthesized IONPs using only polyethylene glycol (PEG), a biocompatible polymer. A library of PEG derivatives was screened, and it was determined that amine-functionalized six-armed PEG, 6(PEG-NH(2)), was the most effective dispersion agent. The 6(PEG-NH(2))-modified IONPs (IONP-6PEG) were stable after extensive washing, exhibited high superparamagnetism, and could be used as a platform material for secondary surface functionalization with bioactive polymers. IONP-6PEG biofunctionalized with hyaluronic acid (IONP-6PEG-HA) was shown to specifically label mesenchymal stem cells and demonstrate MR contrast potential with high r(2) relaxivity (442.7 s(-1)mM(-1)) compared to the commercially available Feridex (182.1 s(-1)mM(-1)).
Collapse
Affiliation(s)
- Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
- The Graduate School of Nanoscience & Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Ki Hyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Yuhan Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Jongnam Park
- Energy Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea 689-805
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Jin Young Hwang
- Department of Electrical Engineering, KAIST, Daejeon, 305-701, Republic of Korea
| | - Hyunwook Park
- Department of Electrical Engineering, KAIST, Daejeon, 305-701, Republic of Korea
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| | - Tae Gwan Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
- The Graduate School of Nanoscience & Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| |
Collapse
|
40
|
Kueny-Stotz M, Mamlouk-Chaouachi H, Felder-Flesch D. Synthesis of Patent Blue derivatized hydrophilic dendrons dedicated to sentinel node detection in breast cancer. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.03.144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Qu H, Caruntu D, Liu H, O'Connor CJ. Water-dispersible iron oxide magnetic nanoparticles with versatile surface functionalities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2271-8. [PMID: 21284390 DOI: 10.1021/la104471r] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report a simple one-pot strategy to prepare surface-function-alized, water-dispersible iron oxide nanoparticles. Small organic molecules that have desired functional groups such as amines, carboxylics, and thiols are chosen as capping agents and are injected into the reaction medium at the end of the synthesis. A diversity of functionalities are effectively introduced onto the surface of the nanoparticles with a minimal consumption of solvents and chemical resources by simply switching the capping ligand to form the ligand shell. The resulting nanocrystals are quasi-spherical and narrowly size-distributed. Energy-dispersive X-ray analysis and Fourier transform infrared spectroscopy studies suggest a successful surface modification of iron oxide nanoparticles with selected functionalities. The colloidal stabilities are characterized by dynamic light scattering and zeta potential measurements. The results imply that functionalized nanoparticles are very stable and mostly present as individual units in buffer solutions. The pedant functional groups of the capping ligand molecules are very reactive, and their availabilities are investigated by covalently linking fluorescent dyes to the nanoparticles through the cross-linking of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. The quenched quantum yield and shortened lifetime of the dyes strongly indicate a direct bonding between the functional group of the nanoparticles and the fluorescent molecules.
Collapse
Affiliation(s)
- Haiou Qu
- Advanced Materials Research Institute, University of New Orleans , 2000 Lakeshore Drive, New Orleans, Louisiana 70148, United States
| | | | | | | |
Collapse
|
42
|
Cheng D, Hong G, Wang W, Yuan R, Ai H, Shen J, Liang B, Gao J, Shuai X. Nonclustered magnetite nanoparticle encapsulated biodegradable polymeric micelles with enhanced properties for in vivo tumor imaging. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03783d] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Gai S, Yang P, Ma P, Wang D, Li C, Li X, Niu N, Lin J. Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm13357h] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
Huang C, Zhou Y, Jin Y, Zhou X, Tang Z, Guo X, Zhou S. Preparation and characterization of temperature-responsive and magnetic nanomicelles. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04264a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Zhu R, Jiang W, Pu Y, Luo K, Wu Y, He B, Gu Z. Functionalization of magnetic nanoparticles with peptide dendrimers. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02752a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Rosario-Amorin D, Gaboyard M, Clérac R, Nlate S, Heuzé K. Enhanced catalyst recovery in an aqueous copper-free Sonogashira cross-coupling reaction. Dalton Trans 2011; 40:44-6. [DOI: 10.1039/c0dt01204a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Hatakeyama M, Kishi H, Kita Y, Imai K, Nishio K, Karasawa S, Masaike Y, Sakamoto S, Sandhu A, Tanimoto A, Gomi T, Kohda E, Abe M, Handa H. A two-step ligand exchange reaction generates highly water-dispersed magnetic nanoparticles for biomedical applications. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04381h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Kwon T, Min M, Lee H, Kim BJ. Facile preparation of water soluble CuPt nanorods with controlled aspect ratio and study on their catalytic properties in water. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11318f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Gao G, Huang P, Zhang Y, Wang K, Qin W, Cui D. Gram scale synthesis of superparamagnetic Fe3O4nanoparticles and fluid via a facile solvothermal route. CrystEngComm 2011. [DOI: 10.1039/c0ce00584c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
|