1
|
Ibrayev NK, Valiev RR, Seliverstova EV, Menshova EP, Nasibullin RT, Sundholm D. Molecular phosphorescence enhancement by the plasmon field of metal nanoparticles. Phys Chem Chem Phys 2024; 26:14624-14636. [PMID: 38739453 DOI: 10.1039/d4cp01281j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A theoretical model is proposed that allows the estimation of the quantum yield of phosphorescence of dye molecules in the vicinity of plasmonic nanoparticles. For this purpose, the rate constants of the radiative and nonradiative intramolecular transitions for rhodamine 123 (Rh123) and brominated rhodamine (Rh123-2Br) dyes have been calculated. The plasmon effect of Ag nanoparticles on various types of luminescence processes has been studied both theoretically and experimentally. We show that in the presence of a plasmonic nanoparticle, the efficiency of the immediate and delayed fluorescence increases significantly. The phosphorescence rate of the rhodamine dyes also increases near plasmonic nanoparticles. The long-lived luminescence i.e., delayed fluorescence and phosphorescence is more enhanced for Rh123-2Br than for Rh123. The largest phosphorescence quantum yield is obtained when the dye molecule is at a distance of 4-6 nm from the nanoparticle surface. Our results can be used in the design of plasmon-enhancing nanostructures for light-emitting media, organic light-emitting diodes, photovoltaic devices, and catalysts for activation of molecular oxygen.
Collapse
Affiliation(s)
- Niyazbek Kh Ibrayev
- Institute of Molecular Nanophotonics, Buketov Karaganda University, 100024 Karaganda, Kazakhstan.
| | - Rashid R Valiev
- Institute of Molecular Nanophotonics, Buketov Karaganda University, 100024 Karaganda, Kazakhstan.
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Evgeniya V Seliverstova
- Institute of Molecular Nanophotonics, Buketov Karaganda University, 100024 Karaganda, Kazakhstan.
| | - Evgeniya P Menshova
- Institute of Molecular Nanophotonics, Buketov Karaganda University, 100024 Karaganda, Kazakhstan.
| | - Rinat T Nasibullin
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Dage Sundholm
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
2
|
Chiu SW, Hsu A, Ying L, Liaw YK, Lin KT, Ruan J, Samuel IDW, Hsu BBY. Achieving Bright Organic Light-Emitting Field-Effect Transistors with Sustained Efficiency through Hybrid Contact Design. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37310808 DOI: 10.1021/acsami.3c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic light-emitting field-effect transistors (OLEFETs) with bilayer structures have been widely studied due to their potential to integrate high-mobility organic transistors and efficient organic light-emitting diodes. However, these devices face a major challenge of imbalance charge transport, leading to a severe efficiency roll-off at high brightness. Here, we propose a solution to this challenge by introducing a transparent organic/inorganic hybrid contact with specially designed electronic structures. Our design aims to steadily accumulate the electrons injected into the emissive polymer, allowing the light-emitting interface to effectively capture more holes even when the hole current increases. Our numerical simulations show that the capture efficiency of these steady electrons will dominate charge recombination and lead to a sustained external quantum efficiency of 0.23% over 3 orders of magnitude of brightness (4 to 7700 cd/m2) and current density (1.2 to 2700 mA/cm2) from -4 to -100 V. The same enhancement is retained even after increasing the external quantum efficiency (EQE) to 0.51%. The high and tunable brightness with stable efficiency offered by hybrid-contact OLEFETs makes them ideal light-emitting devices for various applications. These devices have the potential to revolutionize the field of organic electronics by overcoming the fundamental challenge of imbalance charge transport.
Collapse
Affiliation(s)
- Shih-Wei Chiu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - An Hsu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yong-Kang Liaw
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kun-Ta Lin
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jrjeng Ruan
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - Ben B Y Hsu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
3
|
Zhao C, Chen H, Ali MU, Yan C, Liu Z, He Y, Meng H. Improving the Performance of Red Organic Light-Emitting Transistors by Utilizing a High- k Organic/Inorganic Bilayer Dielectric. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36902-36909. [PMID: 35930678 DOI: 10.1021/acsami.2c07216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Integration of electrical switching and light emission in a single unit makes organic light-emitting transistors (OLETs) highly promising multifunctional devices for next-generation active-matrix flat-panel displays and related applications. Here, high-performance red OLETs are fabricated in a multilayer configuration that incorporates a zirconia (ZrOx)/cross-linked poly(vinyl alcohol) (C-PVA) bilayer as a dielectric. The developed organic/inorganic bilayer dielectric renders high dielectric constant as well as improved dielectric/semiconductor interface quality, contributing to enhanced carrier mobility and high current density. In addition, an efficient red phosphorescent organic emitter doped in a bihost system is employed as the emitting layer for an effective exciton formation and light generation. Consequently, our optimized red OLETs displayed a high brightness of 16 470 cd m-2 and a peak external quantum efficiency of 11.9% under a low gate and source-drain voltage of -24 V. To further boost the device performance, an electron-blocking layer is introduced for ameliorated charge-carrier balance and hence suppressed exciton-charge quenching, which resulted in an improved maximum brightness of 20 030 cd m-2. We anticipate that the new device optimization approaches proposed in this work would spur further development of efficient OLETs with high brightness and curtailed efficiency roll-off.
Collapse
Affiliation(s)
- Changbin Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Hongming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Muhammad Umair Ali
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chaoyi Yan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Zhenguo Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yaowu He
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| |
Collapse
|
4
|
Gao C, Wong WWH, Qin Z, Lo SC, Namdas EB, Dong H, Hu W. Application of Triplet-Triplet Annihilation Upconversion in Organic Optoelectronic Devices: Advances and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100704. [PMID: 34596295 DOI: 10.1002/adma.202100704] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Organic semiconductor materials have been widely used in various optoelectronic devices due to their rich optical and/or electrical properties, which are highly related to their excited states. Therefore, how to manage and utilize the excited states in organic semiconductors is essential for the realization of high-performance optoelectronic devices. Triplet-triplet annihilation (TTA) upconversion is a unique process of converting two non-emissive triplet excitons to one singlet exciton with higher energy. Efficient optical-to-electrical devices can be realized by harvesting sub-bandgap photons through TTA-based upconversion. In electrical-to-optical devices, triplets generated after the combination of electrons and holes also can be efficiently utilized via TTA, which resulted in a high internal conversion efficiency of 62.5%. Currently, many interesting explorations and significant advances have been demonstrated in these fields. In this review, a comprehensive summary of these intriguing advances on developing efficient TTA upconversion materials and their application in optoelectronic devices is systematically given along with some discussions. Finally, the key challenges and perspectives of TTA upconversion systems for further improvement for optoelectronic devices and other related research directions are provided. This review hopes to provide valuable guidelines for future related research and advancement in organic optoelectronics.
Collapse
Affiliation(s)
- Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wallace W H Wong
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shih-Chun Lo
- Centre for Organic Photonics and Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ebinazar B Namdas
- Centre for Organic Photonics & Electronics, School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Qin Z, Gao H, Dong H, Hu W. Organic Light-Emitting Transistors Entering a New Development Stage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007149. [PMID: 34021637 DOI: 10.1002/adma.202007149] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/03/2021] [Indexed: 05/25/2023]
Abstract
Organic light-emitting transistors (OLETs) are possibly the smallest integrated optoelectronic devices that combine the switching and amplification mechanisms of organic field-effect transistors (OFETs) and the electroluminescent characteristic of organic light-emitting diodes (OLEDs). Such a unique architecture of OLETs makes them ideal for developing the next-generation display technology and electrically pumped lasers for miniaturized photonic devices and circuits. However, the development of OLETs has been slow. Recently, some exciting progress has been made with breakthroughs in high mobility emissive organic semiconductors, construction of high-performance OLETs, and fabrication of novel multifunctional OLETs. This recent slew of advances may represent the advent of a new development stage of OLETs and their related devices and circuits. In this paper, a detailed review of these fantastic advances is presented, with a special focus on the key points for developing high-performance OLETs. Finally, a brief conclusion is provided with a discussion on the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haikuo Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
6
|
Chen H, Huang W, Marks TJ, Facchetti A, Meng H. Recent Advances in Multi-Layer Light-Emitting Heterostructure Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007661. [PMID: 33660408 DOI: 10.1002/smll.202007661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Light-emitting transistors (LETs) have attracted tremendous academic and industrial interest due to their dual functions of electrical switching and light emission in a single device, which can considerably reduce system complexity and manufacturing costs, especially in the area of flat panel and flexible displays as well as lighting and lasers. In recent years, enhanced LET performance has been achieved by introducing multiple-layer heterostructures in the charge-carrying/light-emitting LET channel versus the best-reported performance in single active layer LETs, rendering multi-layer LETs promising candidates for next-generation display technologies. In this review, the fundamental structures and working principles of multi-layer heterostructure LETs are introduced. Next, developments in multi-layer LETs are discussed based on co-planar LETs, non-planar LETs, and vertical LETs including organic, quantum dot, and perovskite light emitters. Finally, this review concludes with a summary and a perspective on the future of this research field.
Collapse
Affiliation(s)
- Hongming Chen
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen, 518055, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, IL, 60077, USA
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen, 518055, P. R. China
- School of Electronics and Information, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
7
|
Lee S, Lee HJ, Ji Y, Lee KH, Hong K. Electrochemiluminescent Transistors: A New Strategy toward Light-Emitting Switching Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005456. [PMID: 33345385 DOI: 10.1002/adma.202005456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Light-emitting transistors (LETs) have attracted a significant amount of interest as multifunctional building blocks for next-generation electronics and optoelectronic devices. However, it is challenging to obtain LETs with a high carrier mobility and uniform light-emission because the semiconductor channel should provide both the electrical charge transport and optical light-emission, and typical emissive semiconductors have low, imbalanced carrier mobilities. In this work, a novel device platform that adapts the electrochemiluminescence (ECL) principle in LETs, referred to as an ECL transistor (ECLT) is proposed. ECL is a light-emission phenomenon from electrochemically excited luminophores generated by redox reactions. A solid-state ECL electrolyte consisting of a network-forming polymer, ionic liquid, luminophore, and co-reactant is employed as the light-emitting gate insulator of the ECLT. Based on this construction, high-performance LETs that make use of various conventional non-emissive semiconductors (e.g., poly(3-hexylthiophene), zinc oxide, and reduced graphene oxide) are successfully demonstrated. All the devices exhibit a high mobility (0.9-10 cm2 V-1 s-1 ) and a uniform light-emission. This innovative approach demonstrates a novel LET platform and provides a promising pathway to achieve significant breakthroughs to develop electronic circuits and optoelectronic applications.
Collapse
Affiliation(s)
- Seonjeong Lee
- Department of Materials Science and Engineering, Chungnam National University (CNU), Daejeon, 34134, Republic of Korea
| | - Han Ju Lee
- Department of Materials Science and Engineering, Chungnam National University (CNU), Daejeon, 34134, Republic of Korea
| | - Yena Ji
- Department of Materials Science and Engineering, Chungnam National University (CNU), Daejeon, 34134, Republic of Korea
| | - Keun Hyung Lee
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 22212, Republic of Korea
| | - Kihyon Hong
- Department of Materials Science and Engineering, Chungnam National University (CNU), Daejeon, 34134, Republic of Korea
| |
Collapse
|
8
|
Chen H, Shi M, Liu M, Xing X, Zhao C, Miao J, Ali MU, Facchetti A, Meng H. Host-Free Deep-Blue Organic Light-Emitting Transistors Based on a Novel Fluorescent Emitter. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40558-40565. [PMID: 32815711 DOI: 10.1021/acsami.0c08721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic light-emitting transistors (OLETs), with the capability of simultaneously functioning as a light-emitting stack and a thin-film transistor, have received considerable attention for potential applications in active-matrix flat-panel displays. Here, we demonstrate host-free deep-blue OLETs based on a novel small-molecule fluorescent emitter, 10,10'-bis(4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl)-10H,10'H-9,9'-spirobi[acridine] (SPA-PBI), and a high-k dielectric, cross-linked poly(vinyl alcohol) (PVA) polymer. The deep-blue OLETs based on 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) as an electron-transport layer showed an extraordinarily high hole mobility of 4.6 cm2 V-1 s-1, a brightness of 570 cd m-2 under a low gate and source-drain voltages of -24 V, and an external quantum efficiency (EQE) of 0.87% at 100 cd m-2. Besides, an electroluminescence peak was observed to be at 432 nm and the corresponding CIE coordinates were as deep as (0.16, 0.08). By replacing TPBi with TmPyPB as the electron-transport layer (ETL), the electron transport and hole blocking capability were greatly improved, which led to ∼60% enhancement of the EQE (1.39% at 100 cd m-2). These results suggest that using a highly twisted double-donor-acceptor emitter with rationally optimized charge injection could lead to highly efficient deep-blue OLETs.
Collapse
Affiliation(s)
- Hongming Chen
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Ming Shi
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Ming Liu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Xing Xing
- Research & Development Institute of Northwest Polytechnical University (Shenzhen), Northwestern Polytechnical University, Shenzhen 518057, P. R. China
| | - Changbin Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Jingsheng Miao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Muhammad Umair Ali
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| |
Collapse
|
9
|
Liu CF, Liu X, Lai WY, Huang W. Organic Light-Emitting Field-Effect Transistors: Device Geometries and Fabrication Techniques. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802466. [PMID: 30101548 DOI: 10.1002/adma.201802466] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Organic light-emitting transistors (OLETs), as novel and attractive kinds of organic electronic devices, have gained extensive attention from both academia and industry. The unique device architectures can simultaneously combine the electrical switching functionality of organic field-effect transistors and the light generation capability of organic light-emitting diodes in a single device, thereby holding great promise for reducing the complicated processes of next-generation pixel circuitry. This review involves the design, fabrication, and applications of OLETs with a comprehensive coverage of this field with the aim to give a deep insight into the intrinsic mechanisms of devices. Challenges and future prospects of OLETs are also discussed.
Collapse
Affiliation(s)
- Cheng-Fang Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xu Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127, West Youyi Road, Xi'an, 710072, Shaanxi, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127, West Youyi Road, Xi'an, 710072, Shaanxi, China
| |
Collapse
|
10
|
Liu X, Kuang W, Ni H, Tao Z, Chang J, Liu Q, Ge J, Li C, Dai Q. High Efficiency Light-Emitting Transistor with Vertical Metal-Oxide Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800265. [PMID: 29700980 DOI: 10.1002/smll.201800265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/16/2018] [Indexed: 06/08/2023]
Abstract
The monolithic integration of light-emission with a standard logic transistor is a much-desired multifunctionality. Here, a high-efficiency light-emitting transistor (LET) employing an inorganic quantum dots (QDs) emitter and a laser-annealed vertical metal-oxide heterostructure is reported. The experimental results show that the peak efficiency and luminance of this QDs LET (QLET) are 11% and 8000 cdm-2 , respectively at a monochromatic emitting light wavelength of 585 nm. As far as it is known, these are among the highest values ever achieved for LETs. More importantly, the QLET exhibits an ultrahigh electron mobility of up to 25 cm2 V-1 S-1 , a lower efficiency roll-off (7% at high 3000 cdm-2 ), and excellent stability with long-duration gate stress switching cycles. Additionally, this approach is compatible with those used in conventional large-area silicon electronic manufacturing and can enable a scalable and cost-effective procedure for future integrated versatile displays and lighting applications.
Collapse
Affiliation(s)
- Xiang Liu
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 10010, China
- School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, 210096, China
| | - Wenjian Kuang
- School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, 210096, China
| | - Haibin Ni
- School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, 210096, China
| | - Zhi Tao
- School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, 210096, China
| | - Jianhua Chang
- School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, 210096, China
| | - Qinquan Liu
- School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, 210096, China
| | - Junxiang Ge
- School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, 210096, China
| | - Chi Li
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 10010, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Dai
- Division of Nanophotonics, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 10010, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Song L, Hu Y, Liu Z, Lv Y, Guo X, Liu X. Harvesting Triplet Excitons with Exciplex Thermally Activated Delayed Fluorescence Emitters toward High Performance Heterostructured Organic Light-Emitting Field Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2711-2719. [PMID: 28029040 DOI: 10.1021/acsami.6b13405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The utilization of triplet excitons plays a key role in obtaining high emission efficiency for organic electroluminescent devices. However, to date, only phosphorescent materials have been implemented to harvest the triplet excitons in the organic light-emitting field effect transistors (OLEFETs). In this work, we report the first incorporation of exciplex thermally activated delayed fluorescence (TADF) emitters in heterostructured OLEFETs to harvest the triplet excitons. By developing a new kind of exciplex TADF emitter constituted by m-MTDATA (4,4',4″-tris(N-3-methylphenyl-N-phenylamino)triphenylamine) as the donor and OXD-7 (1,3-bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene) as the acceptor, an exciton utilization efficiency of 74.3% for the devices was achieved. It is found that the injection barrier between hole transport layer and emission layer as well as the ratio between donor and acceptor would influence the external quantum efficiency (EQE) significantly. Devices with a maximum EQE of 3.76% which is far exceeding the reported results for devices with conventional fluorescent emitters were successfully demonstrated. Moreover, the EQE at high brightness even outperformed the result for organic light-emitting diode based on the same emitter. Our results demonstrate that the exciplex TADF emitters can be promising candidates to develop OLEFETs with high performance.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yongsheng Hu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
| | - Zheqin Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
| | - Ying Lv
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
| | - Xiaoyang Guo
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
| | - Xingyuan Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
| |
Collapse
|
12
|
Song L, Hu Y, Zhang N, Li Y, Lin J, Liu X. Improved Performance of Organic Light-Emitting Field-Effect Transistors by Interfacial Modification of Hole-Transport Layer/Emission Layer: Incorporating Organic Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14063-14070. [PMID: 27215694 DOI: 10.1021/acsami.6b02618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Organic heterojunctions (OHJs) consisting of a strong electron acceptor 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN) and an electron donor N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) were demonstrated for the first time that they can be implemented as effective modification layers between hole transport layer (HTL) and emission layer in the heterostructured organic light-emitting field effect transistors (OLEFETs). The influence of both HAT-CN/NPB junction (npJ) and NPB/HAT-CN junction (pnJ) on the optoelectronic performance of OLEFETs were conscientiously investigated. It is found that both the transport ability of holes and the injection ability of holes into emissive layer can be dramatically improved via the charge transfer of the OHJs and that between HAT-CN and the HTL. Consequently, OLEFETs with pnJ present optimal performance of an external quantum efficiency (EQE) of 3.3% at brightness of 2630 cdm(-2) and the ones with npJs show an EQE of 4.7% at brightness of 4620 cdm(-2). By further utilizing npn OHJs of HAT-CN/NPB/HAT-CN, superior optoelectronic performance with an EQE of 4.7% at brightness of 8350 cdm(-2) and on/off ratio of 1 × 10(5) is obtained. The results demonstrate the great practicality of implementing OHJs as effective modification layers in heterostructured OLEFETs.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yongsheng Hu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
| | - Nan Zhang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
| | - Yantao Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
| | - Jie Lin
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
| | - Xingyuan Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130033, China
| |
Collapse
|
13
|
Vertical Microcavity Organic Light-emitting Field-effect Transistors. Sci Rep 2016; 6:23210. [PMID: 26986944 PMCID: PMC4794712 DOI: 10.1038/srep23210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/02/2016] [Indexed: 11/08/2022] Open
Abstract
Organic light-emitting field-effect transistors (OLEFETs) are regarded as a novel kind of device architecture for fulfilling electrical-pumped organic lasers. However, the realization of OLEFETs with high external quantum efficiency (EQE) and high brightness simultaneously is still a tough task. Moreover, the design of the resonator structure in LED is far from satisfactory. Here, OLEFETs with EQE of 1.5% at the brightness of 2600 cdm(-2), and the corresponding ON/OFF ratio and current efficiency reaches above 10(4) and 3.1 cdA(-1), respectively, were achieved by introducing 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (HAT-CN) as a charge generation layer. Moreover, a vertical microcavity based on distributed Bragg reflector (DBR) and Ag source/drain electrodes is successfully introduced into the high performance OLEFETs, which results in electroluminescent spectrum linewidth narrowing from 96 nm to 6.9 nm. The results manifest the superiority of the vertical microcavity as an optical resonator in OLEFETs, which sheds some light on achieving the electrically pumped organic lasers.
Collapse
|
14
|
Zhang C, Chen P, Hu W. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1252-1294. [PMID: 26833896 DOI: 10.1002/smll.201502546] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/24/2015] [Indexed: 06/05/2023]
Abstract
Organic light-emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field-effect transistors (OFETs) and the light-generation capability of organic light-emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state-of-the-art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source-drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs.
Collapse
Affiliation(s)
- Congcong Zhang
- Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Penglei Chen
- Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
15
|
Ribierre JC, Ruseckas A, Staton SV, Knights K, Cumpstey N, Burn PL, Samuel IDW. Phosphorescence quenching of fac-tris(2-phenylpyridyl)iridium(iii) complexes in thin films on dielectric surfaces. Phys Chem Chem Phys 2016; 18:3575-80. [PMID: 26750542 DOI: 10.1039/c5cp06584d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the influence of the film thickness on the time-resolved phosphorescence and the luminescence quantum yield of fac-tris(2-phenylpyridyl)iridium(iii) [Ir(ppy)3]-cored dendrimers deposited on dielectric substrates. A correlation is observed between the surface quenching velocity and the quenching rate by intermolecular interactions in the bulk film, which suggests that both processes are controlled by dipole-dipole interactions between Ir(ppy)3 complexes at the core of the dendrimers. It is also found that the surface quenching velocity decreases as the refractive index of the substrate is increased. This can be explained by partial screening of dipole-dipole interactions by the dielectric environment.
Collapse
Affiliation(s)
- J C Ribierre
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Muhieddine K, Ullah M, Pal BN, Burn P, Namdas EB. All solution-processed, hybrid light emitting field-effect transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6410-6415. [PMID: 24899533 DOI: 10.1002/adma.201400938] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/08/2014] [Indexed: 06/03/2023]
Abstract
All solution-processed, high performance hybrid light emitting transistors (HLETs) are realized. Using a novel combination of device architecture and materials a bilayer device comprised of an inorganic and organic semiconducting layer is fabricated and the optoelectronic properties are presented.
Collapse
Affiliation(s)
- Khalid Muhieddine
- The Centre for Organic Photonics & Electronics, School of Mathematics and Physics and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia, 4072
| | | | | | | | | |
Collapse
|
17
|
Bisri SZ, Piliego C, Gao J, Loi MA. Outlook and emerging semiconducting materials for ambipolar transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1176-99. [PMID: 24591008 DOI: 10.1002/adma.201304280] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 05/12/2023]
Abstract
Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great interest in exotic semiconductors, such as organic semiconductors, nanostructured materials, and carbon nanotubes. The ability to utilize both holes and electrons inside one device opens new possibilities for the development of more compact complementary metal-oxide semiconductor (CMOS) circuits, and new kinds of optoelectronic device, namely, ambipolar light-emitting transistors. This progress report highlights the recent progresses in the field of ambipolar transistors, both from the fundamental physics and application viewpoints. Attention is devoted to the challenges that should be faced for the realization of ambipolar transistors with different material systems, beginning with the understanding of the importance of interface modification, which heavily affects injections and trapping of both holes and electrons. The recent development of advanced gating applications, including ionic liquid gating, that open up more possibility to realize ambipolar transport in materials in which one type of charge carrier is highly dominant is highlighted. Between the possible applications of ambipolar field-effect transistors, we focus on ambipolar light-emitting transistors. We put this new device in the framework of its prospective for general lightings, embedded displays, current-driven laser, as well as for photonics-electronics interconnection.
Collapse
Affiliation(s)
- Satria Zulkarnaen Bisri
- Photophysics and Optoelectronics Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | | | | | | |
Collapse
|
18
|
Ullah M, Tandy K, Yambem SD, Aljada M, Burn PL, Meredith P, Namdas EB. Simultaneous enhancement of brightness, efficiency, and switching in RGB organic light emitting transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:6213-6218. [PMID: 23963863 DOI: 10.1002/adma.201302649] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/18/2013] [Indexed: 06/02/2023]
Abstract
An innovative design strategy for light emitting field effect transistors (LEFETs) to harvest higher luminance and switching is presented. The strategy uses a non-planar electrode geometry in tri-layer LEFETs for simultaneous enhancement of the key parameters of quantum efficiency, brightness, switching, and mobility across the RGB color gamut.
Collapse
Affiliation(s)
- Mujeeb Ullah
- The Centre for Organic Photonics & Electronics, School of Mathematics and Physics and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia, 4072
| | | | | | | | | | | | | |
Collapse
|
19
|
Namdas EB, Hsu BBY, Yuen JD, Samuel IDW, Heeger AJ. Optoelectronic gate dielectrics for high brightness and high-efficiency light-emitting transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:2353-2356. [PMID: 21520299 DOI: 10.1002/adma.201004102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 02/01/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Ebinazar B Namdas
- Center for Polymers and Organic Solids, University of California-Santa Barbara, CA 93106, USA.
| | | | | | | | | |
Collapse
|
20
|
|