1
|
Li H. Ti 3C 2T x MXene Based Electro-Ionic Soft Actuator with Potential for Wearable Finger Straps. ACS OMEGA 2024; 9:42814-42821. [PMID: 39464450 PMCID: PMC11500392 DOI: 10.1021/acsomega.4c04647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/03/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024]
Abstract
Soft electro-ionic actuators have received extensive research and attention due to their advantages such as low voltage response and adjustable deformation. However, they have not been able to enter the actual industry application like traditional rigid actuators; one of the reasons may be that the kinematic properties of actuators have been less studied. The electro-ionic actuator based on Ti3C2T x MXene-CNT/PPy electrode prepared in this paper shows good bending displacement (18.8 mm) and strain (0.63%) under 4 V voltage. In this article, the overlapping nature and exponential function relationship of the actuator end-point trajectories are preliminarily discussed, and the morphology change and cubic polynomial function relationship of the actuator body are considered. Moreover, in application, a novel proof-of-concept model of smart wearable finger straps is proposed. This study is a unique attempt and is hoped to provide a new research perspective in the field of soft electro-ionic actuators.
Collapse
Affiliation(s)
- Huiqin Li
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People’s
Republic of China
| |
Collapse
|
2
|
Ding S, Brownlee BJ, Parate K, Pola CC, Chen B, Hostetter JM, Jones D, Jackman J, Iverson BD, Claussen JC. IFN-γ and IL-10 Immunosensor with Vertically Aligned Carbon Nanotube Interdigitated Electrodes toward Pen-Side Cattle Paratuberculosis Monitoring. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400021. [PMID: 39440229 PMCID: PMC11492326 DOI: 10.1002/gch2.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/20/2024] [Indexed: 10/25/2024]
Abstract
Highly sensitive vertically aligned carbon nanotube arrays (VANTAs) interdigitated electrode (IDE) arrays are developed for electrochemical biosensing of two cytokines (i.e., interleukin-10 (IL-10) and interferon-gamma (IFN-γ)) that are useful for early detection Johne's disease (Bovine Paratuberculosis) in cattle. The high aspect ratio VANTA-IDEs (50-60 µm in height) are grown through a chemical vapor deposition process from an iron (Fe) catalyst that is lithographically patterned on a silicon wafer with equal finger width and inter-finger spacing of 25 µm. After functionalization with distinct antibodies the VANTA-IDEs are capable of selective detection of both IL-10 and IFN-γ within an actual biological matrix (i.e., diluted bovine implant supernatant) over concentration ranges of 0.1 to 30 pg mL-1 (limit of detection - LOD: 0.0911 pg mL-1) and 50-500 pg mL-1 (LOD: 24.17 pg mL-1), respectively with a response time of <35 min. Results demonstrate important initial steps for rapid, pen-side identification of cattle with stage-I Mycobacterium avium subspecies paratuberculosis infection before physical symptoms of Johne's disease are present. Such a rapid pen-side diagnostic test can be used on cattle at an auction or before they are introduced to a herd to ensure the larger population does not become infected with Johne's disease.
Collapse
Affiliation(s)
- Shaowei Ding
- Mechanical Engineering DepartmentIowa State UniversityAmesIA50011USA
| | | | - Kshama Parate
- Mechanical Engineering DepartmentIowa State UniversityAmesIA50011USA
| | - Cicero C. Pola
- Mechanical Engineering DepartmentIowa State UniversityAmesIA50011USA
| | - Bolin Chen
- Mechanical Engineering DepartmentIowa State UniversityAmesIA50011USA
| | - Jesse M. Hostetter
- Department of PathologyVeterinary Medicine SchoolIowa State UniversityAmesIA20011USA
| | - Douglas Jones
- Department of PathologyVeterinary Medicine SchoolIowa State UniversityAmesIA20011USA
| | - John Jackman
- Department of Industrial and Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Brian D. Iverson
- Department of Mechanical EngineeringBrigham Young UniversityProvoUT84602USA
| | | |
Collapse
|
3
|
Yang L, Wang H. High-performance electrically responsive artificial muscle materials for soft robot actuation. Acta Biomater 2024; 185:24-40. [PMID: 39025393 DOI: 10.1016/j.actbio.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Traditional robotic devices are often bulky and rigid, making it difficult for them to adapt to the soft and complex shapes of the human body. In stark contrast, soft robots, as a burgeoning class of robotic technology, showcase exceptional flexibility and adaptability, positioning them as compelling contenders for a diverse array of applications. High-performance electrically responsive artificial muscle materials (ERAMMs), as key driving components of soft robots, can achieve efficient motion and deformation, as well as more flexible and precise robot control, attracting widespread attention. This paper reviews the latest advancements in high-performance ERAMMs and their applications in the field of soft robot actuation, using ionic polymer-metal composites and dielectric elastomers as typical cases. Firstly, the definition, characteristics, and electro-driven working principles of high-performance ERAMMs are introduced. Then, the material design and synthesis, fabrication processes and optimization, as well as characterization and testing methods of the ERAMMs are summarized. Furthermore, various applications of two typical ERAMMs in the field of soft robot actuation are discussed in detail. Finally, the challenges and future directions in current research are analyzed and anticipated. This review paper aims to provide researchers with a reference for understanding the latest research progress in high-performance ERAMMs and to guide the development and application of soft robots. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
4
|
Yang L, Zhang Y, Cai W, Tan J, Hansen H, Wang H, Chen Y, Zhu M, Mu J. Electrochemically-driven actuators: from materials to mechanisms and from performance to applications. Chem Soc Rev 2024; 53:5956-6010. [PMID: 38721851 DOI: 10.1039/d3cs00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Soft actuators, pivotal for converting external energy into mechanical motion, have become increasingly vital in a wide range of applications, from the subtle engineering of soft robotics to the demanding environments of aerospace exploration. Among these, electrochemically-driven actuators (EC actuators), are particularly distinguished by their operation through ion diffusion or intercalation-induced volume changes. These actuators feature notable advantages, including precise deformation control under electrical stimuli, freedom from Carnot efficiency limitations, and the ability to maintain their actuated state with minimal energy use, akin to the latching state in skeletal muscles. This review extensively examines EC actuators, emphasizing their classification based on diverse material types, driving mechanisms, actuator configurations, and potential applications. It aims to illuminate the complicated driving mechanisms of different categories, uncover their underlying connections, and reveal the interdependencies among materials, mechanisms, and performances. We conduct an in-depth analysis of both conventional and emerging EC actuator materials, casting a forward-looking lens on their trajectories and pinpointing areas ready for innovation and performance enhancement strategies. We also navigate through the challenges and opportunities within the field, including optimizing current materials, exploring new materials, and scaling up production processes. Overall, this review aims to provide a scientifically robust narrative that captures the current state of EC actuators and sets a trajectory for future innovation in this rapidly advancing field.
Collapse
Affiliation(s)
- Lixue Yang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Yiyao Zhang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Wenting Cai
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Junlong Tan
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Heather Hansen
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
- Shanghai Dianji University, 201306, Shanghai, China
| | - Yan Chen
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Jiuke Mu
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| |
Collapse
|
5
|
Tian X, Guo Y, Zhang J, Ivasishin OM, Jia J, Yan J. Fiber Actuators Based on Reversible Thermal Responsive Liquid Crystal Elastomer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306952. [PMID: 38175860 DOI: 10.1002/smll.202306952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Soft actuators inspired by the movement of organisms have attracted extensive attention in the fields of soft robotics, electronic skin, artificial intelligence, and healthcare due to their excellent adaptability and operational safety. Liquid crystal elastomer fiber actuators (LCEFAs) are considered as one of the most promising soft actuators since they can provide reversible linear motion and are easily integrated or woven into complex structures to perform pre-programmed movements such as stretching, rotating, bending, and expanding. The research on LCEFAs mainly focuses on controllable preparation, structural design, and functional applications. This review, for the first time, provides a comprehensive and systematic review of recent advances in this important field by focusing on reversible thermal response LCEFAs. First, the thermal driving mechanism, and direct and indirect heating strategies of LCEFAs are systematically summarized and analyzed. Then, the fabrication methods and functional applications of LCEFAs are summarized and discussed. Finally, the challenges and technical difficulties that may hinder the performance improvement and large-scale production of LCEFAs are proposed, and the development opportunities of LCEFAs are prospected.
Collapse
Affiliation(s)
- Xuwang Tian
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials Ministry of Education, Jilin University, Changchun, 130012, China
| | - Yongshi Guo
- College of Textile, Donghua University, Shanghai, 201620, China
| | - Jiaqi Zhang
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials Ministry of Education, Jilin University, Changchun, 130012, China
| | - Orest M Ivasishin
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials Ministry of Education, Jilin University, Changchun, 130012, China
| | - Jiru Jia
- School of Textile Garment and Design, Changshu Institute of Technology, Suzhou, Jiangsu, 215500, China
| | - Jianhua Yan
- College of Textile, Donghua University, Shanghai, 201620, China
| |
Collapse
|
6
|
Tao H, Hu G, Lu S, Li B, Zhang Y, Ru J. Single-Walled Carbon Nanotube-Reinforced PEDOT: PSS Hybrid Electrodes for High-Performance Ionic Electroactive Polymer Actuator. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2469. [PMID: 38793535 PMCID: PMC11122944 DOI: 10.3390/ma17102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Ionic electroactive polymer (iEAP) actuators are recognized as exceptional candidates for artificial muscle development, with significant potential applications in bionic robotics, space exploration, and biomedical fields. Here, we developed a new iEAP actuator utilizing high-purity single-walled carbon nanotubes (SWCNTs)-reinforced poly(3, 4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT: PSS, PP) hybrid electrodes and a Nafion/EMIBF4 ion-exchange membrane via a straightforward and efficient spray printing technique. The SWCNT/PP actuator exhibits significantly enhanced electric conductivity (262.9 S/cm) and specific capacitance (22.5 mF/cm2), benefitting from the synergistic effect between SWCNTs and PP. These improvements far surpass those observed in activated carbon aerogel bucky-gel-electrode-based actuators. Furthermore, we evaluated the electroactive behaviors of the SWCNT/PP actuator under alternating square-wave voltages (1-3 V) and frequencies (0.01-100 Hz). The results reveal a substantial bending displacement of 6.44 mm and a high bending strain of 0.61% (at 3 V, 0.1 Hz), along with a long operating stability of up to 10,000 cycles (at 2 V, 1 Hz). This study introduces a straightforward and efficient spray printing technique for the successful preparation of iEAP actuators with superior electrochemical and electromechanical properties as intended, which hold promise as artificial muscles in the field of bionic robotics.
Collapse
Affiliation(s)
- Haoxiang Tao
- Mechanical and Electrical Engineering, College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guangyao Hu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Bing Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Yongxing Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Jie Ru
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
7
|
Zhang H, Ma S, Xu C, Ma J, Chen Y, Hu Y, Xu H, Lin Z, Liang Y, Ren L, Ren L. Soft Actuator with Biomass Porous Electrode: A Strategy for Lowering Voltage and Enhancing Durability. NANO LETTERS 2024. [PMID: 38592087 DOI: 10.1021/acs.nanolett.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Electroactive artificial muscles with deformability have attracted widespread interest in the field of soft robotics. However, the design of artificial muscles with low-driven voltage and operational durability remains challenging. Herein, novel biomass porous carbon (BPC) electrodes are proposed. The nanoporous BPC enables the electrode to provide exposed active surfaces for charge transfer and unimpeded channels for ion migration, thus decreasing the driving voltage, enhancing time durability, and maintaining the actuation performances simultaneously. The proposed actuator exhibits a high displacement of 13.6 mm (bending strain of 0.54%) under 0.5 V and long-term durability of 99.3% retention after 550,000 cycles (∼13 days) without breaks. Further, the actuators are integrated to perform soft touch on a smartphone and demonstrated as bioinspired robots, including a bionic butterfly and a crawling robot (moving speed = 0.08 BL s-1). This strategy provides new insight into the design and fabrication of high-performance electroactive soft actuators with great application potential.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Suqian Ma
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Chuhan Xu
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Jiayao Ma
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Yan Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Yong Hu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Hui Xu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Zhaohua Lin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China
| | - Yunhong Liang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Lei Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
8
|
Zhang H, Yang L, Li X, Ping Y, Han J, Chen S, He C. Morphology regulation of conductive metal-organic frameworks in situ grown on graphene oxide for high-performance supercapacitors. Dalton Trans 2024; 53:4680-4688. [PMID: 38358381 DOI: 10.1039/d3dt04249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In this work, nickel-catecholate (Ni-CAT) nanorods were in situ compounded on graphene oxide (GO) to form a composite Ni-CAT@GO (NCG) with a special "blanket-shape" structure, which was used as an electrode material for supercapacitors. The morphology of Ni-CATs in situ grown on GO was modulated by introducing various contents of GO. With increasing GO, the length of nanorods of Ni-CATs is obviously shortened, and the charge transfer resistance of NCG is significantly reduced as the GO content is relatively low while it increases with further addition of GO, because excessive GO in NCG results in smaller crystal sizes accompanied by smaller stacking pores. Both the over-long Ni-CAT nanorods and the smaller stacking pores can restrict the accessible surface areas for the electrolyte. Optimal nanorod sizes are crucial to achieve good electrochemical performance for electrode materials. Galvanostatic charge-discharge analysis of NCG electrodes shows that their capacity initially increases and then decreases with the addition of more and more GO, and Ni-CAT@GO-0.5 (NCG0.5) with minimal charge transfer resistance exhibits the best electrochemical performance. The results demonstrate that the NCG0.5 electrode with optimal morphology possesses an excellent capacitance of 563.8 F g-1 at 0.5 A g-1 and a good rate performance of 61.9% at 10 A g-1, indicating that Ni-CAT@GO is a new type of promising electrode material for supercapacitors based on conductive metal-organic frameworks.
Collapse
Affiliation(s)
- Haoliang Zhang
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Lan Yang
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Xu Li
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Yunjie Ping
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Jinzhao Han
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Si Chen
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Chunqing He
- Key Laboratory of Nuclear Solid State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
9
|
Chen S, Tan SF, Singh H, Liu L, Etienne M, Lee PS. Functionalized MXene Films with Substantially Improved Low-Voltage Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307045. [PMID: 37787743 DOI: 10.1002/adma.202307045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Ti3 C2 Tx MXene film is promising for low-voltage electrochemical actuators (ECAs) due to its excellent electrical conductivity, volumetric capacitance, and mechanical properties. However, its in-plane actuation is limited to little intralayer strain of MXene sheets under polarization. Here it is demonstrated that a simple tetrabutylammonium (TBA) functionalization of MXene improves the in-plane actuation strain by 337% and also enhances the mechanical property and stability in air and the electrolyte. Various in situ characterizations reveal that the improved actuation is ascribed to the co-insertion/desertion of TBA and Li ions into/from MXene interlayer galleries and inter-edge gaps that causes a large in-plane sliding of MXene sheets under negative/positive polarizations. The assembled bending actuator has a high strength and modulus and generates a peak-to-peak strain difference of 0.771% and a blocking force up to 51.5 times its own weight under 1 V. The designed soft robotic tweezer can grasp an object under 1 V and hold it firmly under 0 V. The novel sheet sliding mechanism resembling the filament sliding theory in skeletal muscles may inspire the design of high-performance actuators with other nanomaterials.
Collapse
Affiliation(s)
- Shaohua Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shu Fen Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Facility for Analysis, Characterization, Testing and Simulation (FACTS), Nanyang Technological University, Singapore, 639798, Singapore
| | - Harpreet Singh
- University of Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), Nancy, F-54000, France
| | - Liang Liu
- University of Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), Nancy, F-54000, France
| | - Mathieu Etienne
- University of Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), Nancy, F-54000, France
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
10
|
Shin M, Lim J, Park Y, Lee JY, Yoon J, Choi JW. Carbon-based nanocomposites for biomedical applications. RSC Adv 2024; 14:7142-7156. [PMID: 38419681 PMCID: PMC10900039 DOI: 10.1039/d3ra08946k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Carbon nanomaterials have attracted significant attention in the biomedical field, including for biosensing, drug delivery, and tissue engineering applications. Based on their inherent properties such as their unique structure and high conductivity, carbon nanomaterials can overcome the current limitations in biomedical research such as poor stability of biomolecules, low sensitivity and selectivity of biosensors, and difficulty in precise drug delivery. In addition, recently, several novel nanomaterials have been integrated with carbon nanomaterials to develop carbon-based nanocomposites for application in biomedical research. In this review, we discuss recent studies on carbon-based nanocomposites and their biomedical applications. First, we discuss the representative carbon nanomaterials and nanocomposites composed of carbon and other novel nanomaterials. Next, applications of carbon nanomaterials and nanocomposites in the biomedical field are discussed according to topics in the biomedical field. We have discussed the recent studies on biosensors, drug delivery, and tissue engineering. In conclusion, we believe that this review provides the potential and applicability of carbon nanomaterials and their nanocomposites and suggests future directions of the application of carbon-based nanocomposites in biomedical applications.
Collapse
Affiliation(s)
- Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Yongseon Park
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea 43 Jibong-ro, Wonmi-gu Bucheon-si Gyeonggi-do 14662 Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University 35 Baekbeom-ro, Mapo-gu Seoul 04107 Republic of Korea
| |
Collapse
|
11
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
12
|
Hu X, Zhang F, Liu R, Jiang J, Bao X, Liang Y. Fast and Strong Carbon Nanotube Yarn Artificial Muscles by Electro-osmotic Pump. ACS NANO 2024; 18:428-435. [PMID: 38126714 DOI: 10.1021/acsnano.3c07694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Previous electrochemically powered yarn muscles cannot be usefully operated between extreme negative and extreme positive potentials, since generated stresses during anion injection and cation injection partially cancel because they are in the same direction. We here report an ionomer-infiltrated hybrid carbon nanotube (CNT) yarn muscle that shows unipolar stress behavior in the sense that stress generation between extreme potentials is additive, resulting in an enhanced stress generation. Moreover, the stress generated by this muscle unexpectedly increases with the potential scan rate, which contradicts the fact that scan-rate-induced stress decreases for neat CNT muscles. It is revealed by the electro-osmotic pump effect that the effective ion size injected into the muscle increases with an increase in the scan rate. We demonstrate an electrochemically powered gel-elastomer-yarn muscle adhesive that generates and delivers muscle-contraction-mimicking stimulation to a target tissue.
Collapse
Affiliation(s)
- Xinghao Hu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Fengrui Zhang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Runmin Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jinchang Jiang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xianfu Bao
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yiming Liang
- Intelligent Robotics Research Center, Zhejiang Lab, Hangzhou 311100, People's Republic of China
| |
Collapse
|
13
|
Lu C, Zhang X. Ionic Polymer-Metal Composites: From Material Engineering to Flexible Applications. Acc Chem Res 2024; 57:131-139. [PMID: 38095618 DOI: 10.1021/acs.accounts.3c00591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
ConspectusIonic polymer-metal composites (IPMCs) are one kind of artificial muscles that can realize energy conversions in response to external stimulus with merits of lightweight, scalability, quick response, and flexibility and have been treated as an important platform in artificial intelligence, such as bionic robotics, smart sensors, and micro-electromechanical systems. It is well-known that IPMC devices are mainly composed of one electrolyte layer laminated with symmetric electrode layers and realize energy conversion based on ion migration and redistribution inside the devices. However, several critical issues have greatly impeded the practical applications of IPMC devices, including metal electrode cracks, metal-polymer interface detachment, and water loss in the electrolyte. In the past decade, our group and collaborators have made attempts to address the mentioned critical issues with the purpose of accelerating practical applications of IPMC devices. First, in order to address the metal electrode cracks, we have developed various electrode materials to replace the metal electrode material, such as black phosphorus and graphdiyne. These materials display superior electrical and mechanical properties with enhanced material stability without cracking. Second, to address metal-polymer interface detachment, we have designed robust interfaces for IMPC devices with vertical array structures. The as-prepared interfaces present high ionic conductivity with excellent mechanical stability under bending states. As a result, the IPMC devices deliver high working stability exceeding a million cycles under air conditions. Third, in order to avoid water loss in the electrolyte, especially at ambient conditions, we have developed ionogel electrolytes containing highly stable ionic liquids as active ion sources. The ionogel electrolytes effectively prevent water loss in conventional water-containing electrolytes, just like Nafion electrolytes and greatly improve the working stability of IPMC devices. After addressing the key issues of IPMC devices, we finally obtained many high-performing IPMC devices and explored various intelligent applications of them. For instance, we have demonstrated the smart functions of IPMC devices as sensitive strain sensors, such as sign language recognition, handwriting detection, and human muscle monitoring. In addition, we have developed bionic flying robots with a vibration frequency as high as 30 Hz with the aid of high-performance IPMC actuators. A medical catheter based on IPMC actuators has been put forward by our group and can realize multiple degrees of freedom deformation under a low driving voltage of 2.5 V, which presents great potential for application in medical instruments. Lastly, a perspective on critical challenges and future research directions on IPMC materials and devices is highlighted for accelerating practical application.
Collapse
Affiliation(s)
- Chao Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
14
|
Wang B, Huang P, Li B, Wu Z, Xing Y, Zhu J, Liu L. Carbon-Based Nanomaterials Electrodes of Ionic Soft Actuators: From Initial 1D Structure to 3D Composite Structure for Flexible Intelligent Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304246. [PMID: 37635123 DOI: 10.1002/smll.202304246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/11/2023] [Indexed: 08/29/2023]
Abstract
With the rapid development of autonomous and intelligent devices driven by soft actuators, ion soft actuators in flexible intelligent devices have several advantages over other actuators, including their light weight, low voltage drive, large strain, good flexibility, fast response, etc. Traditional ionic polymer metal composites have received a lot of attention over the past decades, but they suffer from poor driving performance and short service lives since the precious metal electrodes are not only expensive, heavy, and labor-intensive, but also prone to cracking with repeated actuation. As excellent candidates for the electrode materials of ionic soft actuators, carbon-based nanomaterials have received a lot of interest because of their plentiful reserves, low cost, and excellent mechanical, electrical, and electrochemical properties. This research reviewed carbon-based nanomaterial electrodes of ion soft actuators for flexible smart devices from a fresh perspective from 1D to 3D combinations. The design of the electrode structure is introduced after the driving mechanism of ionic soft actuators. The details of ionic soft actuator electrodes made of carbon-based nanomaterials are then provided. Additionally, a summary of applications for flexible intelligent devices is provided. Finally, suggestions for challenges and prospects are made to offer direction and inspiration for further development.
Collapse
Affiliation(s)
- Bozheng Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Peng Huang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Bingjue Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Ze Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Youqiang Xing
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jianxiong Zhu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Lei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
15
|
Zhang H, Lin Z, Hu Y, Ma S, Liang Y, Ren L, Ren L. Low-Voltage Driven Ionic Polymer-Metal Composite Actuators: Structures, Materials, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206135. [PMID: 36683153 PMCID: PMC10074110 DOI: 10.1002/advs.202206135] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Indexed: 05/19/2023]
Abstract
With the characteristics of low driving voltage, light weight, and flexibility, ionic polymer-metal composites (IPMCs) have attracted much attention as excellent candidates for artificial muscle materials in the fields of biomedical devices, flexible robots, and microelectromechanical systems. Under small voltage excitation, ions inside the IPMC proton exchange membrane migrate directionally, leading to differences in the expansion rate of the cathode and the anode, which in turn deform. This behavior is caused by the synergistic action of a three-layer structure consisting of an external electrode layer and an internal proton exchange membrane, but the electrode layer is more dominant in this process due to the migration and storage of ions. The exploration of modifications and alternatives for proton exchange membranes and recent advances in the fabrication and characterization of conductive materials, especially carbon-based materials and conductive polymers, have contributed significantly to the development of IPMCs. This paper reviews the progress in the application of proton exchange membranes and electrode materials for IPMCs, discusses various processes currently applied to IPMCs preparation, and introduces various promising applications of cutting-edge IPMCs with high performance to provide new ideas and approaches for the research of new generation of low-voltage ionic soft actuators.
Collapse
Affiliation(s)
- Hao Zhang
- The Key Laboratory of Bionic EngineeringMinistry of EducationJilin UniversityChangchun130025China
- School of Mechanical and Aerospace EngineeringJilin UniversityChangchun130025China
- Weihai Institute for Bionics‐Jilin UniversityJilin UniversityWeihai264207China
| | - Zhaohua Lin
- School of Mechanical and Aerospace EngineeringJilin UniversityChangchun130025China
| | - Yong Hu
- School of Mechanical and Aerospace EngineeringJilin UniversityChangchun130025China
- Weihai Institute for Bionics‐Jilin UniversityJilin UniversityWeihai264207China
| | - Suqian Ma
- The Key Laboratory of Bionic EngineeringMinistry of EducationJilin UniversityChangchun130025China
| | - Yunhong Liang
- The Key Laboratory of Bionic EngineeringMinistry of EducationJilin UniversityChangchun130025China
| | - Lei Ren
- The Key Laboratory of Bionic EngineeringMinistry of EducationJilin UniversityChangchun130025China
- Department of Mechanical, Aerospace and Civil EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Luquan Ren
- The Key Laboratory of Bionic EngineeringMinistry of EducationJilin UniversityChangchun130025China
| |
Collapse
|
16
|
Li K, Shen H, Xue W. Wet-Driven Bionic Actuators from Wool Artificial Yarn Muscles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16232-16243. [PMID: 36942675 DOI: 10.1021/acsami.2c22659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nature-similar muscle is one of the ultimate goals of advanced artificial muscle materials. Currently, a variety of chemical and natural materials have been gradually developed for the preparation of artificial muscles. However, due to the scarcity, biological exclusion, and poor flexibility of the abovementioned materials, it is still a challenging process to maximize the imitation of behaviors shown by real muscles and commercial development. Here, this article presents multidimensional wool yarn artificial muscles, and the wet response behavior of fibers is induced in yarn muscles successfully by virtue of weakening the water-repellent effect of wool scales. Wool artificial muscles are cost-effective and widely available and have good biocompatibility. In addition, wool fiber assemblies are structurally stable, soft, and flexible to be processed into artificial muscles with torsional, contractile, and even multilayered structures, enabling various wet-driven behaviors. On the basis of the theoretical model and numerical simulation, we explained and verified the working mechanism employed in wool artificial yarn muscles. Finally, the yarn muscle was integrated into a wool muscle group through the textile technology, followed by the application to robot bionic arms, displaying the great potential of wool artificial yarn muscles in bionic drivers and the intelligent textile industry.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| | - Hua Shen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| | - Wenliang Xue
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| |
Collapse
|
17
|
Leng X, Mei G, Zhang G, Liu Z, Zhou X. Tethering of twisted-fiber artificial muscles. Chem Soc Rev 2023; 52:2377-2390. [PMID: 36919405 DOI: 10.1039/d2cs00489e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Twisted-fiber artificial muscles, a new type of soft actuator, exhibit significant potential for use in applications related to lightweight smart devices and soft robotics. Fiber twisting generates internal torque and a spiral architecture, exhibiting rotation, contraction, or elongation as a result of fiber volume change. Untethering a twisted fiber often results in fiber untwisting and loss of stored torque energy. Preserving the torque in twisted fibers during actuation is necessary to realize a reversible and stable artificial muscle performance; this is a key issue that has not yet been systematically discussed and reviewed. This review summarizes the mechanisms for preserving the torque within twisted fibers and the potential applications of such systems. The potential challenges and future directions of research related to twisted-fiber artificial muscles are also discussed.
Collapse
Affiliation(s)
- Xueqi Leng
- Department of Science, China Pharmaceutical University, Nanjing 211198, China. .,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Guanghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing 211198, China. .,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
18
|
Suzuki D, Nonoguchi Y, Shimamoto K, Terasaki N. Outstanding Robust Photo- and Thermo-Electric Applications with Stabilized n-Doped Carbon Nanotubes by Parylene Coating. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9873-9882. [PMID: 36781167 PMCID: PMC9951210 DOI: 10.1021/acsami.2c21347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Stabilization techniques for n-doped carbon nanotubes (CNTs) are essential for the practical use of CNT devices. However, none of the reported n-dopants have sufficient robustness in a practical environment. Herein, we report a highly stable technique for fabricating n-doped CNT films. We elucidate the mechanism by which air stability can be achieved by completely covering CNTs with n-dopants to prevent oxidation; consequently, the stability is lost when exposed to scratches or moisture. Therefore, we introduce parylene as a protective layer for n-doped CNTs and achieve air stability for more than 365 d. Moreover, we demonstrate outstanding robust thermo-electric power generation from strong acids, alkalis, and alcohols, which cannot be realized with conventional air-stable n-dopants. The proposed stabilization technique is versatile and can be applied to various n-dopants. Thus, it is expected to be a key technology in the practical application of CNT devices.
Collapse
Affiliation(s)
- Daichi Suzuki
- Sensing
System Research Center, National Institute
of Advanced Industrial Science and Technology (AIST), Saga 841-0052, Japan
| | - Yoshiyuki Nonoguchi
- Faculty
of Materials Science and Engineering, Kyoto
Institute of Technology, Kyoto 606-8585, Japan
| | - Kazumasa Shimamoto
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Nao Terasaki
- Sensing
System Research Center, National Institute
of Advanced Industrial Science and Technology (AIST), Saga 841-0052, Japan
| |
Collapse
|
19
|
Pyo S, Eun Y, Sim J, Kim K, Choi J. Carbon nanotube-graphene hybrids for soft electronics, sensors, and actuators. MICRO AND NANO SYSTEMS LETTERS 2022. [DOI: 10.1186/s40486-022-00151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractSoft devices that are mechanically flexible and stretchable are considered as the building blocks for various applications ranging from wearable devices to robotics. Among the many candidate materials for constructing soft devices, carbon nanomaterials such as carbon nanotubes (CNTs) and graphene have been actively investigated owing to their outstanding characteristics, including their intrinsic flexibility, tunable conductivity, and potential for large-area processing. In particular, hybrids of CNTs and graphene can improve the performance of soft devices and provide them with novel capabilities. In this review, the advances in CNT-graphene hybrid-based soft electrodes, transistors, pressure and strain sensors, and actuators are discussed, highlighting the performance improvements of these devices originating from the synergistic effects of the hybrids of CNT and graphene. The integration of multidimensional heterogeneous carbon nanomaterials is expected to be a promising approach for accelerating the development of high-performance soft devices. Finally, current challenges and future opportunities are summarized, from the processing of hybrid materials to the system-level integration of multiple components.
Collapse
|
20
|
Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review. Catalysts 2022. [DOI: 10.3390/catal12111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nanoparticles typically have dimensions of less than 100 nm. Scientists around the world have recently become interested in nanotechnology because of its potential applications in a wide range of fields, including catalysis, gas sensing, renewable energy, electronics, medicine, diagnostics, medication delivery, cosmetics, the construction industry, and the food industry. The sizes and forms of nanoparticles (NPs) are the primary determinants of their properties. Nanoparticles’ unique characteristics may be explored for use in electronics (transistors, LEDs, reusable catalysts), energy (oil recovery), medicine (imaging, tumor detection, drug administration), and more. For the aforementioned applications, the synthesis of nanoparticles with an appropriate size, structure, monodispersity, and morphology is essential. New procedures have been developed in nanotechnology that are safe for the environment and can be used to reliably create nanoparticles and nanomaterials. This research aims to illustrate top-down and bottom-up strategies for nanomaterial production, and numerous characterization methodologies, nanoparticle features, and sector-specific applications of nanotechnology.
Collapse
|
21
|
Fabrication and Characterization of a Novel Smart-Polymer Actuator with Nanodispersed CNT/Pd Composite Interfacial Electrodes. Polymers (Basel) 2022; 14:polym14173494. [PMID: 36080568 PMCID: PMC9459883 DOI: 10.3390/polym14173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
As emerging smart polymers, ionic polymer-metal composites (IPMCs) are playing more and more important roles as promising candidates for next-generation actuators in terms of academic interest and industrial applications. It is reported that the actuation behaviors of IPMCs are dependent on the electrochemical kinetic process between metal/polymer interfaces to a great extent. Thus, the fabrication of tailored metal/polymer interface electrodes with large surface areas and superior interface characteristics is highly desirable in improving the actuation performance of IPMCs, which is still technologically critical for IPMCs. In this contribution, we developed a novel fabrication technology for carbon/metal composite electrodes with a superior interface structure and characteristics to optimize the actuation behaviors of IPMCs by exploiting the synergistic effect of combining a sulfonated multi-walled carbon nanotube (SCNT)/Nafion hybrid layer with nanodispersed Pd particles. The improved IPMCs showed significantly enhanced capacitance characteristics and highly facilitated charge–discharge processes. Moreover, their actuation behaviors were greatly improved as expected, including approximately 2.5 times larger displacement, 3 times faster deformation speed, 4 times greater output force, and 10 times higher volume work density compared to those of the IPMCs with traditional electrode structures. The advantages of the developed SCNT/Pd-IPMCs will greatly facilitate their applicability for artificial muscles.
Collapse
|
22
|
Lv Y, Ma X, Xu Y, Jia W. Investigation on performance of adding manganese dioxide into graphene oxide electrode film. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2061993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Yanzhuo Lv
- Institute of Electrochemical Engineering, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Xueyan Ma
- Institute of Electrochemical Engineering, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Yan Xu
- Mechanical engineering, Engineering Training Center, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Weikun Jia
- Institute of Intelligent Manufacturing and Robotics, College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, Heilongjiang, China
| |
Collapse
|
23
|
Rani D, Vijaya Kumara A, Srinivasan S. Electrochemical Soft Actuator: Deciphering the Difference in the Characteristics of Polaronic and Bipolaronic Forms of Polyaniline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9575-9586. [PMID: 35881445 DOI: 10.1021/acs.langmuir.2c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyaniline (PANI) has been projected as an efficient electrochemical actuator due to its ease of synthesis, lightweight, biocompatibility, low cost, and possible low operating potential and high stress generation. However, challenges such as low inherent ionic and electronic conductivity of the polymer lead to small accumulation of ions and high ionic diffusion path length inside the polymer remain. In the present study, a highly conjugated, planar, conducting polaronic form of PANI with a nanofiber morphology is synthesized using in situ electrochemical polymerization on a reduced graphene oxide (rGO) electrode. The polymerization is carried out in the Schaefer mode at the air-water interface under controlled surface pressure in a Langmuir trough. Electrochemical, UV-visible, XPS, and Raman spectroscopic studies confirm the formation of the planar polaronic PANI form. Polymerization without surface pressure leads to the bipolaronic form of PANI. The two forms are subsequently used to understand their contributions toward electrochemical actuation in a bilayer configuration. The conducting polaronic PANI/EGO (exfoliated graphene oxide) exhibits a remarkably larger total angular displacement of 220° in aqueous 1 M NaClO4 during a potential scan in the range ±0.9 V than the bipolaronic counterpart which exhibits a total angular displacement of 125°. Current imaging in the scanning electrochemical microscopy mode confirms a high volumetric expansion in the case of the polaronic form as compared to its bipolaronic counterpart. Raman spectroscopy reveals the oxidation to the emeraldine form in the polaronic PANI and to the pernigraniline form in the bipolaronic form during actuation. Electrochemical impedance spectroscopy study evidences the existence of a small charge transfer resistance with high bulk capacitance for the polaronic structure.
Collapse
Affiliation(s)
- Dimple Rani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - A Vijaya Kumara
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sampath Srinivasan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
24
|
Lee SJ, Jung YJ, Park J, Jang SH. Temperature Detectable Surface Coating with Carbon Nanotube/Epoxy Composites. NANOMATERIALS 2022; 12:nano12142369. [PMID: 35889593 PMCID: PMC9324561 DOI: 10.3390/nano12142369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022]
Abstract
In the construction and machinery industry, heat is a major factor causing damage and destruction. The safety and efficiency of most machines and structures are greatly affected by temperature, and temperature management and control are essential. In this study, a carbon nanotube (CNT) based temperature sensing coating that can be applied to machines and structures having various structural types was fabricated, and characteristics analysis and temperature sensing performance were evaluated. The surface coating, which detects temperature through resistance change is made of a nanocomposite composed of carbon nanotubes (CNT) and epoxy (EP). We investigated the electrical properties by CNT concentration and temperature sensing performance of CNT/EP coating against static and cyclic temperatures. In addition, the applicability of the CNT/EP coating was investigated through a partially heating and cooling experiment. As a result of the experiment, the CNT/EP coating showed higher electrical conductivity as the CNT concentration increased. In addition, the CNT/EP coating exhibits high sensing performance in the high and sub−zero temperature ranges with a negative temperature coefficient of resistance. Therefore, the proposed CNT/EP coatings are promising for use as multi-functional coating materials for the detection of high and freezing temperatures.
Collapse
Affiliation(s)
- Seung-Jun Lee
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Korea;
| | - Yu-Jin Jung
- Department of Smart City Engineering, Hanyang University ERICA, Ansan 15588, Korea;
| | - JeeWoong Park
- Department of Civil and Environmental Engineering and Construction, The University of Nevada, Las Vegas, NV 89154, USA
- Correspondence: (J.P.); (S.-H.J.)
| | - Sung-Hwan Jang
- Department of Smart City Engineering, Hanyang University ERICA, Ansan 15588, Korea;
- Department of Civil and Environmental Engineering, Hanyang University ERICA, Ansan 15588, Korea
- Correspondence: (J.P.); (S.-H.J.)
| |
Collapse
|
25
|
Chen S, Ciou JH, Yu F, Chen J, Lv J, Lee PS. Molecular-Level Methylcellulose/MXene Hybrids with Greatly Enhanced Electrochemical Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200660. [PMID: 35584538 DOI: 10.1002/adma.202200660] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Ti3 C2 Tx MXene film is promising for electrochemical actuators due to its high electrical conductivity and volumetric capacitance. However, its actuation performance is limited by the slow ion diffusion through the film and poor mechanical property in aqueous electrolytes. Here, molecular-level methylcellulose (MC)/MXene hybrid films are assembled with obviously enlarged layer distance, improved wet strength, and ambient stability. The hybrid films show significantly higher in-plane actuation strain in a liquid electrolyte. Based on direct strain measurements, in situ X-ray diffraction (XRD) and ex situ X-ray photoelectron spectroscopy (XPS) analyses, the actuation enhancement can be ascribed to the enlarged layer distance allowing more water and ions to be intercalated/de-intercalated and MC-induced sliding of MXene sheets. The assembled soft actuator has a high Young's modulus of 1.93 GPa and can be operated in air, generating a peak-to-peak strain difference up to 0.541% under a triangular wave voltage of ±1 V and a blocking force of 4.7 times its own weight.
Collapse
Affiliation(s)
- Shaohua Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jing-Hao Ciou
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Fei Yu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jian Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
26
|
Xiang Y, Li B, Li B, Bao L, Sheng W, Ma Y, Ma S, Yu B, Zhou F. Toward a Multifunctional Light-Driven Biomimetic Mudskipper-Like Robot for Various Application Scenarios. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20291-20302. [PMID: 35442618 DOI: 10.1021/acsami.2c03852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The systematicness, flexibility, and complexity of natural biological organisms are a constant stream of inspiration for researchers. Therefore, mimicking the natural intelligence system to develop microrobotics has attracted broad interests. However, developing a multifunctional device for various application scenarios has great challenges. Herein, we present a bionic multifunctional actuation device─a light-driven mudskipper-like actuator that is composed of a porous silicone elastomer and graphene oxide. The actuator exhibits a reversible and well-integrated response to near-infrared (NIR) light due to the photothermal-induced contractile stress in the actuation film, which promotes generation of cyclical and rapid locomotion upon NIR light being switched on and off, such as bending in air and crawling in liquid. Furthermore, through rational device design and modulation of light, the mechanically versatile device can float and swim controllably following a predesigned route at the liquid/air interface. More interestingly, the actuator can jump from liquid medium to air with an extremely short response time (400 ms), a maximum speed of 2 m s-1, and a height of 14.3 cm under the stimulation of near-infrared light. The present work possesses great potential in the applications of bioinspired actuators in various fields, such as microrobots, sensors, and locomotion.
Collapse
Affiliation(s)
- Yangyang Xiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bianhong Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Luyao Bao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
27
|
He Z, Jiao S, Wang Z, Wang Y, Yang M, Zhang Y, Liu Y, Wu Y, Shang J, Chen Q, Li RW. An Antifatigue Liquid Metal Composite Electrode Ionic Polymer-Metal Composite Artificial Muscle with Excellent Electromechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14630-14639. [PMID: 35290011 DOI: 10.1021/acsami.2c01453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ionic polymer-metal composites (IPMC), one of the most popular materials in the field of artificial muscle research, have attracted much attention because of their high flexibility, low drive voltage (<10 V), high force density, large deformation, and so forth. However, the results show that the serious electrode fatigue crack and water loss of traditional IPMC greatly decrease its fatigue life and limit the practical application. In this study, we developed a novel liquid metal composite electrode. A layer of eutectic gallium-indium alloy (EGaIn) liquid metal was applied to the surface of the platinum electrode of the IPMC using a mask. Because of the good self-healing performance of the liquid metal, it is expected to solve the above problems of resistance increase and water loss caused by cracks. It turns out that the prepared EGaIn/Pt-IPMC exhibits a driving force up to 120 mN and maximum fatigue life of about 25,000 s at a driving voltage of 3 V. Compared with the best work reported, the fatigue strength of EGaIn/Pt-IPMC was increased by about 210%, and the maximum driving force of EGaIn/Pt-IPMC prepared by a single-layer basement membrane was between the IPMC prepared by 4-6 layer basement membrane. The electromechanical properties were significantly improved, and it is expected to realize a series of bionic applications.
Collapse
Affiliation(s)
- Zhihao He
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Shasha Jiao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Zhengping Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yifan Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Mengyu Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Ye Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Qingming Chen
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Run-Wei Li
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
28
|
Usman KAS, Bacal CJO, Zhang J, Qin S, Lynch PA, Mota-Santiago P, Naebe M, Henderson LC, Hegh DY, Razal JM. Tough and Fatigue Resistant Cellulose Nanocrystal Stitched Ti 3 C 2 T x MXene Films. Macromol Rapid Commun 2022; 43:e2200114. [PMID: 35344626 DOI: 10.1002/marc.202200114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Indexed: 11/10/2022]
Abstract
Ti3 C2 Tx MXene (or "MXene" for simplicity) has gained noteworthy attention for its metal-like electrical conductivity and high electrochemical capacitance - a unique blend of properties attractive towards a wide range of applications such as energy storage, healthcare monitoring and electromagnetic interference shielding. However, processing MXene architectures using conventional methods often deals with the presence of defects, voids and isotropic flake arrangements, resulting in a trade-off in properties. Here, we report a sequential bridging (SB) strategy to fabricate dense, free-standing MXene films of interconnected flakes with minimal defects, significantly enhancing its mechanical properties, specifically tensile strength (∼285 MPa) and breaking energy (∼16.1 MJ m-3 ), while retaining substantial values of electrical conductivity (∼3,050 S cm-1 ) and electrochemical capacitance (∼920 F cm-3 ). This SB method first involves forming a cellulose nanocrystal (CNC)-stitched MXene framework, followed by infiltration with structure-densifying calcium cations (Ca2+ ), resulting in tough and fatigue resistant films with anisotropic, evenly spaced, and strongly interconnected flakes - properties essential for developing high-performance energy-storage devices. We anticipate that the knowledge gained in this work will be extended towards improving the robustness and retaining the electronic properties of 2D nanomaterial-based macroarchitectures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ken Aldren S Usman
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | | | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Si Qin
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Peter A Lynch
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Pablo Mota-Santiago
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia.,Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Dylan Y Hegh
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
29
|
Preparation and Modification Technology Analysis of Ionic Polymer-Metal Composites (IPMCs). Int J Mol Sci 2022; 23:ijms23073522. [PMID: 35408883 PMCID: PMC8998928 DOI: 10.3390/ijms23073522] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
As a new type of flexible smart material, ionic polymer-metal composite (IPMC) has the advantages of being lightweight and having fast responses, good flexibility, and large deformation ranges. However, IPMC has the disadvantages of a small driving force and short lifespan. Based on this, this paper firstly analyzes the driving mechanism of IPMC. Then, it focuses on the current preparation technology of IPMC from the aspects of electroless plating and mechanical plating. The advantages and disadvantages of various preparation methods are analyzed. Due to the special driving mechanism of IPMC, there is a problem of short non-aqueous working time. Therefore, the modification research of IPMC is reviewed from the aspects of the basement membrane, working medium, and electrode materials. Finally, the current challenges and future development prospects of IPMC are discussed.
Collapse
|
30
|
Wang SQ, Zhang B, Luo YW, Meng X, Wang ZX, Luo XM, Zhang GP. Maximizing Performance of a Hybrid MnO 2/Ni Electrochemical Actuator through Tailoring Lattice Tunnels and Cation Vacancies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9281-9291. [PMID: 35148053 DOI: 10.1021/acsami.1c22242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrochemical actuators play a key role in converting electrical energy to mechanical energy. However, a low actuation stress and an unsatisfied strain response rate strongly limit the extensive applications of the actuators. Here, we report hybrid manganese dioxide (MnO2) fabricated by introducing ramsdellite (R-MnO2) and Mn vacancies into birnessite (δ-MnO2) nanosheets, which in situ grew on the surface of a nickel (Ni) film, forming a hybrid MnO2/Ni actuator. The actuator demonstrated a rapid strain response of 0.88% s-1 (5.3% intrinsic strain in 6 s) and a large actuation stress of 244 MPa owing to the special R-MnO2 with a high density of sodium ion (Na+)-accessible lattice tunnels, Mn vacancies, and also a high Young's modulus of the hybrid MnO2/Ni composite. Besides, the cyclic stability of the actuator was realized after 1.2 × 104 cycles of electric stimulation under a frequency of 0.05 Hz. The finding of the novel hybrid MnO2/Ni actuator may provide a new strategy to maximize the actuating performance evidently through tailoring the lattice tunnel structure and introducing cation vacancies into electrochemical electrode materials.
Collapse
Affiliation(s)
- Si-Qi Wang
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, P. R. China
| | - Bin Zhang
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, P. R. China
| | - Yan-Wen Luo
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, P. R. China
| | - Xiangying Meng
- College of Sciences, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, P. R. China
| | - Zhe-Xuan Wang
- Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, P. R. China
| | - Xue-Mei Luo
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China
| | - Guang-Ping Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China
| |
Collapse
|
31
|
Ionic covalent organic framework based electrolyte for fast-response ultra-low voltage electrochemical actuators. Nat Commun 2022; 13:390. [PMID: 35046389 PMCID: PMC8770580 DOI: 10.1038/s41467-022-28023-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/16/2021] [Indexed: 01/01/2023] Open
Abstract
Electrically activated soft actuators with large deformability are important for soft robotics but enhancing durability and efficiency of electrochemical actuators is challenging. Herein, we demonstrate that the actuation performance of an ionic two-dimensional covalent-organic framework based electrochemical actuator is improved through the ordered pore structure of opening up efficient ion transport routes. Specifically, the actuator shows a large peak to peak displacement (9.3 mm, ±0.5 V, 1 Hz), a fast-response time to reach equilibrium-bending (~1 s), a correspondingly high bending strain difference (0.38%), a broad response frequency (0.1–20 Hz) and excellent durability (>99%) after 23,000 cycles. The present study ascertains the functionality of soft electrolyte as bionic artificial actuators while providing ideas for expanding the limits in applications for robots. Electrically activated soft actuators with large deformability are important for soft robotics but enhancing durability and efficiency of electrochemical actuators is challenging. Here the authors demonstrate that the actuation performance of an ionic two-dimensional covalent-organic framework based electrochemical actuator is improved through the ordered pore structure of opening up efficient ion transport routes
Collapse
|
32
|
Brinker M, Huber P. Wafer-Scale Electroactive Nanoporous Silicon: Large and Fully Reversible Electrochemo-Mechanical Actuation in Aqueous Electrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105923. [PMID: 34677879 PMCID: PMC11468870 DOI: 10.1002/adma.202105923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Nanoporosity in silicon results in interface-dominated mechanics, fluidics, and photonics that are often superior to the ones of the bulk material. However, their active control, for example, by electronic stimuli, is challenging due to the absence of intrinsic piezoelectricity in the base material. Here, for large-scale nanoporous silicon cantilevers wetted by aqueous electrolytes, electrosorption-induced mechanical stress generation of up to 600 kPa that is reversible and adjustable at will by potential variations of ≈1 V is shown. Laser cantilever bending experiments in combination with in operando voltammetry and step coulombmetry allow this large electro-actuation to be traced to the concerted action of 100 billions of parallel nanopores per square centimeter cross-section and determination of the capacitive charge-stress coupling parameter upon ion adsorption and desorption as well as the intimately related stress actuation dynamics for perchloric and isotonic saline solutions. A comparison with planar silicon surfaces reveals mechanistic insights on the observed electrocapillarity (Hellmann-Feynman interactions) with respect to the importance of oxide formation and wall roughness on the single-nanopore scale. The observation of robust electrochemo-mechanical actuation in a mainstream semiconductor with wafer-scale, self-organized nanoporosity opens up novel opportunities for on-chip integrated stress generation and actuorics at exceptionally low operation voltages.
Collapse
Affiliation(s)
- Manuel Brinker
- Institute for Materials and X‐Ray PhysicsHamburg University of Technology21073HamburgGermany
- Center for X‐Ray and Nano Science CXNSDeutsches Elektronen‐Synchrotron DESY22607HamburgGermany
- Center for Hybrid Nanostructures CHyNUniversity of Hamburg22607HamburgGermany
| | - Patrick Huber
- Institute for Materials and X‐Ray PhysicsHamburg University of Technology21073HamburgGermany
- Center for X‐Ray and Nano Science CXNSDeutsches Elektronen‐Synchrotron DESY22607HamburgGermany
- Center for Hybrid Nanostructures CHyNUniversity of Hamburg22607HamburgGermany
| |
Collapse
|
33
|
Eslamian M, Mirab F, Raghunathan VK, Majd S, Abidian MR. Organic Semiconductor Nanotubes for Electrochemical Devices. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2105358. [PMID: 34924917 PMCID: PMC8673914 DOI: 10.1002/adfm.202105358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Indexed: 05/20/2023]
Abstract
Electrochemical devices that transform electrical energy to mechanical energy through an electrochemical process have numerous applications ranging from soft robotics and micropumps to autofocus microlenses and bioelectronics. To date, achievement of large deformation strains and fast response times remains a challenge for electrochemical actuator devices operating in liquid wherein drag forces restrict the actuator motion and electrode materials/structures limit the ion transportation and accumulation. We report results for electrochemical actuators, electrochemical mass transfers, and electrochemical dynamics made from organic semiconductors (OSNTs). Our OSNTs electrochemical device exhibits high actuation performance with fast ion transport and accumulation and tunable dynamics in liquid and gel-polymer electrolytes. This device demonstrates an excellent performance, including low power consumption/strain, a large deformation, fast response, and excellent actuation stability. This outstanding performance stems from enormous effective surface area of nanotubular structure that facilitates ion transport and accumulation resulting in high electroactivity and durability. We utilize experimental studies of motion and mass transport along with the theoretical analysis for a variable-mass system to establish the dynamics of the electrochemical device and to introduce a modified form of Euler-Bernoulli's deflection equation for the OSNTs. Ultimately, we demonstrate a state-of-the-art miniaturized device composed of multiple microactuators for potential biomedical application. This work provides new opportunities for next generation electrochemical devices that can be utilized in artificial muscles and biomedical devices.
Collapse
Affiliation(s)
- Mohammadjavad Eslamian
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Fereshtehsadat Mirab
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Sheereen Majd
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| |
Collapse
|
34
|
Abstract
Electro-responsive actuators (ERAs) hold great promise for cutting-edge applications in e-skins, soft robots, unmanned flight, and in vivo surgery devices due to the advantages of fast response, precise control, programmable deformation, and the ease of integration with control circuits. Recently, considering the excellent physical/chemical/mechanical properties (e.g., high carrier mobility, strong mechanical strength, outstanding thermal conductivity, high specific surface area, flexibility, and transparency), graphene and its derivatives have emerged as an appealing material in developing ERAs. In this review, we have summarized the recent advances in graphene-based ERAs. Typical the working mechanisms of graphene ERAs have been introduced. Design principles and working performance of three typical types of graphene ERAs (e.g., electrostatic actuators, electrothermal actuators, and ionic actuators) have been comprehensively summarized. Besides, emerging applications of graphene ERAs, including artificial muscles, bionic robots, human-soft actuators interaction, and other smart devices, have been reviewed. At last, the current challenges and future perspectives of graphene ERAs are discussed.
Collapse
|
35
|
Alekseyev NI, Khmelnitskiy IK, Aivazyan VM, Broyko AP, Korlyakov AV, Luchinin VV. Ionic EAP Actuators with Electrodes Based on Carbon Nanomaterials. Polymers (Basel) 2021; 13:polym13234137. [PMID: 34883640 PMCID: PMC8659251 DOI: 10.3390/polym13234137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022] Open
Abstract
Flexible polymer-based actuators, often also called artificial muscles, are an essential part of biomimetic systems that mimic the movement principles of animal world creatures. The most used electrode material to force the actuator move is an ensemble of noble metal nanoparticles in the electroactive polymer surface. Noble metal electrodes have enough electrical conductivity and elasticity and are not subjected to oxidation. However, high cost of such electrodes and their tendency to cracking dictate the need for searching other materials, primarily carbon ones. The review considers several options for this search. For example, carbon nanotubes and graphene have excellent properties at the level of a single individually taken nanotube or graphene sheet. However, conservation of these properties in structurally imperfect film electrodes requires a separate study. In addition, there are problems of compatibility of such electrodes with the polymers that requires cumbersome technologies, e.g., hot pressing, which complicates the production of the actuator as a whole. The review concerns the technology options of manufacturing actuators and the results obtained on their basis, both including hot pressing and avoiding this procedure. In particular, the required level of the graphene oxide reduction in hydrazine provides sufficient adhesion at rather high electrical conductivity of the graphene film. The ability to simultaneous achieving these properties is a nontrivial result, providing the same level of actuation as with expensive noble metal electrodes. Actuators that additionally require greater lifetime resource should be obtained in other ways. Among them are using the graphdiyne electrodes and laser processing of the graphene electrodes.
Collapse
|
36
|
Shi M, Yeatman EM. A comparative review of artificial muscles for microsystem applications. MICROSYSTEMS & NANOENGINEERING 2021; 7:95. [PMID: 34858630 PMCID: PMC8611050 DOI: 10.1038/s41378-021-00323-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 05/28/2023]
Abstract
Artificial muscles are capable of generating actuation in microsystems with outstanding compliance. Recent years have witnessed a growing academic interest in artificial muscles and their application in many areas, such as soft robotics and biomedical devices. This paper aims to provide a comparative review of recent advances in artificial muscle based on various operating mechanisms. The advantages and limitations of each operating mechanism are analyzed and compared. According to the unique application requirements and electrical and mechanical properties of the muscle types, we suggest suitable artificial muscle mechanisms for specific microsystem applications. Finally, we discuss potential strategies for energy delivery, conversion, and storage to promote the energy autonomy of microrobotic systems at a system level.
Collapse
Affiliation(s)
- Mayue Shi
- Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Eric M. Yeatman
- Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| |
Collapse
|
37
|
Farcas C, Galao O, Vertuccio L, Guadagno L, Romero-Sánchez MD, Rodríguez-Pastor I, Garcés P. Ice-Prevention and De-Icing Capacity of Epoxy Resin Filled with Hybrid Carbon-Nanostructured Forms: Self-Heating by Joule Effect. NANOMATERIALS 2021; 11:nano11092427. [PMID: 34578741 PMCID: PMC8465919 DOI: 10.3390/nano11092427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
In this study, CNTs and graphite have been incorporated to provide electrical conductivity and self-heating capacity by Joule effect to an epoxy matrix. Additionally, both types of fillers, with different morphology, surface area and aspect ratio, were simultaneously incorporated (hybrid CNTs and graphite addition) into the same epoxy matrix to evaluate the effect of the self-heating capacity of carbon materials-based resins on de-icing and ice-prevention capacity. The self-heating capacity by Joule effect and the thermal conductivity of the differently filled epoxy resin were evaluated for heating applications at room temperature and at low temperatures for de-icing and ice-prevention applications. The results show that the higher aspect ratio of the CNTs determined the higher electrical conductivity of the epoxy resin compared to that of the epoxy resin filled with graphite, but the 2D morphology of graphite produced the higher thermal conductivity of the filled epoxy resin. The presence of graphite enhanced the thermal stability of the filled epoxy resin, helping avoid its deformation produced by the softening of the epoxy resin (the higher the thermal conductivity, the higher the heat dissipation), but did not contribute to the self-heating by Joule effect. On the other hand, the feasibility of electrically conductive epoxy resins for de-icing and ice-prevention applications by Joule effect was demonstrated.
Collapse
Affiliation(s)
- Catalina Farcas
- Civil Engineering Department, University of Alicante, Ctra. San Vicente s/n, 03690 San Vicente del Raspeig, Spain; (C.F.); (O.G.); (P.G.)
| | - Oscar Galao
- Civil Engineering Department, University of Alicante, Ctra. San Vicente s/n, 03690 San Vicente del Raspeig, Spain; (C.F.); (O.G.); (P.G.)
| | - Luigi Vertuccio
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (L.V.); (L.G.)
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (L.V.); (L.G.)
| | - M. Dolores Romero-Sánchez
- Applynano Solutions, S.L. Parque Científico de Alicante, 03690 San Vicente del Raspeig, Spain;
- Correspondence:
| | | | - Pedro Garcés
- Civil Engineering Department, University of Alicante, Ctra. San Vicente s/n, 03690 San Vicente del Raspeig, Spain; (C.F.); (O.G.); (P.G.)
| |
Collapse
|
38
|
Direct Writing Corrugated PVC Gel Artificial Muscle via Multi-Material Printing Processes. Polymers (Basel) 2021; 13:polym13162734. [PMID: 34451273 PMCID: PMC8400140 DOI: 10.3390/polym13162734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/03/2022] Open
Abstract
Electroactive PVC gel is a new artificial muscle material with good performance that can mimic the movement of biological muscle in an electric field. However, traditional manufacturing methods, such as casting, prevent the broad application of this promising material because they cannot achieve the integration of the PVC gel electrode and core layer, and at the same time, it is difficult to create complex and diverse structures. In this study, a multi-material, integrated direct writing method is proposed to fabricate corrugated PVC gel artificial muscle. Inks with suitable rheological properties were developed for printing four functional layers, including core layers, electrode layers, sacrificial layers, and insulating layers, with different characteristics. The curing conditions of the printed CNT/SMP inks under different applied conditions were also discussed. The structural parameters were optimized to improve the actuating performance of the PVC gel artificial muscle. The corrugated PVC gel with a span of 1.6 mm had the best actuating performance. Finally, we printed three layers of corrugated PVC gel artificial muscle with good actuating performance. The proposed method can help to solve the inherent shortcomings of traditional manufacturing methods of PVC gel actuators. The printed structures have potential applications in many fields, such as soft robotics and flexible electronic devices.
Collapse
|
39
|
Yao X, Qian Y, Fan C. Electroactive nanomaterials in the peripheral nerve regeneration. J Mater Chem B 2021; 9:6958-6972. [PMID: 34195746 DOI: 10.1039/d1tb00686j] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe peripheral nerve injuries are threatening the life quality of human beings. Current clinical treatments contain some limitations and therefore extensive research and efforts are geared towards tissue engineering approaches and development. The biophysical and biochemical characteristics of nanomaterials are highly focused on as critical elements in the design and fabrication of regenerative scaffolds. Recent studies indicate that the electrical properties and nanostructure of biomaterials can significantly affect the progress of nerve repair. More importantly, these studies also demonstrate the fact that electroactive nanomaterials have substantial implications for regulating the viability and fate of primary supporting cells in nerve regeneration. In this review, we summarize the current knowledge of electroconductive and piezoelectric nanomaterials. We exemplify typical cellular responses through cell-material interfaces, and the nanomaterial-induced microenvironment rebalance in terms of several key factors, immune responses, angiogenesis and oxidative stress. This work highlights the mechanism and application of electroactive nanomaterials to the development of regenerative scaffolds for peripheral nerve tissue engineering.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
40
|
Bao B, Rivkin B, Akbar F, Karnaushenko DD, Bandari VK, Teuerle L, Becker C, Baunack S, Karnaushenko D, Schmidt OG. Digital Electrochemistry for On-Chip Heterogeneous Material Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101272. [PMID: 34028906 PMCID: PMC11469128 DOI: 10.1002/adma.202101272] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Many modern electronic applications rely on functional units arranged in an active-matrix integrated on a single chip. The active-matrix allows numerous identical device pixels to be addressed within a single system. However, next-generation electronics requires heterogeneous integration of dissimilar devices, where sensors, actuators, and display pixels sense and interact with the local environment. Heterogeneous material integration allows the reduction of size, increase of functionality, and enhancement of performance; however, it is challenging since front-end fabrication technologies in microelectronics put extremely high demands on materials, fabrication protocols, and processing environments. To overcome the obstacle in heterogeneous material integration, digital electrochemistry is explored here, which site-selectively carries out electrochemical processes to deposit and address electroactive materials within the pixel array. More specifically, an amorphous indium-gallium-zinc oxide (a-IGZO) thin-film-transistor (TFT) active-matrix is used to address pixels within the matrix and locally control electrochemical reactions for material growth and actuation. The digital electrochemistry procedure is studied in-depth by using polypyrrole (PPy) as a model material. Active-matrix-driven multicolored electrochromic patterns and actuator arrays are fabricated to demonstrate the capabilities of this approach for material integration. The approach can be extended to a broad range of materials and structures, opening up a new path for advanced heterogeneous microsystem integration.
Collapse
Affiliation(s)
- Bin Bao
- Institute for Integrative NanosciencesLeibniz IFW Dresden01069DresdenGermany
| | - Boris Rivkin
- Institute for Integrative NanosciencesLeibniz IFW Dresden01069DresdenGermany
| | - Farzin Akbar
- Institute for Integrative NanosciencesLeibniz IFW Dresden01069DresdenGermany
| | | | - Vineeth Kumar Bandari
- Institute for Integrative NanosciencesLeibniz IFW Dresden01069DresdenGermany
- Material Systems for NanoelectronicsChemnitz University of Technology09107ChemnitzGermany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Laura Teuerle
- Institute for Integrative NanosciencesLeibniz IFW Dresden01069DresdenGermany
| | - Christian Becker
- Institute for Integrative NanosciencesLeibniz IFW Dresden01069DresdenGermany
| | - Stefan Baunack
- Institute for Integrative NanosciencesLeibniz IFW Dresden01069DresdenGermany
| | - Daniil Karnaushenko
- Institute for Integrative NanosciencesLeibniz IFW Dresden01069DresdenGermany
| | - Oliver G. Schmidt
- Institute for Integrative NanosciencesLeibniz IFW Dresden01069DresdenGermany
- Material Systems for NanoelectronicsChemnitz University of Technology09107ChemnitzGermany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
- Nanophysics, Faculty of PhysicsTU Dresden01062DresdenGermany
| |
Collapse
|
41
|
Zhu X, Hu Y, Wu G, Chen W, Bao N. Two-Dimensional Nanosheets-Based Soft Electro-Chemo-Mechanical Actuators: Recent Advances in Design, Construction, and Applications. ACS NANO 2021; 15:9273-9298. [PMID: 34018737 DOI: 10.1021/acsnano.1c02356] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Soft electro-chemo-mechanical actuators have received enormous interest in biomimetic technologies, wearable electronics, and microelectromechanical systems due to their low voltage-driven large deformation, fast response, high strain, and working durability. Two-dimensional (2D) nanosheets, which can highly promote ion-induced micromotion to macrodeformation, have outstandingly been used as prime actuator electrodes because of their ordered microstructures, tunable interlayer spaces, controllable electrochemical activities, and excellent electrical and mechanical properties. Here, this review primarily focuses on the recent advances in key 2D electro-chemo-mechanical actuator electrodes, including graphene, MXenes, graphitic carbon nitride, molybdenum disulfide, black phosphorus, and graphdiyne. Various synthetic strategies of electrode design, such as microstructural architecture, active-site regulation, and channel construction, for achieving high ionic kinetic transport, charge storage, and electrochemical-mechanical performances are discussed. The advanced structures with diverse building principles that provide ordered and active ionic pathways for high actuation speed and strain are emphasized. Furthermore, the innovative applications of electro-chemo-mechanical actuators toward biomimetic robots and smart devices are highlighted. Finally, the current challenges and future perspectives are also proposed. The aim of this review is to provide the guiding significance for scientific researchers and industrial engineers to design higher performance next-generation electro-chemo-mechanical actuators.
Collapse
Affiliation(s)
- Xiaolin Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
| | - Ying Hu
- Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong 999077, P.R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China
| |
Collapse
|
42
|
Otero TF. Electroactive macromolecular motors as model materials of ectotherm muscles. RSC Adv 2021; 11:21489-21506. [PMID: 35478837 PMCID: PMC9034182 DOI: 10.1039/d1ra02573b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
The electrochemical reaction in liquid electrolytes of conducting polymers, carbon nanotubes, graphenes, among other materials, replicates the active components (macromolecular electro-chemical motors, ions and solvent) and volume variation of the sarcomere in any natural muscles during actuation, allowing the development of electro-chemo-mechanical artificial muscles. Materials, reactions and artificial muscles have been used as model materials, model reactions and model devices of the muscles from ectotherm animals. We present in this perspective the experimental results and a quantitative description of the thermal influence on the reaction extension and energetic achievements of those muscular models using different experimental methodologies. By raising the temperature for 40 °C keeping the extension of the muscular movement the cooperative actuation of the macromolecular motors harvest, saving chemical energy, up to 60% of the reaction energy from the thermal environment. The synergic thermal influence on either, the reaction rate (Arrhenius), the conformational movement rates of the motors (ESCR model) and the diffusion coefficients of ions across polymer matrix (WLF equation) can support the physical chemical foundations for the selection by nature of ectotherm muscles. Macromolecular motors act, simultaneously, as electro-chemo-mechanical and thermo-mechanical transducers. Technological and biological perspectives are presented.
Collapse
Affiliation(s)
- Toribio Fernández Otero
- Technical University of Cartagena, Laboratory of Electrochemistry, Intelligent Materials and Devices, Department of Chemical and Environmental Engineering Campus Alfonso XIII 30203 Cartagena Spain
| |
Collapse
|
43
|
Wang J, Gao D, Lee PS. Recent Progress in Artificial Muscles for Interactive Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003088. [PMID: 33108022 DOI: 10.1002/adma.202003088] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Artificial muscles are the core components of the smart and interactive soft robotic systems, providing the capabilities in shape morphing, manipulation, and mobility. Intense research efforts in the development of artificial muscles are based on the dielectric elastomer actuators, pneumatic actuators, electrochemical actuators, soft magnetic actuators, and stimulus responsive polymers. Recent progress has presented artificial muscles with impressive specific power output exceeding that of the natural muscles, dexterous shape morphing behavior that can be programmed and reconfigured, and exceptional high maneuverability to traverse surfaces with obstacles and different textures. Here, a succinct and critical summary is provided on the materials and strategies that have contributed to the important advancement of the artificial muscles in recent research. On that basis, the exciting opportunities are discussed in the integration of soft electronic devices with artificial muscles to enable smart and interactive soft robotic systems.
Collapse
Affiliation(s)
- Jiangxin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
44
|
Gopalan D, Pandey A, Alex AT, Kalthur G, Pandey S, Udupa N, Mutalik S. Nanoconstructs as a versatile tool for detection and diagnosis of Alzheimer biomarkers. NANOTECHNOLOGY 2021; 32:142002. [PMID: 33238254 DOI: 10.1088/1361-6528/abcdcb] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The current review focuses towards the advancements made in the past decade in the field of nanotechnology for the early Alzheimer's disease (AD) diagnosis. This review includes the application of nanomaterials and nanosensors for the early detection of the main AD biomarkers (amyloid beta, phosphorylated tau, apolipoprotein E4 allele or APOE4, microRNAs, cholesterol, hydrogen peroxide etc) in biological fluids, to detect the biomarkers at a very low concentration ranging in pico, femto and even atto molar concentrations. The field of drug development has always aimed and is constantly working on developing disease modifying drugs, but these drugs will only succeed when given in the early disease stages. Thus, developing efficient diagnostic tools is of vital importance. Various nanomaterials such as liposomes; dendrimers; polymeric nanoparticles; coordination polymers; inorganic nanoparticles such as silica, manganese oxide, zinc oxide, iron oxide, super paramagnetic iron oxides; quantum dots, silver nanoparticles, gold nanoparticles, and carbon based nanostructures (carbon nanotubes, graphene oxide, nanofibres, nanodiamonds, carbon dots); Up-conversion nanoparticles; 2D nanomaterials; and radioactive nanoprobes have been used in constructing and improving efficiency of nano-sensors for AD biosensing at an early stage of diagnosis.
Collapse
Affiliation(s)
- Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Sureshwar Pandey
- School of Pharmacy, Faculty of Medical Sciences, The university of West Indies, St. Augustine, Trinidad and Tobago, Jamaica
| | - Nayanabhirama Udupa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| |
Collapse
|
45
|
Shi YX, Wu Y, Wang SQ, Zhao YY, Li T, Yang XQ, Zhang T. Soft Electrochemical Actuators with a Two-Dimensional Conductive Metal-Organic Framework Nanowire Array. J Am Chem Soc 2021; 143:4017-4023. [PMID: 33663217 DOI: 10.1021/jacs.1c00666] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal-organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step in situ hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response (<19 s) at a 3 V DC input, large actuation displacement (12.1 mm), and a correspondingly high strain of 0.36% under a square-wave AC voltage of ±3 V. Specifically, the actuator achieved a broad-band frequency response (0.1-20 Hz) and long-term cyclability in air (10000 cycles) with a negligible degradation in actuation performance. Our work demonstrates new opportunities for bioinspired artificial actuators and overcomes current limitations in electrode materials for soft robotics and bionics.
Collapse
Affiliation(s)
- Yi-Xiang Shi
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yue Wu
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Shu-Qi Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Yang-Yong Zhao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Tie Li
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Xian-Qing Yang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Ting Zhang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| |
Collapse
|
46
|
Guo Z, Feng Y, Zhang C, Huang G, Chi J, Yao Q, Zhang G, Chen X. Three dimensional graphene materials doped with heteroatoms for extraction and adsorption of environmental pollutants in wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:17-43. [PMID: 33554725 DOI: 10.1080/26896583.2020.1863725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Environmental pollution by heavy metal ions, organic pollutants, oils, pesticides or dyes is a ubiquitous problem adversely affecting human health and environmental ecology. Development and application novel adsorbents in full-scale treatment systems with effectiveness properties could effective ways to facilitate the extraction and adsorption of environment pollutants from wastewater. Graphene materials have drawn much attention due to their extraordinary electron mobilities, high surface areas, good thermal conductivities, and excellent mechanical properties. Three-dimensional graphene materials can provide the inherent advantages of 2D graphene sheets and exhibit micro/nanoporous structures, increased specific surface areas, high electron conductivities, fast mass transport kinetics, and strong mechanical strength. Potential applications for 3D graphene materials include environmental remediation, chemical and biological sensing, catalysis, and super capacitors. Recent advances in the applications of 3D functionalized graphene materials (3D FGMs) doped with heteroatoms for the extraction and adsorption of environmental pollutants in wastewater are summarized in this review.
Collapse
Affiliation(s)
- Zhiyong Guo
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
- Key Laboratory of environmental monitoring, Universities of Fujian Province, Fujian Province, China
| | - Yufeng Feng
- The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chen Zhang
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
| | - Guihua Huang
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
| | - Jinxin Chi
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
| | - Qiuhong Yao
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, China
| | - Guofeng Zhang
- Baotai Biological Technology Co. Ltd of Xiamen, Xiamen, China
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
47
|
Otero TF. Towards artificial proprioception from artificial muscles constituted by self-sensing multi-step electrochemical macromolecular motors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Ren M, Qiao J, Wang Y, Wu K, Dong L, Shen X, Zhang H, Yang W, Wu Y, Yong Z, Chen W, Zhang Y, Di J, Li Q. Strong and Robust Electrochemical Artificial Muscles by Ionic-Liquid-in-Nanofiber-Sheathed Carbon Nanotube Yarns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006181. [PMID: 33432780 DOI: 10.1002/smll.202006181] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/04/2020] [Indexed: 05/18/2023]
Abstract
To address the lack of a suitable electrolyte that supports the stable operation of the electrochemical yarn muscles in air, an ionic-liquid-in-nanofibers sheathed carbon nanotube (CNT) yarn muscle is prepared. The nanofibers serve as a separator to avoid the short-circuiting of the yarns and a reservoir for ionic liquid. The ionic-liquid-in-nanofiber-sheathed yarn muscles are strong, providing an isometric stress of 10.8 MPa (about 31 times the skeletal muscles). The yarn muscles are highly robust, which can reversibly contract stably at such conditions as being knotted, wide-range humidity (30 to 90 RH%) and temperature (25 to 70 °C), and long-term cycling and storage in air. By utilizing the accumulated isometric stress, the yarn muscles achieve a high contraction rate of 36.3% s-1 . The yarn muscles are tightly bundled to lift heavy weights and grasp objects. These unique features can make the strong and robust yarn muscles as a desirable actuation component for robotic devices.
Collapse
Affiliation(s)
- Ming Ren
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jian Qiao
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yulian Wang
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Kunjie Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang, 330200, China
| | - Lizhong Dong
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaofan Shen
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Huichao Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wei Yang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yulong Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhenzhong Yong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang, 330200, China
| | - Wei Chen
- Research Centre for Smart Wearable Technology Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Yongyi Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang, 330200, China
| | - Jiangtao Di
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qingwen Li
- School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang, 330200, China
| |
Collapse
|
49
|
Ullah W, Herzog G, Vilà N, Brites Helú M, Walcarius A. Electrochemically Assisted Deposition of Nanoporous Silica Membranes on Gold Electrodes: Effect of 3‐Mercaptopropyl(trimethoxysilane) “Molecular Glue” on Film Formation, Permeability and Metal Underpotential Deposition. ChemElectroChem 2020. [DOI: 10.1002/celc.202001347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wahid Ullah
- Université de Lorraine, CNRS, LCPME Nancy France
| | | | - Neus Vilà
- Université de Lorraine, CNRS, LCPME Nancy France
| | | | | |
Collapse
|
50
|
Zhao Q, Li C, Shum HC, Du X. Shape-adaptable biodevices for wearable and implantable applications. LAB ON A CHIP 2020; 20:4321-4341. [PMID: 33232418 DOI: 10.1039/d0lc00569j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emerging wearable and implantable biodevices have been significantly revolutionizing the diagnosis and treatment of disease. However, the geometrical mismatch between tissues and biodevices remains a great challenge for achieving optimal performances and functionalities for biodevices. Shape-adaptable biodevices enabling active compliance with human body tissues offer promising opportunities for addressing the challenge through programming their geometries on demand. This article reviews the design principles and control strategies for shape-adaptable biodevices with programmable shapes and actively compliant capabilities, which have offered innovative diagnostic/therapeutic tools and facilitated a variety of wearable and implantable applications. The state-of-the-art progress in applications of shape-adaptable biodevices in the fields of smart textiles, wound care, healthcare monitoring, drug and cell delivery, tissue repair and regeneration, nerve stimulation and recording, and biopsy and surgery, is highlighted. Despite the remarkable advances already made, shape-adaptable biodevices still confront many challenges on the road toward the clinic, such as enhanced intelligence for actively sensing and operating in response to physiological environments. Next-generation paradigms will shed light on future directions for extending the breadth and performance of shape-adaptable biodevices for wearable and implantable applications.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035 China.
| | | | | | | |
Collapse
|