1
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
2
|
Eren H, Bednarz RJR, Alimoradi Jazi M, Donk L, Gudjonsdottir S, Bohländer P, Eelkema R, Houtepen AJ. Permanent Electrochemical Doping of Quantum Dot Films through Photopolymerization of Electrolyte Ions. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4019-4028. [PMID: 35573106 PMCID: PMC9097154 DOI: 10.1021/acs.chemmater.2c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Quantum dots (QDs) are considered for devices like light-emitting diodes (LEDs) and photodetectors as a result of their tunable optoelectronic properties. To utilize the full potential of QDs for optoelectronic applications, control over the charge carrier density is vital. However, controlled electronic doping of these materials has remained a long-standing challenge, thus slowing their integration into optoelectronic devices. Electrochemical doping offers a way to precisely and controllably tune the charge carrier concentration as a function of applied potential and thus the doping levels in QDs. However, the injected charges are typically not stable after disconnecting the external voltage source because of electrochemical side reactions with impurities or with the surfaces of the QDs. Here, we use photopolymerization to covalently bind polymerizable electrolyte ions to polymerizable solvent molecules after electrochemical charge injection. We discuss the importance of using polymerizable dopant ions as compared to nonpolymerizable conventional electrolyte ions such as LiClO4 when used in electrochemical doping. The results show that the stability of charge carriers in QD films can be enhanced by many orders of magnitude, from minutes to several weeks, after photochemical ion fixation. We anticipate that this novel way of stable doping of QDs will pave the way for new opportunities and potential uses in future QD electronic devices.
Collapse
|
3
|
Abstract
Colloidal semiconductor nanocrystals have generated tremendous interest because of their solution processability and robust tunability. Among such nanocrystals, the colloidal quantum dot (CQD) draws the most attention for its well-known quantum size effects. In the last decade, applications of CQDs have been booming in electronics and optoelectronics, especially in photovoltaics. Electronically doped semiconductors are critical in the fabrication of solar cells, because carefully designed band structures are able to promote efficient charge extraction. Unlike conventional semiconductors, diffusion and ion implantation technologies are not suitable for doping CQDs. Therefore, researchers have creatively developed alternative doping methods for CQD materials and devices. In order to provide a state-of-the-art summary and comprehensive understanding to this research community, we focused on various doping techniques and their applications for photovoltaics and demystify them from different perspectives. By analyzing two classes of CQDs, lead chalcogenide CQDs and perovskite CQDs, we compared different working scenarios of each technique, summarized the development in this field, and raised our own future perspectives.
Collapse
|
4
|
Carulli F, Pinchetti V, Zaffalon ML, Camellini A, Rotta Loria S, Moro F, Fanciulli M, Zavelani-Rossi M, Meinardi F, Crooker SA, Brovelli S. Optical and Magneto-Optical Properties of Donor-Bound Excitons in Vacancy-Engineered Colloidal Nanocrystals. NANO LETTERS 2021; 21:6211-6219. [PMID: 34260252 PMCID: PMC8397387 DOI: 10.1021/acs.nanolett.1c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Controlled insertion of electronic states within the band gap of semiconductor nanocrystals (NCs) is a powerful tool for tuning their physical properties. One compelling example is II-VI NCs incorporating heterovalent coinage metals in which hole capture produces acceptor-bound excitons. To date, the opposite donor-bound exciton scheme has not been realized because of the unavailability of suitable donor dopants. Here, we produce a model system for donor-bound excitons in CdSeS NCs engineered with sulfur vacancies (VS) that introduce a donor state below the conduction band (CB), resulting in long-lived intragap luminescence. VS-localized electrons are almost unaffected by trapping, and suppression of thermal quenching boosts the emission efficiency to 85%. Magneto-optical measurements indicate that the VS are not magnetically coupled to the NC bands and that the polarization properties are determined by the spin of the valence-band photohole, whose spin flip is massively slowed down due to suppressed exchange interaction with the donor-localized electron.
Collapse
Affiliation(s)
- Francesco Carulli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| | - Valerio Pinchetti
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| | - Matteo L. Zaffalon
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| | - Andrea Camellini
- Dipartimento
di Energia, Politecnico di Milano, IT-20133 Milano, Italy
| | | | - Fabrizio Moro
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| | - Marco Fanciulli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| | | | - Francesco Meinardi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| | - Scott A. Crooker
- National
High Magnetic Field Laboratory, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergio Brovelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via Cozzi 55, IT-20125 Milano, Italy
| |
Collapse
|
5
|
Yu M, Yang X, Zhang Y, Yang H, Huang H, Wang Z, Dong J, Zhang R, Sun Z, Li C, Wang Q. Pb-Doped Ag 2 Se Quantum Dots with Enhanced Photoluminescence in the NIR-II Window. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006111. [PMID: 33522125 DOI: 10.1002/smll.202006111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/20/2020] [Indexed: 05/05/2023]
Abstract
Ag2 Se quantum dots (QDs) as an effective biological probe in the second near-infrared window (NIR-II, 1000-1700 nm) have been widely applied in bioimaging with high tissue penetration depth and high spatiotemporal resolution. However, the ions deficiency and crystal defects caused by the high Ag+ mobility in Ag2 Se crystals are mainly responsible for the inefficient photoluminescence (PL) of Ag2 Se QDs. Herein, a tailored route is reported to achieve controllable doping of Ag2 Se QDs in which Ag is exchanged by Pb via cation exchange (CE), which is unattainable by direct synthetic methods. The Pb-doped Ag2 Se QDs (denoted as Pb:Ag2 Se QDs) present fire-new optical features with significantly enhanced PL intensity of 4.2 folds. Photoelectron spectroscopy confirms that Pb acts as an n-type dopant for Ag2 Se QDs and therefore the electronic impurities provide additional carriers to fill the traps. Moreover, the general validity of this method is demonstrated to convert different sized Ag2 Se into Pb:Ag2 Se QDs, so that a wide range of NIR-II PL with high intensity is obtained. The bright NIR-II emission of Pb:Ag2 Se QDs is further successfully performed in lymphatic system mapping.
Collapse
Affiliation(s)
- Mengxuan Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaohu Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Haoying Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zan Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jinyi Dong
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Rong Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ziqiang Sun
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Luo D, Wang L, Qiu Y, Huang R, Liu B. Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1226. [PMID: 32599722 PMCID: PMC7353084 DOI: 10.3390/nano10061226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
In recent years, impurity-doped nanocrystal light-emitting diodes (LEDs) have aroused both academic and industrial interest since they are highly promising to satisfy the increasing demand of display, lighting, and signaling technologies. Compared with undoped counterparts, impurity-doped nanocrystal LEDs have been demonstrated to possess many extraordinary characteristics including enhanced efficiency, increased luminance, reduced voltage, and prolonged stability. In this review, recent state-of-the-art concepts to achieve high-performance impurity-doped nanocrystal LEDs are summarized. Firstly, the fundamental concepts of impurity-doped nanocrystal LEDs are presented. Then, the strategies to enhance the performance of impurity-doped nanocrystal LEDs via both material design and device engineering are introduced. In particular, the emergence of three types of impurity-doped nanocrystal LEDs is comprehensively highlighted, namely impurity-doped colloidal quantum dot LEDs, impurity-doped perovskite LEDs, and impurity-doped colloidal quantum well LEDs. At last, the challenges and the opportunities to further improve the performance of impurity-doped nanocrystal LEDs are described.
Collapse
Affiliation(s)
- Dongxiang Luo
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China;
| | - Lin Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore;
| | - Ying Qiu
- Guangdong R&D Center for Technological Economy, Guangzhou 510000, China
| | - Runda Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
| | - Baiquan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Zhang Y, Yang H, An X, Wang Z, Yang X, Yu M, Zhang R, Sun Z, Wang Q. Controlled Synthesis of Ag 2 Te@Ag 2 S Core-Shell Quantum Dots with Enhanced and Tunable Fluorescence in the Second Near-Infrared Window. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001003. [PMID: 32162848 DOI: 10.1002/smll.202001003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 05/05/2023]
Abstract
Fluorescence in the second near-infrared window (NIR-II, 900-1700 nm) has drawn great interest for bioimaging, owing to its high tissue penetration depth and high spatiotemporal resolution. NIR-II fluorophores with high photoluminescence quantum yield (PLQY) and stability along with high biocompatibility are urgently pursued. In this work, a Ag-rich Ag2 Te quantum dots (QDs) surface with sulfur source is successfully engineered to prepare a larger bandgap of Ag2 S shell to passivate the Ag2 Te core via a facile colloidal route, which greatly enhances the PLQY of Ag2 Te QDs and significantly improves the stability of Ag2 Te QDs. This strategy works well with different sized core Ag2 Te QDs so that the NIR-II PL can be tuned in a wide range. In vivo imaging using the as-prepared Ag2 Te@Ag2 S QDs presents much higher spatial resolution images of organs and vascular structures as compared with the same dose of Ag2 Te nanoprobes administrated, suggesting the success of the core-shell synthetic strategy and the potential biomedical applications of core-shell NIR-II nanoprobes.
Collapse
Affiliation(s)
- Yejun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xinyi An
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zan Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaohu Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Mengxuan Yu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Rong Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ziqiang Sun
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Bai B, Xu M, Li N, Chen W, Liu J, Liu J, Rong H, Fenske D, Zhang J. Semiconductor Nanocrystal Engineering by Applying Thiol‐ and Solvent‐Coordinated Cation Exchange Kinetics. Angew Chem Int Ed Engl 2019; 58:4852-4857. [DOI: 10.1002/anie.201807695] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Bing Bai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Meng Xu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Nan Li
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Jiajia Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Jia Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Dieter Fenske
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Germany
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
9
|
Bai B, Xu M, Li N, Chen W, Liu J, Liu J, Rong H, Fenske D, Zhang J. Semiconductor Nanocrystal Engineering by Applying Thiol‐ and Solvent‐Coordinated Cation Exchange Kinetics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Bing Bai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Meng Xu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Nan Li
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Wenxing Chen
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Jiajia Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Jia Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Dieter Fenske
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Germany
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
10
|
Dufour M, Izquierdo E, Livache C, Martinez B, Silly MG, Pons T, Lhuillier E, Delerue C, Ithurria S. Doping as a Strategy to Tune Color of 2D Colloidal Nanoplatelets. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10128-10134. [PMID: 30777752 DOI: 10.1021/acsami.8b18650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Among colloidal nanocrystals, 2D nanoplatelets (NPLs) made of II-VI compounds appear as a special class of emitters with an especially narrow photoluminescence signal. However, the PL signal in the case of NPLs is only tunable by a discrete step. Here, we demonstrate that doping is a viable path to finely tune the color of these NPLs from green to red, making them extremely interesting as phosphors for wide-gamut display. In addition, using a combination of luminescence spectroscopy, tight-binding simulation, transport, and photoemission, we provide a consistent picture for the Ag+-doped CdSe NPLs. The Ag-activated state is strongly bound and located 340 meV above the valence band of the bulk material. The Ag dopant induces a relative shift of the Fermi level toward the valence band by up to 400 meV but preserves the n-type nature of the material.
Collapse
Affiliation(s)
- Marion Dufour
- Laboratoire de Physique et d'Etude des Matériaux , ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS , 10 rue Vauquelin , 75005 Paris , France
| | - Eva Izquierdo
- Laboratoire de Physique et d'Etude des Matériaux , ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS , 10 rue Vauquelin , 75005 Paris , France
| | - Clément Livache
- Laboratoire de Physique et d'Etude des Matériaux , ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS , 10 rue Vauquelin , 75005 Paris , France
- Sorbonne Université, CNRS, Institut des nanosciences de Paris, INSP , F-75005 Paris , France
| | - Bertille Martinez
- Laboratoire de Physique et d'Etude des Matériaux , ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS , 10 rue Vauquelin , 75005 Paris , France
- Sorbonne Université, CNRS, Institut des nanosciences de Paris, INSP , F-75005 Paris , France
| | - Mathieu G Silly
- Synchrotron-SOLEIL , Saint-Aubin, BP48, F91192 Gif-sur-Yvette , France
| | - Thomas Pons
- Laboratoire de Physique et d'Etude des Matériaux , ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS , 10 rue Vauquelin , 75005 Paris , France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des nanosciences de Paris, INSP , F-75005 Paris , France
| | - Christophe Delerue
- Université de Lille, CNRS, Centrale Lille, ISEN, Université de Valenciennes, UMR 8520-IEMN , 59000 Lille , France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux , ESPCI-Paris, PSL Research University, Sorbonne Université UPMC Univ Paris 06, CNRS , 10 rue Vauquelin , 75005 Paris , France
| |
Collapse
|
11
|
Capitani C, Pinchetti V, Gariano G, Santiago-González B, Santambrogio C, Campione M, Prato M, Brescia R, Camellini A, Bellato F, Carulli F, Anand A, Zavelani-Rossi M, Meinardi F, Crooker SA, Brovelli S. Quantized Electronic Doping towards Atomically Controlled "Charge-Engineered" Semiconductor Nanocrystals. NANO LETTERS 2019; 19:1307-1317. [PMID: 30663314 DOI: 10.1021/acs.nanolett.8b04904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
"Charge engineering" of semiconductor nanocrystals (NCs) through so-called electronic impurity doping is a long-standing challenge in colloidal chemistry and holds promise for ground-breaking advancements in many optoelectronic, photonic, and spin-based nanotechnologies. To date, our knowledge is limited to a few paradigmatic studies on a small number of model compounds and doping conditions, with important electronic dopants still unexplored in nanoscale systems. Equally importantly, fine-tuning of charge engineered NCs is hampered by the statistical limitations of traditional approaches. The resulting intrinsic doping inhomogeneity restricts fundamental studies to statistically averaged behaviors and complicates the realization of advanced device concepts based on their advantageous functionalities. Here we aim to address these issues by realizing the first example of II-VI NCs electronically doped with an exact number of heterovalent gold atoms, a known p-type acceptor impurity in bulk chalcogenides. Single-dopant accuracy across entire NC ensembles is obtained through a novel non-injection synthesis employing ligand-exchanged gold clusters as "quantized" dopant sources to seed the nucleation of CdSe NCs in organic media. Structural, spectroscopic, and magneto-optical investigations trace a comprehensive picture of the physical processes resulting from the exact doping level of the NCs. Gold atoms, doped here for the first time into II-VI NCs, are found to incorporate as nonmagnetic Au+ species activating intense size-tunable intragap photoluminescence and artificially offsetting the hole occupancy of valence band states. Fundamentally, the transient conversion of Au+ to paramagnetic Au2+ (5d9 configuration) under optical excitation results in strong photoinduced magnetism and diluted magnetic semiconductor behavior revealing the contribution of individual paramagnetic impurities to the macroscopic magnetism of the NCs. Altogether, our results demonstrate a new chemical approach toward NCs with physical functionalities tailored to the single impurity level and offer a versatile platform for future investigations and device exploitation of individual and collective impurity processes in quantum confined structures.
Collapse
Affiliation(s)
- Chiara Capitani
- Glass to Power SpA, Via Fortunato Zeni 8 , I-38068 Rovereto, , Italy
| | | | - Graziella Gariano
- Glass to Power SpA, Via Fortunato Zeni 8 , I-38068 Rovereto, , Italy
| | - Beatriz Santiago-González
- International Iberian Nanotechnology Laboratory, Nanophotonics Department , Ultrafast Bio- and Nanophotonics Group , Avenida Mestre José Veiga s/n , 4715-330 Braga , Portugal
| | - Carlo Santambrogio
- Dipartimento di Biotecnologie e Bioscienze , Università degli Studi di Milano-Bicocca , Piazza della Scienza 2 , I-20126 Milano , Italy
| | | | - Mirko Prato
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Rosaria Brescia
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Andrea Camellini
- Dipartimento di Energia , Politecnico di Milano and IFN-CNR , Milano , Italy
| | | | | | | | | | | | - Scott A Crooker
- National High Magnetic Field Laboratory , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | |
Collapse
|
12
|
Yang H, Wong E, Zhao T, Lee JD, Xin HL, Chi M, Fleury B, Tang HY, Gaulding EA, Kagan CR, Murray CB. Charge Transport Modulation in PbSe Nanocrystal Solids by Au xAg 1- x Nanoparticle Doping. ACS NANO 2018; 12:9091-9100. [PMID: 30148956 DOI: 10.1021/acsnano.8b03112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanocrystal (NC) solids are an exciting class of materials, whose physical properties are tunable by choice of the NCs as well as the strength of the interparticle coupling. One can consider these NCs as "artificial atoms" in analogy to the formation of condensed matter from atoms. Akin to atomic doping, the doping of a semiconducting NC solid with impurity NCs can drastically alter its electronic properties. A high degree of complexity is possible in these artificial structures by adjusting the size, shape, and composition of the building blocks, which enables "designer" materials with targeted properties. Here, we present the doping of the PbSe NC solids with a series of Au xAg1- x alloy nanoparticles (NPs). A combination of temperature-dependent electrical conductance and Seebeck coefficient measurements and room-temperature Hall effect measurements demonstrates that the incorporation of metal NPs both modifies the charge carrier density of the NC solids and introduces energy barriers for charge transport. These studies point to charge carrier injection from the metal NPs into the PbSe NC matrix. The charge carrier density and charge transport dynamics in the doped NC solids are adjustable in a wide range by employing the Au xAg1- x NP with different Au:Ag ratio as dopants. This doping strategy could be of great interest for thermoelectric applications taking advantage of the energy filtering effect introduced by the metal NPs.
Collapse
Affiliation(s)
| | | | | | | | - Huolin L Xin
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | | | | | | | | | | |
Collapse
|
13
|
Kim H, Tiwari AP, Hwang E, Cho Y, Hwang H, Bak S, Hong Y, Lee H. FeIn 2S 4 Nanocrystals: A Ternary Metal Chalcogenide Material for Ambipolar Field-Effect Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800068. [PMID: 30027040 PMCID: PMC6051185 DOI: 10.1002/advs.201800068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/20/2018] [Indexed: 05/29/2023]
Abstract
An ambipolar channel layer material is required to realize the potential benefits of ambipolar complementary metal-oxide-semiconductor field-effect transistors, namely their compact and efficient nature, reduced reverse power dissipation, and possible applicability to highly integrated circuits. Here, a ternary metal chalcogenide nanocrystal material, FeIn2S4, is introduced as a solution-processable ambipolar channel material for field-effect transistors (FETs). The highest occupied molecular orbital and the lowest unoccupied molecular orbital of the FeIn2S4 nanocrystals are determined to be -5.2 and -3.75 eV, respectively, based upon cyclic voltammetry, X-ray photoelectron spectroscopy, and diffraction reflectance spectroscopy analyses. An ambipolar FeIn2S4 FET is successfully fabricated with Au electrodes (EF = -5.1 eV), showing both electron mobility (14.96 cm2 V-1 s-1) and hole mobility (9.15 cm2 V-1 s-1) in a single channel layer, with an on/off current ratio of 105. This suggests that FeIn2S4 nanocrystals may be a promising alternative semiconducting material for next-generation integrated circuit development.
Collapse
Affiliation(s)
- Hyunjung Kim
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Sungkyunkwan University Advanced Institute of Nano TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Anand P. Tiwari
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of ChemistrySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Eunhee Hwang
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of ChemistrySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Yunhee Cho
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of ChemistrySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Heemin Hwang
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Sora Bak
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of ChemistrySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Yeseul Hong
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of ChemistrySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Hyoyoung Lee
- Centre for Integrated Nanostructure Physics (CINAP)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Sungkyunkwan University Advanced Institute of Nano TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Department of ChemistrySungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
14
|
Pinchetti V, Di Q, Lorenzon M, Camellini A, Fasoli M, Zavelani-Rossi M, Meinardi F, Zhang J, Crooker SA, Brovelli S. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. NATURE NANOTECHNOLOGY 2018; 13:145-151. [PMID: 29255289 DOI: 10.1038/s41565-017-0024-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag+ is an emerging electronic dopant in III-V and II-VI nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag+ is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag+. This optical activation process and the associated modification of the electronic configuration of Ag+ remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag+ to paramagnetic Ag2+. The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.
Collapse
Affiliation(s)
- Valerio Pinchetti
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Qiumei Di
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Monica Lorenzon
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Milano, Italy
| | | | - Mauro Fasoli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Milano, Italy
| | | | - Francesco Meinardi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.
| | - Scott A Crooker
- National High Magnetic Field Laboratory, Los Alamos, NM, USA
| | - Sergio Brovelli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Milano, Italy.
| |
Collapse
|
15
|
Zhang J, Di Q, Liu J, Bai B, Liu J, Xu M, Liu J. Heterovalent Doping in Colloidal Semiconductor Nanocrystals: Cation-Exchange-Enabled New Accesses to Tuning Dopant Luminescence and Electronic Impurities. J Phys Chem Lett 2017; 8:4943-4953. [PMID: 28925707 DOI: 10.1021/acs.jpclett.7b00351] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heterovalent doping in colloidal semiconductor nanocrystals (CSNCs), with provisions of extra electrons (n-type doping) or extra holes (p-type doping), could enhance their performance of optical and electronical properties. In view of the challenges imposed by the intrinsic self-purification, self-quenching, and self-compensation effects of CSNCs, we outline the progress on heterovalent doping in CSNCs, with particular focus on the cation-exchange-enabled tuning of dopant luminescence and electronic impurities. Thus, the well-defined substitutional or interstitial heterovalent doping in a deep position of an isolated nanocrystal has been fulfilled. We also envision that new coordination ligand-initiated cation exchange would bring about more choices of heterovalent dopants. With the aid of high-resolution characterization methods, the accurate atom-specific dopant location and distribution could be confirmed clearly. Finally, new applications, some of the remaining unanswered questions, and future directions of this field are presented.
Collapse
Affiliation(s)
- Jiatao Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Qiumei Di
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Jia Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Bing Bai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Jian Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Meng Xu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| | - Jiajia Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology , Beijing 100081, China
| |
Collapse
|
16
|
Kroupa DM, Hughes BK, Miller EM, Moore DT, Anderson NC, Chernomordik BD, Nozik AJ, Beard MC. Synthesis and Spectroscopy of Silver-Doped PbSe Quantum Dots. J Am Chem Soc 2017. [PMID: 28648060 DOI: 10.1021/jacs.7b04551] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electronic impurity doping of bulk semiconductors is an essential component of semiconductor science and technology. Yet there are only a handful of studies demonstrating control of electronic impurities in semiconductor nanocrystals. Here, we studied electronic impurity doping of colloidal PbSe quantum dots (QDs) using a postsynthetic cation exchange reaction in which Pb is exchanged for Ag. We found that varying the concentration of dopants exposed to the as-synthesized PbSe QDs controls the extent of exchange. The electronic impurity doped QDs exhibit the fundamental spectroscopic signatures associated with injecting a free charge carrier into a QD under equilibrium conditions, including a bleach of the first exciton transition and the appearance of a quantum-confined, low-energy intraband absorption feature. Photoelectron spectroscopy confirms that Ag acts as a p-type dopant for PbSe QDs and infrared spectroscopy is consistent with k·p calculations of the size-dependent intraband transition energy. We find that to bleach the first exciton transition by an average of 1 carrier per QD requires that approximately 10% of the Pb be replaced by Ag. We hypothesize that the majority of incorporated Ag remains at the QD surface and does not interact with the core electronic states of the QD. Instead, the excess Ag at the surface promotes the incorporation of <1% Ag into the QD core where it causes p-type doping behavior.
Collapse
Affiliation(s)
- Daniel M Kroupa
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States.,Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Barbara K Hughes
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States.,Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Elisa M Miller
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - David T Moore
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Nicholas C Anderson
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Boris D Chernomordik
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Arthur J Nozik
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States.,Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Matthew C Beard
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| |
Collapse
|
17
|
Santiago-González B, Monguzzi A, Pinchetti V, Casu A, Prato M, Lorenzi R, Campione M, Chiodini N, Santambrogio C, Meinardi F, Manna L, Brovelli S. "Quantized" Doping of Individual Colloidal Nanocrystals Using Size-Focused Metal Quantum Clusters. ACS NANO 2017; 11:6233-6242. [PMID: 28485979 DOI: 10.1021/acsnano.7b02369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The insertion of intentional impurities, commonly referred to as doping, into colloidal semiconductor quantum dots (QDs) is a powerful paradigm for tailoring their electronic, optical, and magnetic behaviors beyond what is obtained with size-control and heterostructuring motifs. Advancements in colloidal chemistry have led to nearly atomic precision of the doping level in both lightly and heavily doped QDs. The doping strategies currently available, however, operate at the ensemble level, resulting in a Poisson distribution of impurities across the QD population. To date, the synthesis of monodisperse ensembles of QDs individually doped with an identical number of impurity atoms is still an open challenge, and its achievement would enable the realization of advanced QD devices, such as optically/electrically controlled magnetic memories and intragap state transistors and solar cells, that rely on the precise tuning of the impurity states (i.e., number of unpaired spins, energy and width of impurity levels) within the QD host. The only approach reported to date relies on QD seeding with organometallic precursors that are intrinsically unstable and strongly affected by chemical or environmental degradation, which prevents the concept from reaching its full potential and makes the method unsuitable for aqueous synthesis routes. Here, we overcome these issues by demonstrating a doping strategy that bridges two traditionally orthogonal nanostructured material systems, namely, QDs and metal quantum clusters composed of a "magic number" of atoms held together by stable metal-to-metal bonds. Specifically, we use clusters composed of four copper atoms (Cu4) capped with d-penicillamine to seed the growth of CdS QDs in water at room temperature. The elemental analysis, performed by electrospray ionization mass spectrometry, X-ray fluorescence, and inductively coupled plasma mass spectrometry, side by side with optical spectroscopy and transmission electron microscopy measurements, indicates that each Cu:CdS QD in the ensemble incorporates four Cu atoms originating from one Cu4 cluster, which acts as a "quantized" source of dopant impurities.
Collapse
Affiliation(s)
- Beatriz Santiago-González
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| | - Angelo Monguzzi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| | - Valerio Pinchetti
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| | - Alberto Casu
- Nanochemistry Department, Istituto Italiano di Tecnologia , Via Morego 30, IT-16163 Genova, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia , Via Morego 30, IT-16163 Genova, Italy
| | - Roberto Lorenzi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| | - Marcello Campione
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano-Bicocca , Piazza della Scienza 4, IT-20126 Milano, Italy
| | - Norberto Chiodini
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| | - Carlo Santambrogio
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca Piazza della Scienza 2, IT-20126 Milano, Italy
| | - Francesco Meinardi
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia , Via Morego 30, IT-16163 Genova, Italy
| | - Sergio Brovelli
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca , Via R. Cozzi 55, IT-20125 Milano, Italy
| |
Collapse
|
18
|
Pradhan N, Das Adhikari S, Nag A, Sarma DD. Luminescence, Plasmonic, and Magnetic Properties of Doped Semiconductor Nanocrystals. Angew Chem Int Ed Engl 2017; 56:7038-7054. [DOI: 10.1002/anie.201611526] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/18/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Narayan Pradhan
- Department of Materials Science; Indian Association for the Cultivation of Science; Kolkata 700032 India
| | - Samrat Das Adhikari
- Department of Materials Science; Indian Association for the Cultivation of Science; Kolkata 700032 India
| | - Angshuman Nag
- Department of Chemistry and Centre for Energy Science; Indian Institute of Science Education and Research, IISER; Pune 411008 India
| | - D. D. Sarma
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bengaluru 560012 India
| |
Collapse
|
19
|
Pradhan N, Das Adhikari S, Nag A, Sarma DD. Dotierte Halbleiter-Nanokristalle: Lumineszenz, plasmonische und magnetische Eigenschaften. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Narayan Pradhan
- Department of Materials Science; Indian Association for the Cultivation of Science; Kolkata 700032 Indien
| | - Samrat Das Adhikari
- Department of Materials Science; Indian Association for the Cultivation of Science; Kolkata 700032 Indien
| | - Angshuman Nag
- Department of Chemistry and Centre for Energy Science; Indian Institute of Science Education and Research, IISER; Pune 411008 Indien
| | - D. D. Sarma
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bengaluru 560012 Indien
| |
Collapse
|
20
|
Kortshagen UR, Sankaran RM, Pereira RN, Girshick SL, Wu JJ, Aydil ES. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chem Rev 2016; 116:11061-127. [DOI: 10.1021/acs.chemrev.6b00039] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Uwe R. Kortshagen
- Department
of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - R. Mohan Sankaran
- Department
of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Rui N. Pereira
- Department
of Physics and I3N, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Walter
Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Steven L. Girshick
- Department
of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jeslin J. Wu
- Department
of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Eray S. Aydil
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Jagadeeswararao M, Pal S, Nag A, Sarma DD. Electrical and Plasmonic Properties of Ligand-Free Sn4+-Doped In2O3(ITO) Nanocrystals. Chemphyschem 2016; 17:710-6. [DOI: 10.1002/cphc.201500973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Metikoti Jagadeeswararao
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Pune 411008 India
| | - Somnath Pal
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bangalore 560012 India
| | - Angshuman Nag
- Department of Chemistry; Indian Institute of Science Education and Research (IISER); Pune 411008 India
| | - D. D. Sarma
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bangalore 560012 India
- Department of Physics and Astronomy; Uppsala University; Box 516 75120 Uppsala Sweden
- Council of Scientific and Industrial Research-Network of Institutes for Solar Energy (CSIR-NISE); New Delhi 110001 India
| |
Collapse
|
22
|
Stavrinadis A, Konstantatos G. Strategies for the Controlled Electronic Doping of Colloidal Quantum Dot Solids. Chemphyschem 2016; 17:632-44. [DOI: 10.1002/cphc.201500834] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Alexandros Stavrinadis
- ICFO-Institut de Ciencies Fotoniques; The Barcelona Institute of Science and Technology; 08860 Castelldefels Barcelona Spain
| | - Gerasimos Konstantatos
- ICFO-Institut de Ciencies Fotoniques; The Barcelona Institute of Science and Technology; 08860 Castelldefels Barcelona Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010; Barcelona Spain
| |
Collapse
|
23
|
Schimpf AM, Knowles KE, Carroll GM, Gamelin DR. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals. Acc Chem Res 2015; 48:1929-37. [PMID: 26121552 DOI: 10.1021/acs.accounts.5b00181] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electronic doping is one of the most important experimental capabilities in all of semiconductor research and technology. Through electronic doping, insulating materials can be made conductive, opening doors to the formation of p-n junctions and other workhorses of modern semiconductor electronics. Recent interest in exploiting the unique physical and photophysical properties of colloidal semiconductor nanocrystals for revolutionary new device technologies has stimulated efforts to prepare electronically doped colloidal semiconductor nanocrystals with the same control as available in the corresponding bulk materials. Despite the impact that success in this endeavor would have, the development of general and reliable methods for electronic doping of colloidal semiconductor nanocrystals remains a long-standing challenge. In this Account, we review recent progress in the development and characterization of electronically doped colloidal semiconductor nanocrystals. Several successful methods for introducing excess band-like charge carriers are illustrated and discussed, including photodoping, outer-sphere electron transfer, defect doping, and electrochemical oxidation or reduction. A distinction is made between methods that yield excess band-like carriers at thermal equilibrium and those that inject excess charge carriers under thermal nonequilibrium conditions (steady state). Spectroscopic signatures of such excess carriers, accessible by both equilibrium and nonequilibrium methods, are reviewed and illustrated. A distinction is also proposed between the phenomena of electronic doping and redox-potential shifting. Electronically doped semiconductor nanocrystals possess excess band-like charge carriers at thermal equilibrium, whereas redox-potential shifting affects the potentials at which charge carriers are injected under nonequilibrium conditions, without necessarily introducing band-like charge carriers at equilibrium. Detection of the key spectroscopic signatures of band-like carriers allows distinction between these two regimes. Both electronic doping and redox-potential shifting can be powerful tools for tuning the performance of nanocrystals in electronic devices. Finally, key chemical challenges associated with nanocrystal electronic doping are briefly discussed. These challenges are centered largely on the availability of charge-carrier reservoirs with suitable redox potentials and on the relatively poor control over nanocrystal surface traps. In most cases, the Fermi levels of colloidal nanocrystals are defined by the redox properties of their surface traps. Control over nanocrystal surface chemistries is therefore essential to the development of general and reliable strategies for electronically doping colloidal semiconductor nanocrystals. Overall, recent progress in this area portends exciting future advances in controlling nanocrystal compositions, surface chemistries, redox potentials, and charge states to yield new classes of electronic nanomaterials with attractive physical properties and the potential to stimulate unprecedented new semiconductor technologies.
Collapse
Affiliation(s)
- Alina M. Schimpf
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Kathryn E. Knowles
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Gerard M. Carroll
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Daniel R. Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
24
|
García de Arquer FP, Lasanta T, Bernechea M, Konstantatos G. Tailoring the Electronic Properties of Colloidal Quantum Dots in Metal-Semiconductor Nanocomposites for High Performance Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2636-2641. [PMID: 25656448 DOI: 10.1002/smll.201403359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Metallic nanoparticles tailor the electronic properties of PbS colloidal quantum dots in a post-synthetic, all solution-processable approach. The Fermi level of the resulting nanocomposites can be tuned from p- to n-type due to remote charge transfer and electron trap state passivation. This concurrently reduces dark current, improves time response, and increases sensitivity in PbS photoconductors, yielding an over-two-fold increase in detectivity.
Collapse
Affiliation(s)
- F Pelayo García de Arquer
- ICFO - Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain
| | - Tania Lasanta
- ICFO - Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain
| | - María Bernechea
- ICFO - Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain
| | - Gerasimos Konstantatos
- ICFO - Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Castelldefels, Barcelona, Spain
| |
Collapse
|
25
|
Liu J, Zhao Q, Liu JL, Wu YS, Cheng Y, Ji MW, Qian HM, Hao WC, Zhang LJ, Wei XJ, Wang SG, Zhang JT, Du Y, Dou SX, Zhu HS. Heterovalent-Doping-Enabled Efficient Dopant Luminescence and Controllable Electronic Impurity Via a New Strategy of Preparing II-VI Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2753-2761. [PMID: 25821075 DOI: 10.1002/adma.201500247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Substitutional heterovalent doping represents an effective method to control the optical and electronic properties of nanocrystals (NCs). Highly monodisperse II-VI NCs with deep substitutional dopants are presented. The NCs exhibit stable, dominant, and strong dopant fluorescence, and control over n- and p-type electronic impurities is achieved. Large-scale, bottom-up superlattices of the NCs will speed up their application in electronic devices.
Collapse
Affiliation(s)
- Jian Liu
- Research Center of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gui J, Ji M, Liu J, Xu M, Zhang J, Zhu H. Phosphine-Initiated Cation Exchange for Precisely Tailoring Composition and Properties of Semiconductor Nanostructures: Old Concept, New Applications. Angew Chem Int Ed Engl 2015; 54:3683-7. [DOI: 10.1002/anie.201410053] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/01/2014] [Indexed: 01/01/2023]
|
27
|
Gui J, Ji M, Liu J, Xu M, Zhang J, Zhu H. Phosphine-Initiated Cation Exchange for Precisely Tailoring Composition and Properties of Semiconductor Nanostructures: Old Concept, New Applications. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Gresback R, Kramer NJ, Ding Y, Chen T, Kortshagen UR, Nozaki T. Controlled doping of silicon nanocrystals investigated by solution-processed field effect transistors. ACS NANO 2014; 8:5650-5656. [PMID: 24832958 DOI: 10.1021/nn500182b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The doping of semiconductor nanocrystals (NCs), which is vital for the optimization of NC-based devices, remains a significant challenge. While gas-phase plasma approaches have been successful in incorporating dopant atoms into NCs, little is known about their electronic activation. Here, we investigate the electronic properties of doped silicon NC thin films cast from solution by field effect transistor analysis. We find that, analogous to bulk silicon, boron and phosphorus electronically dope Si NC thin films; however, the dopant activation efficiency is only ∼10(-2)-10(-4). We also show that surface doping of Si NCs is an effective way to alter the carrier concentrations in Si NC films.
Collapse
Affiliation(s)
- Ryan Gresback
- Department of Mechanical Science and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Park YD, Kang B, Lim HS, Cho K, Kang MS, Cho JH. Polyelectrolyte interlayer for ultra-sensitive organic transistor humidity sensors. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8591-8596. [PMID: 23937407 DOI: 10.1021/am402050p] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We demonstrate low-voltage, flexible, transparent pentacene humidity sensors with ultrahigh sensitivity, good reliability, and fast response/recovery behavior. The excellent performances of these devices are derived from an inserted polyelectrolyte (poly[2-(methacryloyloxy)ethyltrimethylammonium chloride-co-3-(trimethoxysilyl)propyl methacrylate] (poly(METAC-co-TSPM)) interlayer, which releases free Cl- ions in the electrolyte dielectric layer under humid conditions and boosts the electrical current in the transistor channel. This has led to extreme device sensitivity, such that electrical signal variations exceeding 7 orders of magnitude have been achieved in response to a 15% change in the relative humidity level. The new sensors exhibit a fast responsivity and a stable performance toward changes in humidity levels. Furthermore, the humidity sensors, mounted on flexible substrates, provided low voltage (<5 V) operation while preserving the unique ultrasensitivity and fast responsivity of these devices. We believe that the strategy of utilizing the enhanced ion motion in an inserted polyelectrolyte layer of an OFET structure can potentially improve sensor technologies beyond humidity-responsive systems.
Collapse
Affiliation(s)
- Yeong Don Park
- Department of Energy and Chemical Engineering, Incheon National University , Incheon, 406-772, Korea
| | | | | | | | | | | |
Collapse
|