1
|
Zhang Q, Li H, Kang Y, Cui Q, Zhang H, Li L. Tunable Fluorescence, Morphology, and Antibacterial Behaviors of Conjugated Oligomers via Host-Guest Supramolecular Self-Assembly. ACS APPLIED BIO MATERIALS 2024; 7:2533-2543. [PMID: 38526040 DOI: 10.1021/acsabm.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Host-guest supramolecular self-assembly has become one facile but efficient way to regulate the optical properties of conjugated oligomers and construct promising photofunctional materials. Herein, we design two linear conjugated oligomers terminated with two or four pyridinium moieties, which show different 1:1 'head-to-tail' binding patterns with cucurbit[8]uril (CB[8]) to form host-guest supramolecules. After being encapsulated in the hydrophobic cavity of the CB[8] host, the fluorescence emission of the conjugated oligomers undergoes significant changes, resulting in tunable fluorescence color with enhanced quantum yields. Triggered by the aggregation of supramolecules, the regular or rigid binding modes lead to the formation of cuboids and spheroids in nanoscale, respectively. Due to the macrocyclic-confinement effect, the light-driven reactive oxygen species (ROS) production of the host-guest complex is increased significantly, thereby improving the photodynamic antibacterial performance toward Staphylococcus aureus (S. aureus).
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Hui Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yuetong Kang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Qianling Cui
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Hean Zhang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lidong Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
2
|
Uddin MM, Kabir MH, Ali MA, Hossain MM, Khandaker MU, Mandal S, Arifutzzaman A, Jana D. Graphene-like emerging 2D materials: recent progress, challenges and future outlook. RSC Adv 2023; 13:33336-33375. [PMID: 37964903 PMCID: PMC10641765 DOI: 10.1039/d3ra04456d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
Owing to the unique physical and chemical properties of 2D materials and the great success of graphene in various applications, the scientific community has been influenced to explore a new class of graphene-like 2D materials for next-generation technological applications. Consequently, many alternative layered and non-layered 2D materials, including h-BN, TMDs, and MXenes, have been synthesized recently for applications related to the 4th industrial revolution. In this review, recent progress in state-of-the-art research on 2D materials, including their synthesis routes, characterization and application-oriented properties, has been highlighted. The evolving applications of 2D materials in the areas of electronics, optoelectronics, spintronic devices, sensors, high-performance and transparent electrodes, energy conversion and storage, electromagnetic interference shielding, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nanocomposites are discussed. In particular, the state-of-the-art applications, challenges, and outlook of every class of 2D material are also presented as concluding remarks to guide this fast-progressing class of 2D materials beyond graphene for scientific research into next-generation materials.
Collapse
Affiliation(s)
- Md Mohi Uddin
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Mohammad Humaun Kabir
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Md Ashraf Ali
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Md Mukter Hossain
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Mayeen Uddin Khandaker
- Faculty of Graduate Studies, Daffodil International University Daffodil Smart City, Birulia, Savar Dhaka 1216 Bangladesh
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
| | - Sumit Mandal
- Vidyasagar College 39, Sankar Ghosh Lane Kolkata 700006 West Bengal India
| | - A Arifutzzaman
- Tyndall National Institute, University College Cork Lee Maltings Cork T12 R5CP Ireland
| | - Debnarayan Jana
- Department of Physics, University of Calcutta 92 A P C Road Kolkata 700009 West Bengal India
| |
Collapse
|
3
|
Zheng Q, Duan Z, Zhang Y, Huang X, Xiong X, Zhang A, Chang K, Li Q. Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy. Molecules 2023; 28:5091. [PMID: 37446753 DOI: 10.3390/molecules28135091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Conjugated polymers (CPs) have attracted much attention in the fields of chemistry, medicine, life science, and material science. Researchers have carried out a series of innovative researches and have made significant research progress regarding the unique photochemical and photophysical properties of CPs, expanding the application range of polymers. CPs are polymers formed by the conjugation of multiple repeating light-emitting units. Through precise control of their structure, functional molecules with different properties can be obtained. Fluorescence probes with different absorption and emission wavelengths can be obtained by changing the main chain structure. By modifying the side chain structure with water-soluble groups or selective recognition molecules, electrostatic interaction or specific binding with specific targets can be achieved; subsequently, the purpose of selective recognition can be achieved. This article reviews the research work of CPs in cell imaging, tumor diagnosis, and treatment in recent years, summarizes the latest progress in the application of CPs in imaging, tumor diagnosis, and treatment, and discusses the future development direction of CPs in cell imaging, tumor diagnosis, and treatment.
Collapse
Affiliation(s)
- Qinbin Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhuli Duan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ang Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| | - Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| |
Collapse
|
4
|
Ramos-Soriano J, Ghirardello M, Galan MC. Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chem Soc Rev 2022; 51:9960-9985. [PMID: 36416290 PMCID: PMC9743786 DOI: 10.1039/d2cs00741j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Cell surface carbohydrates mediate a wide range of carbohydrate-protein interactions key to healthy and disease mechanisms. Many of such interactions are multivalent in nature and in order to study these processes at a molecular level, many glycan-presenting platforms have been developed over the years. Among those, carbon nanoforms such as graphene and their derivatives, carbon nanotubes, carbon dots and fullerenes, have become very attractive as biocompatible platforms that can mimic the multivalent presentation of biologically relevant glycosides. The most recent examples of carbon-based nanoplatforms and their applications developed over the last few years to study carbohydrate-mediate interactions in the context of cancer, bacterial and viral infections, among others, are highlighted in this review.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Departamento de Química, Universidad de La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
5
|
Conjugated polymer materials for detection and discrimination of pathogenic microorganisms: Guarantee of biosafety. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Yang Y, Zhai H, Yuan J, Wang K, Zhang H. Recent Advances in Fluorescent Probes for Flavinase Activity: Design and Applications. Chem Asian J 2022; 17:e202200043. [PMID: 35174973 DOI: 10.1002/asia.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Indexed: 11/11/2022]
Abstract
Flavinases, including monoamine oxidase (MAO-A/MAO-B), quinone oxidoreductase (NQO1), thioredoxin reductase (TrxR), nitroreductase (NTR) and so on, are important redox enzymes in organisms. They are considered as biomarkers of cell energy metabolism and cell vitality. Importantly, their aberrant expression is related to various disease processes. Therefore, the accurate measurement of flavinase is useful for the early diagnosis of diseases, which has aroused great concern in the scientific community. Various methods are also available for the detection of flavinases, fluorescence probes are considered to be one of the best detection methods due to their easy and accurate sensing capability. This review aims to introduce the advances in the design and application of flavinase probes in the last five years. This study focuses on analyzing the design strategies and reaction mechanisms of flavinases fluorescent probes and discusses the current challenges, which will further advance the development of diagnostic and therapeutic approaches for flavinase-related diseases.
Collapse
Affiliation(s)
- Yiting Yang
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Hongchen Zhai
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chenistry and chemical Engineering, CHINA
| | - Jie Yuan
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Kui Wang
- Henan Normal University School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, CHINA
| | - Hua Zhang
- Henan Normal University, School of Chemistry and Chemical Engineering, 46 Jianshe Road, Muye Zone,, 453007, Xinxiang, CHINA
| |
Collapse
|
7
|
Yim Y, Shin H, Ahn SM, Min DH. Graphene oxide-based fluorescent biosensors and their biomedical applications in diagnosis and drug discovery. Chem Commun (Camb) 2021; 57:9820-9833. [PMID: 34494621 DOI: 10.1039/d1cc02157e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Graphene oxide (GO), an oxidized derivative of graphene, has received much attention for developing novel fluorescent bioanalytic platforms due to its remarkable optical properties and biocompatibility. The reliable performance and robustness of GO-based biosensors have enabled various applications in the biomedical field including diagnosis and drug discovery. Here, recent advances in the development of GO-based fluorescent biosensors are overviewed, particularly nucleic acid detection and enzyme activity assay. In addition, practical applications in biomarker detection and high-throughput screening are also examined. Lastly, basic design principles and remaining challenges of these types of biosensors are discussed for further progress.
Collapse
Affiliation(s)
- Yeajee Yim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hojeong Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seong Min Ahn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea. .,Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 06683, Republic of Korea
| |
Collapse
|
8
|
Liu L, Wang X, Zhu S, Li L. Different Surface Interactions between Fluorescent Conjugated Polymers and Biological Targets. ACS APPLIED BIO MATERIALS 2021; 4:1211-1220. [PMID: 35014474 DOI: 10.1021/acsabm.0c01567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorescent conjugated polymers (CPs) have attracted considerable interest in biosensing owing to their high fluorescence, tunable bandgap, and good biocompatibility. Aiming at acquiring the desired optical responses of CPs for bioapplications, it is essential that the CPs bind to biological targets with high efficacy and affinity. However, the efficient binding of CPs is largely driven by their effective interaction with target surfaces. In this Review, we will focus on the different surface interactions that pervade between CPs and biological targets. The multiple surface interactions can lead to changes in spatial conformation and distribution of CPs, which manifest alterable optical properties of CPs based on accumulation of target-directed CPs, Förster resonance energy transfer mechanism, and metal-enhanced fluorescence mechanism. Then, we display diverse bioapplications applying CPs-based surface interactions, such as cell imaging, imaging-guided detection, and photodynamic therapy. Finally, the challenges and future developments to control the efficient attachment of CPs to biological targets are discussed. We expect that the understanding of surface interactions between CPs and biological targets benefits the CPs-based system design and expands their applications in biological detections and therapies.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Shuxian Zhu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
9
|
Li Z, Lu W, Jia S, Yuan H, Gao LH. Design and Application of Conjugated Polymer Nanomaterials for Detection and Inactivation of Pathogenic Microbes. ACS APPLIED BIO MATERIALS 2020; 4:370-386. [DOI: 10.1021/acsabm.0c01395] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zelin Li
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Wen Lu
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Shaochuan Jia
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Li-Hua Gao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| |
Collapse
|
10
|
Controllable accumulation of conjugated polymer nanoparticles on the surface of adhesive bacteria. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
|
12
|
Hussain S, Lv F, Qi R, Senthilkumar T, Zhao H, Chen Y, Liu L, Wang S. Förster Resonance Energy Transfer Mediated Rapid and Synergistic Discrimination of Bacteria over Fungi Using a Cationic Conjugated Glycopolymer. ACS APPLIED BIO MATERIALS 2019; 3:20-28. [DOI: 10.1021/acsabm.9b00691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sameer Hussain
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ruilian Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Thangaraj Senthilkumar
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanyan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
A graphene oxide fluorescent sensing platform for sensitive and specific detecting biomarker of radiation-resistant nasopharyngeal carcinoma. Bioorg Med Chem Lett 2019; 29:2383-2386. [DOI: 10.1016/j.bmcl.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
14
|
Dhas N, Parekh K, Pandey A, Kudarha R, Mutalik S, Mehta T. Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. J Control Release 2019; 308:130-161. [PMID: 31310783 DOI: 10.1016/j.jconrel.2019.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
Graphene based nanocomposites have revolutionized cancer treatment, diagnosis and imaging owing to its good compatibility, elegant flexibility, high surface area, low mass density along with excellent combined additive effect of graphene with other nanomaterials. This review inculcates the type of graphene based nanocomposites and their fabrication techniques to improve its properties as photothermal and theranostic platform. With decades' efforts, many significant breakthroughs in the method of synthesis and characterization in addition to various functionalization options of graphene based nanocomposite have paved a solid foundation for their potential applications in the cancer therapy. This work intends to provide a thorough, up-to-date holistic discussion on correlation of breakthroughs with their biomedical applications and illustrate how to utilize these breakthroughs to address long-standing challenges in the clinical translation of nanomedicines. This review also emphasizes on graphene based nanocomposites based toxicity concerns pertaining to delivery platforms.
Collapse
Affiliation(s)
- Namdev Dhas
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Khushali Parekh
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Abhijeet Pandey
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Ritu Kudarha
- The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Srinivas Mutalik
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Tejal Mehta
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
15
|
Wang B, Queenan BN, Wang S, Nilsson KPR, Bazan GC. Precisely Defined Conjugated Oligoelectrolytes for Biosensing and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806701. [PMID: 30698856 DOI: 10.1002/adma.201806701] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Conjugated oligoelectrolytes (COEs) are a relatively new class of synthetic organic molecules with, as of yet, untapped potential for use in organic optoelectronic devices and bioelectronic systems. COEs also offer a novel molecular approach to biosensing, bioimaging, and disease therapy. Substantial progress has been made in the past decade at the intersection of chemistry, materials science, and the biological sciences developing COEs and their polymer analogues, namely, conjugated polyelectrolytes (CPEs), into synthetic systems with biological and biomedical utility. CPEs have traditionally attracted more attention in arenas of sensing, imaging, and therapy. However, the precisely defined molecular structures and interactions of COEs offer potential key advantages over CPEs, including higher reliability and fluorescence quantum efficiency, larger diversity of subcellular targeting strategies, and improved selectivity to biomolecules. Here, the unique-and sometimes overlooked-properties of COEs are discussed and the noticeable progress in their use for biological sensing, imaging, and therapy is reviewed.
Collapse
Affiliation(s)
- Bing Wang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Bridget N Queenan
- Department of Mechanical Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - K Peter R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE, -581 83, Sweden
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
16
|
Lu N, Wang L, Lv M, Tang Z, Fan C. Graphene-based nanomaterials in biosystems. NANO RESEARCH 2018; 12:247-264. [PMID: 32218914 PMCID: PMC7090610 DOI: 10.1007/s12274-018-2209-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 05/23/2023]
Abstract
Graphene-based nanomaterials have emerged as a novel type of materials with exceptional physicochemical properties and numerous applications in various areas. In this review, we summarize recent advances in studying interactions between graphene and biosystems. We first provide a brief introduction on graphene and its derivatives, and then discuss on the toxicology and biocompatibility of graphene, including the extracellular interactions between graphene and biomacromolecules, cellular studies of graphene, and in vivo toxicological effects. Next, we focus on various graphene-based practical applications in antibacterial materials, wound addressing, drug delivery, and water purification. We finally present perspectives on challenges and future developments in these exciting fields.
Collapse
Affiliation(s)
- Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China
| | - Liqian Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Min Lv
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
- National Clinical Research Center of Oral Diseases, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
17
|
A Low-Cost Non-explosive Synthesis of Graphene Oxide for Scalable Applications. Sci Rep 2018; 8:12007. [PMID: 30104689 PMCID: PMC6089993 DOI: 10.1038/s41598-018-30613-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/02/2018] [Indexed: 11/16/2022] Open
Abstract
A low cost, non-explosive process for the synthesis of graphene oxide (GO) is demonstrated. Using suitable choice of reaction parameters including temperature and time, this recipe does not require expensive membranes for filtration of carbonaceous and metallic residues. A pre-cooling protocol is introduced to control the explosive nature of the highly exothermic reactions during the oxidation process. This alleviates the requirement for expensive membranes and completely eliminates the explosive nature of intermediate reaction steps when compared to existing methods. High quality of the synthesized GO is corroborated using a host of characterization techniques including X-ray diffraction, optical spectroscopy, X-ray photoemission spectroscopy and current-voltage characteristics. Simple reduction protocol using ultra-violet light is demonstrated for potential application in the area of photovoltaics. Using different reduction protocols together with the proposed inexpensive method, reduced GO samples with tunable conductance over a wide range of values is demonstrated. Density functional theory is employed to understand the structure of GO. We anticipate that this scalable approach will catalyze large scale applications of GO.
Collapse
|
18
|
Yuan W, Yang J, Yang K, Peng H, Yin F. High-Performance and Multifunctional Skinlike Strain Sensors Based on Graphene/Springlike Mesh Network. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19906-19913. [PMID: 29863831 DOI: 10.1021/acsami.8b06496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of skinlike strain sensors that are integrated with multiple sensing functions has attracted tremendous attention in recent years. To mimic human skin, strain sensors should have the abilities to detect various deformations such as pressing, stretching, bending, and even subtle vibrations. Here, we developed a facile, cost-effective, and scalable method for fabrication of high-performance strain sensors based on a graphene-coated springlike mesh network. This composite-based sensor exhibits an incorporation of low detection limit (LOD) for minute deformation (LOD of 1.38 Pa for pressure, 0.1% for tensile strain, and 10 μm for vibration), multiple sensing functions, long-term stability, and wide maximal sensing range (up to 80 kPa for pressure and 110% for tensile strain). On the basis of its superior performance, it can be applied for in situ monitoring of human motions ranging from subtle physiological signals (e.g., pulse, respiration, and phonation) to substantial movements (e.g., finger bending).
Collapse
|
19
|
Mallya AN, Ramamurthy PC. Conjugated Molecule Based Sensor for Microbial Detection in Water with E. colias a Case Study and Elucidation of Interaction Mechanism. ELECTROANAL 2018. [DOI: 10.1002/elan.201800052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ashwini N. Mallya
- Department of Materials Engineering; Indian Institute of Science; Bangalore- 560 012 India
| | - Praveen C. Ramamurthy
- Department of Materials Engineering; Indian Institute of Science; Bangalore- 560 012 India
| |
Collapse
|
20
|
Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay. Anal Biochem 2018; 549:124-129. [PMID: 29574118 DOI: 10.1016/j.ab.2018.03.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023]
Abstract
Specific ssDNA aptamers for the antibiotic enrofloxacin (ENR) were isolated from an enriched nucleotide library by SELEX (Systematic Evolution of Ligands by EXponential enrichment) method with high binding affinity. After seven rounds, five aptamers were selected and identified. Apt58 with highest affinity and sensitivity (Kd = 14.19 nM) was employed to develop a label-free fluorescent biosensing approach based on aptamer, graphene oxide (GO) and native fluorescence of ENR for determination of ENR residue in raw milk samples. Under optimized experimental conditions, the linear range was from 5 nM to 250 nM and LOD was calculated to be 3.7 nM, and the recovery rate was between 94.1% and 108.5%. The integration of aptamer and GO in this bioassay provides a promising way for rapid, sensitive and cost-effective detection of ENR in real samples like raw milk.
Collapse
|
21
|
Yang L, Liu B, Wang M, Li J, Pan W, Gao X, Li N, Tang B. A Highly Sensitive Strategy for Fluorescence Imaging of MicroRNA in Living Cells and in Vivo Based on Graphene Oxide-Enhanced Signal Molecules Quenching of Molecular Beacon. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6982-6990. [PMID: 29405060 DOI: 10.1021/acsami.7b19284] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In situ imaging of microRNA (miRNA) in living cells and in vivo is beneficial for promoting the studies on miRNA-related physiological and pathological processes. However, the current strategies usually have a low signal-to-background ratio, which greatly affects the sensitivity and imaging performance. To solve this problem, we developed a highly sensitive strategy for fluorescence imaging of miRNA in living cells and in vivo based on graphene oxide (GO)-enhanced signal molecule quenching of a molecular beacon (MB). 2Cy5-MB was designed by coupling two Cy5 molecules onto the opposite ends of MB. The fluorescence intensities of two Cy5 molecules were reduced because of the self-quenching effect. After adsorbing on the GO surface, the fluorescence quenching of the molecules was enhanced by fluorescence resonance energy transfer. This double-quenching effect significantly reduced the fluorescence background. In the presence of one miRNA molecule, the fluorescence signals of two Cy5 molecules were simultaneously recovered. Therefore, a significantly enhanced signal-to-background ratio was obtained, which greatly improved the detection sensitivity. In the presence of miRNA, the fluorescence intensity of 2Cy5-MB-GO recovered about 156 times and the detection limit was 30 pM. Compared with 1Cy5-MB-GO, the elevated fluorescence intensity was enhanced 8 times and the detection limit was reduced by an order of magnitude. Furthermore, fluorescence imaging experiments demonstrated that 2Cy5-MB-GO could visually detect microRNA-21 in various cancer cells and tumor tissues. This simple and effective strategy provides a new sensing platform for highly sensitive detection and simultaneous imaging analysis of multiple low-level biomarkers in living cells and in vivo.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Bo Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Meimei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Jia Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| |
Collapse
|
22
|
Guo L, Zhang Z, Tang Y. Cationic conjugated polymers as signal reporter for label-free assay based on targets-mediated aggregation of perylene diimide quencher. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Wang J, Cao F, He S, Xia Y, Liu X, Jiang W, Yu Y, Zhang H, Chen W. FRET on lateral flow test strip to enhance sensitivity for detecting cancer biomarker. Talanta 2018; 176:444-449. [DOI: 10.1016/j.talanta.2017.07.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 01/01/2023]
|
24
|
Geng S, Fu Q, Zhao H, Peng X, Zhang C, Zhao Y, Wan J, Yang X. Temperature-sensitive poly(phenyleneethynylene) nanomedicines for intracellular tracking via fluorescence resonance energy transfer. Polym Chem 2018. [DOI: 10.1039/c7py02081c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pNIPAM-grafted poly(phenyleneethynylene) nanoparticles (pNE NPs) were synthesized by atom transfer radical polymerization and Sonogashira coupling reaction and were developed as novel self-indicating drug nano-carriers for monitoring the intracellular drug release.
Collapse
Affiliation(s)
- Shinan Geng
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan City
- P. R. China
| | - Qianwen Fu
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan City
- P. R. China
| | - Hao Zhao
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan City
- P. R. China
| | - Xiaole Peng
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan City
- P. R. China
| | - Chun Zhang
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan City
- P. R. China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan City
- P. R. China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan City
- P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan City
- P. R. China
| |
Collapse
|
25
|
Guo L, Hu Y, Zhang Z, Tang Y. Universal fluorometric aptasensor platform based on water-soluble conjugated polymers/graphene oxide. Anal Bioanal Chem 2017; 410:287-295. [DOI: 10.1007/s00216-017-0720-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
|
26
|
Teradal NL, Jelinek R. Carbon Nanomaterials in Biological Studies and Biomedicine. Adv Healthc Mater 2017; 6. [PMID: 28777502 DOI: 10.1002/adhm.201700574] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/12/2017] [Indexed: 12/31/2022]
Abstract
The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential.
Collapse
Affiliation(s)
- Nagappa L. Teradal
- Department of Chemistry and Ilse Katz Institute for Nanotechnology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanotechnology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| |
Collapse
|
27
|
A turn-on fluorescent lysine nanoprobe based on the use of the Alizarin Red aluminum(III) complex conjugated to graphene oxide, and its application to cellular imaging of lysine. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2375-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Li F, Liu X, Zhao B, Yan J, Li Q, Aldalbahi A, Shi J, Song S, Fan C, Wang L. Graphene Nanoprobes for Real-Time Monitoring of Isothermal Nucleic Acid Amplification. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15245-15253. [PMID: 28414417 DOI: 10.1021/acsami.7b01134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Isothermal amplification is an efficient way to amplify DNA with high accuracy; however, the real-time monitoring for quantification analysis mostly relied on expensive and precisely designed probes. In the present study, a graphene oxide (GO)-based nanoprobe was used to real-time monitor the isothermal amplification process. The interaction between GO and different DNA structures was systematically investigated, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), DNA 3-helix, and long rolling circle amplification (RCA) and hybridization chain reaction (HCR) products, which existed in one-, two-, and three-dimensional structures. It was found that the high rigid structures exhibited much lower affinity with GO than soft ssDNA, and generally the rigidity was dependent on the length of targets and the hybridization position with probe DNA. On the basis of these results, we successfully monitored HCR amplification process, RCA process, and the enzyme restriction of RCA products with GO nanoprobe; other applications including the detection of the assembly/disassembly of DNA 3-helix structures were also performed. Compared to the widely used end-point detection methods, the GO-based sensing platform is simple, sensitive, cost-effective, and especially in a real-time monitoring mode. We believe such studies can provide comprehensive understandings and evocation on design of GO-based biosensors for broad application in various fields.
Collapse
Affiliation(s)
- Fan Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Xiaoguo Liu
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Bin Zhao
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Juan Yan
- College of Food Science & Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Ali Aldalbahi
- Chemistry Department, King Saud University , Riyadh 11451, Saudi Arabia
| | - Jiye Shi
- Kellogg College, University of Oxford, Banbury Road, Oxford OX2 6PN, U.K
| | - Shiping Song
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| |
Collapse
|
29
|
An efficient strategy to assemble water soluble histidine-perylene diimide and graphene oxide for the detection of PPi in physiological conditions and in vitro. Biosens Bioelectron 2017; 89:636-644. [DOI: 10.1016/j.bios.2015.12.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/05/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022]
|
30
|
Wang L, Chen D, Jiang K, Shen G. New insights and perspectives into biological materials for flexible electronics. Chem Soc Rev 2017; 46:6764-6815. [DOI: 10.1039/c7cs00278e] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Materials based on biological materials are becoming increasingly competitive and are likely to be critical components in flexible electronic devices.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun 130012
- P. R. China
| | - Di Chen
- School of Mathematics and Physics
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Kai Jiang
- Institute & Hospital of Hepatobiliary Surgery
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA
- Chinese PLA Medical School
- Chinese PLA General Hospital
- Beijing 100853
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures
- Institute of Semiconductors
- Chinese Academy of Sciences
- Beijing 100083
- China
| |
Collapse
|
31
|
Qu Y, Wei T, Zhan W, Hu C, Cao L, Yu Q, Chen H. A reusable supramolecular platform for the specific capture and release of proteins and bacteria. J Mater Chem B 2017; 5:444-453. [DOI: 10.1039/c6tb02821g] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A re-usable supramolecular platform with the capability of high-efficiency capture and on-demand release of specific proteins and bacteria was developed.
Collapse
Affiliation(s)
- Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
32
|
Zhou Z, Hao N, Zhang Y, Hua R, Qian J, Liu Q, Li H, Zhu W, Wang K. A novel universal colorimetric sensor for simultaneous dual target detection through DNA-directed self-assembly of graphene oxide and magnetic separation. Chem Commun (Camb) 2017. [DOI: 10.1039/c7cc03914j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel universal colorimetric sensor for simultaneous dual target detection through DNA-directed self-assembly of graphene oxide and magnetic separation was designed for the first time.
Collapse
Affiliation(s)
- Zhou Zhou
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Nan Hao
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Ying Zhang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Rong Hua
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Jing Qian
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Qian Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Henan Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Weihua Zhu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
33
|
Baig U, Gondal MA, Alam MF, Alam M, Wani WA, Younus H. Design, facile synthesis, molecular docking, DNA binding, and cytotoxic activity of polythiophene and polythiophene-titanium(IV) phosphate nanocomposite. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1201825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Umair Baig
- Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Laser Research Group, Physics Department & Center of Excellence in Nanotechnology King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - M. A. Gondal
- Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Laser Research Group, Physics Department & Center of Excellence in Nanotechnology King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Md. Fazle Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mahboob Alam
- Division of Bioscience, Dongguk University, Gyeongju, Republic of Korea
| | - Waseem A. Wani
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
34
|
Paul T, Bera SC, Agnihotri N, Mishra PP. Single-Molecule FRET Studies of the Hybridization Mechanism during Noncovalent Adsorption and Desorption of DNA on Graphene Oxide. J Phys Chem B 2016; 120:11628-11636. [DOI: 10.1021/acs.jpcb.6b06017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tapas Paul
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF
Bidhannagar, Kolkata 700064, India
| | - Subhas Chandra Bera
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF
Bidhannagar, Kolkata 700064, India
| | - Nidhi Agnihotri
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF
Bidhannagar, Kolkata 700064, India
| | - Padmaja P. Mishra
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF
Bidhannagar, Kolkata 700064, India
| |
Collapse
|
35
|
One-pot synthesis of strongly fluorescent DNA-CuInS2 quantum dots for label-free and ultrasensitive detection of anthrax lethal factor DNA. Anal Chim Acta 2016; 942:86-95. [DOI: 10.1016/j.aca.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 11/21/2022]
|
36
|
Xie D, Feng XQ, Hu XL, Liu L, Ye Z, Cao J, Chen GR, He XP, Long YT. Probing Mannose-Binding Proteins That Express on Live Cells and Pathogens with a Diffusion-to-Surface Ratiometric Graphene Electrosensor. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25137-25141. [PMID: 27588680 DOI: 10.1021/acsami.6b08566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper describes the development of a "diffusion-to-surface" ratiometric graphene electrosensor for the selective detection of live cells and pathogens that highly express mannose-binding proteins (MBPs). MBPs have been implicated in many pathological processes and are identified on specific types of bacteria. Consequently, MBPs are a promising biomarker for targeted disease diagnosis and therapy. Here, we develop a unique electrosensor that features a ratiometric voltammetric signal for the selective probing of MBPs. Self-assembly of mannosyl anthraquinone (AQ) to a graphene oxide-decorated screen-printed electrode produces the sensor with an inherent surface-controlled voltammetric signal. Subsequently, addition of a redox probe (RP) imparts the system with a diffusion-controlled current, thus enabling a ratiometric sensing rationale for which AQ serves as a reference. While the reference current is hardly compromised by adding analytes, RP exhibits a concentration-dependent current quenching on addition of mannose-selective lectins over other proteins. Importantly, this ratiometric electrosensor has proven to be applicable for the ratiometric probing of alternatively activated macrophages and a Gram-negative bacterium highly expressing MBPs, but shows minimal response to a series of control live cells and bacteria without mannose receptor expression.
Collapse
Affiliation(s)
- Donghao Xie
- Department of Pharmacy & Department of Interventional Oncology, Dahua Hospital , Xuhui District, Shanghai, 200237, P.R. China
| | - Xue-Qing Feng
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, P.R. China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, P.R. China
| | - Lin Liu
- Department of Pharmacy & Department of Interventional Oncology, Dahua Hospital , Xuhui District, Shanghai, 200237, P.R. China
| | - Zhihong Ye
- Department of Pharmacy & Department of Interventional Oncology, Dahua Hospital , Xuhui District, Shanghai, 200237, P.R. China
| | - Jun Cao
- Department of Pharmacy & Department of Interventional Oncology, Dahua Hospital , Xuhui District, Shanghai, 200237, P.R. China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, P.R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, P.R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, P.R. China
| |
Collapse
|
37
|
Eftekhari-Sis B, Karaminejad S, Karimi F. A Nano-Biosensor for the Detection of 185delAG Mutation in BRCA1 Gene, Leading to Breast Cancer. Cancer Invest 2016; 34:431-439. [PMID: 27657359 DOI: 10.1080/07357907.2016.1227444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A method was developed for the detection of 185delAG mutation in BRCA1 gene, which is responsible for 85% and 63% lifetime risks of hereditary breast and ovarian cancer in women, respectively. The protocol is based on the quenching and recovering fluorescence emission of fluorescein-based dye (FAM)-labeled DNA in the presence of graphene oxide (GO), followed by addition of cDNA or mDNA. In addition, ligase reaction between a DNA probe attached to GO and a DNA possessing FAM on 5' terminal in the presence of cDNA or mDNA was applied.
Collapse
Affiliation(s)
| | | | - Farrokh Karimi
- b Department of Biology , University of Maragheh , Maragheh , Iran
| |
Collapse
|
38
|
Aptamer based lysozyme assay using fluorescent CuInS2 quantum dots and graphene oxide, and its application to inhibitor screening. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1934-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
A label-free fluorescence biosensor for highly sensitive detection of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles. Anal Chim Acta 2016; 932:88-97. [DOI: 10.1016/j.aca.2016.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/27/2022]
|
40
|
Zhang H, Zhang H, Aldalbahi A, Zuo X, Fan C, Mi X. Fluorescent biosensors enabled by graphene and graphene oxide. Biosens Bioelectron 2016; 89:96-106. [PMID: 27459883 DOI: 10.1016/j.bios.2016.07.030] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/25/2016] [Accepted: 07/07/2016] [Indexed: 11/29/2022]
Abstract
During the past few years, graphene and graphene oxide (GO) have attracted numerous attentions for the potential applications in various fields from energy technology, biosensing to biomedical diagnosis and therapy due to their various functionalization, high volume surface ratio, unique physical and electrical properties. Among which, graphene and graphene oxide based fluorescent biosensors enabled by their fluorescence-quenching properties have attracted great interests. The fluorescence of fluorophore or dye labeled on probes (such as molecular beacon, aptamer, DNAzymes and so on) was quenched after adsorbed on to the surface of graphene. While in the present of the targets, due to the strong interactions between probes and targets, the probes were detached from the surface of graphene, generating dramatic fluorescence, which could be used as signals for detection of the targets. This strategy was simple and economy, together with great programmable abilities of probes; we could realize detection of different kinds of species. In this review, we first briefly introduced the history of graphene and graphene oxide, and then summarized the fluorescent biosensors enabled by graphene and GO, with a detailed account of the design mechanism and comparison with other nanomaterials (e.g. carbon nanotubes and gold nanoparticles). Following that, different sensing platforms for detection of DNAs, ions, biomolecules and pathogens or cells as well as the cytotoxicity issue of graphene and GO based in vivo biosensing were further discussed. We hope that this review would do some help to researchers who are interested in graphene related biosening research work.
Collapse
Affiliation(s)
- Huan Zhang
- Laboratory of System Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Honglu Zhang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Ali Aldalbahi
- Chemistry Department, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Xiaolei Zuo
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Xianqiang Mi
- Laboratory of System Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China.
| |
Collapse
|
41
|
He XP, Zeng YL, Zang Y, Li J, Field RA, Chen GR. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr Res 2016; 429:1-22. [DOI: 10.1016/j.carres.2016.03.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
42
|
|
43
|
Zhu Z, Qian J, Zhao X, Qin W, Hu R, Zhang H, Li D, Xu Z, Tang BZ, He S. Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging. ACS NANO 2016; 10:588-597. [PMID: 26641528 DOI: 10.1021/acsnano.5b05606] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.
Collapse
Affiliation(s)
| | | | | | - Wei Qin
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Rongrong Hu
- SCUT-HKUST Joint Research Laboratory, Guangdong Innovative Research Team, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT) , Guangzhou 510640, China
| | | | | | | | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | | |
Collapse
|
44
|
He XP, Tian H. Photoluminescence Architectures for Disease Diagnosis: From Graphene to Thin-Layer Transition Metal Dichalcogenides and Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:144-160. [PMID: 26610871 DOI: 10.1002/smll.201502516] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Ever since the discovery of graphene, increasing efforts have been devoted to the use of this stellar material as well as the development of other graphene-like materials such as thin-layer transition metal dichalcogenides and oxides (TMD/Os) for a variety of applications. Because of their large surface area and unique optical properties, these two-dimensional materials with a size ranging from the micro- to the nanoscale have been employed as the substrate to construct photoluminescence architectures for disease diagnosis as well as theranostics. These architectures are built through the simple self-assembly of labeled biomolecular probes with the substrate material, leading to signal quenching. Upon the specific interaction of the architecture with a target biomarker, the signal can be spontaneously restored in a reversible manner. Meanwhile, by co-loading therapeutic agents and employing the inherent photo-thermal properties of the material substrates, a combined disease imaging and therapy (theranostics) can be achieved. This review highlights the latest advances in the construction and application of graphene and TMD/O based thin-layer material composites for single-target and multiplexed detection of a variety of biomarkers and theranostics. These versatile material architectures, owing to their ease in preparation, low cost and flexibility in functionalization, provide promising tools for both basic biochemical research and clinical applications.
Collapse
Affiliation(s)
- Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology (ECUST), 130 Meilong Rd., Shanghai, 200237, P.R. China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology (ECUST), 130 Meilong Rd., Shanghai, 200237, P.R. China
| |
Collapse
|
45
|
Jiang Y, Luo W, Wang X, Lin Y, Liu XY. Enzymatic manipulation of a DNA-mediated ensemble for sensitive fluorescence detection of glucose. RSC Adv 2016. [DOI: 10.1039/c6ra05701b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, controllable turn off/on fluorescent sensors for label-free detection of glucose have been successfully developed by designing different DNA/ligands-based ensembles and using enzyme-catalyzed Fenton reaction.
Collapse
Affiliation(s)
- Yaoping Jiang
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- Department of Physics
- Xiamen University
- Xiamen 361005
| | - Wenhao Luo
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- Department of Physics
- Xiamen University
- Xiamen 361005
| | - Xiaopei Wang
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- Department of Physics
- Xiamen University
- Xiamen 361005
| | - Youhui Lin
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- Department of Physics
- Xiamen University
- Xiamen 361005
| | - Xiang Yang Liu
- Research Institute for Biomimetics and Soft Matter
- Fujian Provincial Key Laboratory for Soft Functional Materials Research
- Department of Physics
- Xiamen University
- Xiamen 361005
| |
Collapse
|
46
|
Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH. Carbohydrates in Supramolecular Chemistry. Chem Rev 2015; 116:1693-752. [PMID: 26702928 DOI: 10.1021/acs.chemrev.5b00516] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Collapse
Affiliation(s)
- Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Priya Bharate
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Silvia Varela-Aramburu
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
47
|
Liu L, Xia N, Yu J. A graphene oxide-based fluorescent scheme for the determination of the activity of the β-site amyloid precursor protein (BACE1) and its inhibitors. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1647-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Li R, Niu R, Qi J, Yuan H, Fan Y, An H, Yan W, Li H, Zhan Y, Xing C. Conjugated Polythiophene for Rapid, Simple, and High-Throughput Screening of Antimicrobial Photosensitizers. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14569-14572. [PMID: 26134743 DOI: 10.1021/acsami.5b04552] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cationic conjugated poly[3-(3'-N,N,N-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrochloride] (PMNT) has been developed for high-throughput screening of photodynamic antimicrobial chemotherapy photosensitizers (PSs). The bacterial number can be detected quantitatively by PMNT via various fluorescence quenching efficiencies. The photosensitized inactivation of bacteria is not efficient with ineffective PSs, and thus the bacteria grow exponentially and can be coated tightly by PMNT through electrostatic and hydrophobic interactions, resulting in aggregates and fluorescence quenching of PMNT, whereas, conversely, effective PSs lead to original and strong fluorescence of PMNT. This new platform of high-throughput screening is promising for discovering new PSs.
Collapse
Affiliation(s)
- Ruihua Li
- †School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ruimin Niu
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Junjie Qi
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hongbo Yuan
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yibing Fan
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hailong An
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Wenmin Yan
- †School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Huanrong Li
- †School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yong Zhan
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Chengfen Xing
- †School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
- §Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
49
|
Yan W, Yuan H, Li R, Fan Y, Zhan Y, Qi J, An H, Niu R, Li G, Xing C. Conjugated Polythiophene/Porphyrin Complex for Rapid and Simple Detection of Bacteria in Drinking Water. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wenmin Yan
- Institute of Polymer Science and Engineering; School of Chemical Engineering; Hebei University of Technology; Tianjin 300130 P.R. China
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P.R. China
| | - Hongbo Yuan
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P.R. China
| | - Ruihua Li
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P.R. China
| | - Yibing Fan
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P.R. China
| | - Yong Zhan
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P.R. China
| | - Junjie Qi
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P.R. China
| | - Hailong An
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P.R. China
| | - Ruimin Niu
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P.R. China
| | - Gang Li
- Institute of Polymer Science and Engineering; School of Chemical Engineering; Hebei University of Technology; Tianjin 300130 P.R. China
| | - Chengfen Xing
- Institute of Polymer Science and Engineering; School of Chemical Engineering; Hebei University of Technology; Tianjin 300130 P.R. China
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P.R. China
| |
Collapse
|
50
|
Liu X, Yang Y, Hua X, Feng X, Su S, Huang Y, Fan Q, Wang L, Huang W. An Improved Turn-On Aptasensor for Thrombin Detection Using Split Aptamer Fragments and Graphene Oxide. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|