1
|
Choi SH, Shin S, Kim WY, Lee JM, Park SR, Kim H, Woo K, Kwon S, Fang NX, Kim S, Cho YT. Scalable Multistep Roll-to-Roll Printing of Multifunctional and Robust Reentrant Microcavity Surfaces via a Wetting-Induced Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411064. [PMID: 39572924 PMCID: PMC11795719 DOI: 10.1002/adma.202411064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Indexed: 02/06/2025]
Abstract
Owing to their unique structural robustness, interconnected reentrant structures offer multifunctionality for various applications. a scalable multistep roll-to-roll printing method is proposed for fabricating reentrant microcavity surfaces, coined as wetting-induced interconnected reentrant geometry (WING) process. The key to the proposed WING process is a highly reproducible reentrant structure formation controlled by the capillary action during contact between prefabricated microcavity structure and spray-coated ultraviolet-curable resins. It demonstrates the superior liquid repellency of the WING structures, which maintain large contact angles even with low-surface-tension liquids, and their robust capability to retain solid particles and liquids under external forces. In addition, the scalable and continuous fabrication approach addresses the limitations of existing methods, providing a cost-effective and high-throughput solution for creating multifunctional reentrant surfaces for anti-icing, biofouling prevention, and particle capture.
Collapse
Affiliation(s)
- Su Hyun Choi
- Department of Advanced Battery Manufacturing SystemsKorea Institute of Machinery & MaterialsDaejeon34103South Korea
| | - Seungwoo Shin
- Department of Advanced Battery Manufacturing SystemsKorea Institute of Machinery & MaterialsDaejeon34103South Korea
| | - Woo Young Kim
- Department of Smart Manufacturing EngineeringChangwon National UniversityChangwon51140South Korea
| | - Je Min Lee
- Department of Smart Manufacturing EngineeringChangwon National UniversityChangwon51140South Korea
| | - Seo Rim Park
- Department of Smart Manufacturing EngineeringChangwon National UniversityChangwon51140South Korea
| | - Hyuntae Kim
- Department of Advanced Battery Manufacturing SystemsKorea Institute of Machinery & MaterialsDaejeon34103South Korea
| | - Kyoohee Woo
- Department of Advanced Battery Manufacturing SystemsKorea Institute of Machinery & MaterialsDaejeon34103South Korea
| | - Sin Kwon
- Department of Advanced Battery Manufacturing SystemsKorea Institute of Machinery & MaterialsDaejeon34103South Korea
| | - Nicholas X. Fang
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Seok Kim
- Department of Smart Manufacturing EngineeringChangwon National UniversityChangwon51140South Korea
- Department of Mechanical EngineeringChangwon National UniversityChangwon51140South Korea
| | - Young Tae Cho
- Department of Smart Manufacturing EngineeringChangwon National UniversityChangwon51140South Korea
- Department of Mechanical EngineeringChangwon National UniversityChangwon51140South Korea
| |
Collapse
|
2
|
Bae HH, Kim JB, Lee HY, Kim SH. Single-Step Production of Doubly Re-entrant Microstructures Through Reaction-Diffusion Photolithography for Omniphobic Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409646. [PMID: 39846828 DOI: 10.1002/smll.202409646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Indexed: 01/24/2025]
Abstract
Omniphobic surfaces, which repel virtually any liquid regardless of its wettability, have been developed using doubly re-entrant microstructures. Although various microfabrication techniques have been explored, these often require multiple complex steps. In this study, reaction-diffusion photolithography (RDP) is used to fabricate micropost arrays with doubly re-entrant geometries through a single-step ultraviolet (UV) exposure process. To create a doubly re-entrant structure consisting of a central, elongated micropost topped with a short ridge, a photomask featuring a circular window surrounded by a narrow ring-shaped window is employed. This configuration is utilized in the RDP process, which relies on radical polymerization. Vertical growth of the structure from the photomask is achieved by introducing strong UV attenuation along the vertical axis, enabled by increasing the photoinitiator concentration. Concurrently, the growth of the ridge is slowed down by designing the ring window with minimal dimensions. This promotes rapid oxygen diffusion into the ring region, where the radicals generated by UV exposure are consumed through reactions with oxygen, thereby delaying the polymerization. This approach enables precise fabrication of full-length central microposts with short ridges in a single step. The resulting doubly re-entrant structures show high contact angles across various liquids and exhibit robust omniphobic performance.
Collapse
Affiliation(s)
- Hyung Han Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jong Bin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hwan-Young Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Ghasemlou M, Oladzadabbasabadi N, Ivanova EP, Adhikari B, Barrow CJ. Engineered Sustainable Omniphobic Coatings to Control Liquid Spreading on Food-Contact Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15657-15686. [PMID: 38518221 DOI: 10.1021/acsami.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
The adhesion of sticky liquid foods to a contacting surface can cause many technical challenges. The food manufacturing sector is confronted with many critical issues that can be overcome with long-lasting and highly nonwettable coatings. Nanoengineered biomimetic surfaces with distinct wettability and tunable interfaces have elicited increasing interest for their potential use in addressing a broad variety of scientific and technological applications, such as antifogging, anti-icing, antifouling, antiadhesion, and anticorrosion. Although a large number of nature-inspired surfaces have emerged, food-safe nonwetted surfaces are still in their infancy, and numerous structural design aspects remain unexplored. This Review summarizes the latest scientific research regarding the key principles, fabrication methods, and applications of three important categories of nonwettable surfaces: superhydrophobic, liquid-infused slippery, and re-entrant structured surfaces. The Review is particularly focused on new insights into the antiwetting mechanisms of these nanopatterned structures and discovering efficient platform methodologies to guide their rational design when in contact with food materials. A detailed description of the current opportunities, challenges, and future scale-up possibilities of these nanoengineered surfaces in the food industry is also provided.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
5
|
Dai Z, Lei M, Ding S, Zhou Q, Ji B, Wang M, Zhou B. Durable superhydrophobic surface in wearable sensors: From nature to application. EXPLORATION (BEIJING, CHINA) 2024; 4:20230046. [PMID: 38855620 PMCID: PMC11022629 DOI: 10.1002/exp.20230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/02/2023] [Indexed: 06/11/2024]
Abstract
The current generation of wearable sensors often experiences signal interference and external corrosion, leading to device degradation and failure. To address these challenges, the biomimetic superhydrophobic approach has been developed, which offers self-cleaning, low adhesion, corrosion resistance, anti-interference, and other properties. Such surfaces possess hierarchical nanostructures and low surface energy, resulting in a smaller contact area with the skin or external environment. Liquid droplets can even become suspended outside the flexible electronics, reducing the risk of pollution and signal interference, which contributes to the long-term stability of the device in complex environments. Additionally, the coupling of superhydrophobic surfaces and flexible electronics can potentially enhance the device performance due to their large specific surface area and low surface energy. However, the fragility of layered textures in various scenarios and the lack of standardized evaluation and testing methods limit the industrial production of superhydrophobic wearable sensors. This review provides an overview of recent research on superhydrophobic flexible wearable sensors, including the fabrication methodology, evaluation, and specific application targets. The processing, performance, and characteristics of superhydrophobic surfaces are discussed, as well as the working mechanisms and potential challenges of superhydrophobic flexible electronics. Moreover, evaluation strategies for application-oriented superhydrophobic surfaces are presented.
Collapse
Affiliation(s)
- Ziyi Dai
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
- State Key Laboratory of Crystal MaterialsInstitute of Novel SemiconductorsSchool of MicroelectronicsShandong UniversityJinanChina
| | - Ming Lei
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| | - Sen Ding
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| | - Qian Zhou
- School of Physics and ElectronicsCentral South UniversityChangshaChina
| | - Bing Ji
- School of Physics and ElectronicsHunan Normal UniversityChangshaChina
| | - Mingrui Wang
- Department of Mechanical EngineeringUniversity of AucklandAucklandNew Zealand
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| |
Collapse
|
6
|
Sharbatian A, Devkota K, Ashouri Vajari D, Stieglitz T. From Bioinspired Topographies toward Non-Wettable Neural Implants. MICROMACHINES 2023; 14:1846. [PMID: 37893283 PMCID: PMC10609157 DOI: 10.3390/mi14101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
The present study investigates different design strategies to produce non-wettable micropatterned surfaces. In addition to the classical method of measuring the contact angle, the non-wettability is also discussed by means of the immersion test. Inspired by non-wettable structures found in nature, the effects of features such as reentrant cavities, micropillars, and overhanging layers are studied. We show that a densely populated array of small diameter cavities exhibits superior non-wettability, with 65% of the cavities remaining intact after 24 h of full immersion in water. In addition, it is suggested that the wetting transition time is influenced by the length of the overhanging layer as well as by the number of columns within the cavity. Our findings indicate a non-wetting performance that is three times longer than previously reported in the literature for a small, densely populated design with cavities as small as 10 μm in diameter. Such properties are particularly beneficial for neural implants as they may reduce the interface between the body fluid and the solid state, thereby minimiing the inflammatory response following implantation injury. In order to assess the effectiveness of this approach in reducing the immune response induced by neural implants, further in vitro and in vivo studies will be essential.
Collapse
Affiliation(s)
- Ali Sharbatian
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (A.S.); (T.S.)
- BrainLinks BrainTools, Institute for Machine-Brain Interfacing Technology (IMBIT), University of Freiburg, 79110 Freiburg, Germany
| | - Kalyani Devkota
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (A.S.); (T.S.)
- BrainLinks BrainTools, Institute for Machine-Brain Interfacing Technology (IMBIT), University of Freiburg, 79110 Freiburg, Germany
| | - Danesh Ashouri Vajari
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (A.S.); (T.S.)
- BrainLinks BrainTools, Institute for Machine-Brain Interfacing Technology (IMBIT), University of Freiburg, 79110 Freiburg, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (A.S.); (T.S.)
- BrainLinks BrainTools, Institute for Machine-Brain Interfacing Technology (IMBIT), University of Freiburg, 79110 Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
8
|
Chen J, Wei M, Meng M. Advanced Development of Molecularly Imprinted Membranes for Selective Separation. Molecules 2023; 28:5764. [PMID: 37570733 PMCID: PMC10420217 DOI: 10.3390/molecules28155764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Molecularly imprinted membranes (MIMs), the incorporation of a given target molecule into a membrane, are generally used for separating and purifying the effective constituents of various natural products. They have been in use since 1990. The application of MIMs has been studied in many fields, including separation, medicine analysis, solid-phase extraction, and so on, and selective separation is still an active area of research. In MIM separation, two important membrane performances, flux and permselectivities, show a trade-off relationship. The enhancement not only of permselectivity, but also of flux poses a challenging task for membranologists. The present review first describes the recent development of MIMs, as well as various preparation methods, showing the features and applications of MIMs prepared with these different methods. Next, the review focuses on the relationship between flux and permselectivities, providing a detailed analysis of the selective transport mechanisms. According to the majority of the studies in the field, the paramount factors for resolving the trade-off relationship between the permselectivity and the flux in MIMs are the presence of effective high-density recognition sites and a high degree of matching between these sites and the imprinted cavity. Beyond the recognition sites, the membrane structure and pore-size distribution in the final imprinted membrane collectively determine the selective transport mechanism of MIM. Furthermore, it also pointed out that the important parameters of regeneration and antifouling performance have an essential role in MIMs for practical applications. This review subsequently highlights the emerging forms of MIM, including molecularly imprinted nanofiber membranes, new phase-inversion MIMs, and metal-organic-framework-material-based MIMs, as well as the construction of high-density recognition sites for further enhancing the permselectivity/flux. Finally, a discussion of the future of MIMs regarding breakthroughs in solving the flux-permselectivity trade-off is offered. It is believed that there will be greater advancements regarding selective separation using MIMs in the future.
Collapse
Affiliation(s)
- Jiahe Chen
- College of Physics, Jilin Normal University, 1301 Haifeng Street, Siping 136000, China;
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maobin Wei
- College of Physics, Jilin Normal University, 1301 Haifeng Street, Siping 136000, China;
| | - Minjia Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Friedrichs J, Helbig R, Hilsenbeck J, Pandey PR, Sommer JU, Renner LD, Pompe T, Werner C. Entropic repulsion of cholesterol-containing layers counteracts bioadhesion. Nature 2023; 618:733-739. [PMID: 37344647 DOI: 10.1038/s41586-023-06033-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2023] [Indexed: 06/23/2023]
Abstract
Control of adhesion is a striking feature of living matter that is of particular interest regarding technological translation1-3. We discovered that entropic repulsion caused by interfacial orientational fluctuations of cholesterol layers restricts protein adsorption and bacterial adhesion. Moreover, we found that intrinsically adhesive wax ester layers become similarly antibioadhesive when containing small quantities (under 10 wt%) of cholesterol. Wetting, adsorption and adhesion experiments, as well as atomistic simulations, showed that repulsive characteristics depend on the specific molecular structure of cholesterol that encodes a finely balanced fluctuating reorientation at the interface of unconstrained supramolecular assemblies: layers of cholesterol analogues differing only in minute molecular variations showed markedly different interfacial mobility and no antiadhesive effects. Also, orientationally fixed cholesterol layers did not resist bioadhesion. Our insights provide a conceptually new physicochemical perspective on biointerfaces and may guide future material design in regulation of adhesion.
Collapse
Affiliation(s)
- Jens Friedrichs
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Ralf Helbig
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Julia Hilsenbeck
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Prithvi Raj Pandey
- Institute of Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Jens-Uwe Sommer
- Institute of Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life and Center of Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Lars David Renner
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Tilo Pompe
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Carsten Werner
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life and Center of Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
10
|
Li M, Cao Y, Zhang X. Hierarchically Structured Nanoparticle-Free Omniphobic Membrane for High-Performance Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5841-5851. [PMID: 36989064 DOI: 10.1021/acs.est.2c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The functional loss of membranes caused by pore wetting, mineral scaling, or structural instability is a critical challenge in membrane distillation (MD), which primarily hinders its practical applications. Herein, we propose a novel and facile strategy to fabricate omniphobic membranes with exceptionally robust MD performance. Specifically, a substrate with a hierarchical re-entrant architecture was constructed via spray-water-assisted non-solvent-induced phase separation (SWNIPS), followed by a direct fluorinated surface decoration via "thiol-ene" click chemistry. Deionized (DI) water contact angle measurements revealed an ultrahigh surface water contact angle (166.8 ± 1.8°) and an ultralow sliding angle (3.6 ± 1.1°) of the resultant membrane. Destructive abrasion cycle and ultrasonication tests confirmed its structural robustness. Moreover, the membrane possessed excellent wetting resistance, as evidenced by the prevention of membrane pore penetration by all low-surface-tension testing liquids, allowing stable long-term MD operation to treat brine wastewater with a surfactant content of 0.6 mM. In a desalination experiment using shale gas wastewater, the omniphobic membrane exhibited robust MD performance, achieving a high water recovery ratio of ∼60% without apparent changes in water flux and permeate conductivity over the entire membrane process. Overall, our study paves the way for a nanoparticle-free methodology for the scalable fabrication of high-performance MD membranes with surface omniphobicity and structural robustness in hypersaline wastewater treatment.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yang Cao
- Customs Targeting Bureau, Nanjing Customs District, Nanjing 210001, China
| | - Xuan Zhang
- Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
11
|
Seo D, Cho YH, Kim G, Shin H, Lee SK, Kim JE, Chun H, Jung JS, Choi Y. Permanent Anticoagulation Blood-Vessel by Mezzo-Sized Double Re-Entrant Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300564. [PMID: 37010002 DOI: 10.1002/smll.202300564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Indexed: 06/19/2023]
Abstract
Having a permanent omniphobicity on the inner surface of the tube can bring enormous advantages, such as reducing resistance and avoiding precipitation during mass transfer. For example, such a tube can prevent blood clotting when delivering blood composed of complex hydrophilic and lipophilic compounds. However, it is very challenging to fabricate micro and nanostructures inside a tube. To overcome these, a wearability and deformation-free structural omniphobic surface is fabricated. The omniphobic surface can repel liquids by its "air-spring" under the structure, regardless of surface tension. Furthermore, it is not lost an omniphobicity under physical deformation like curved or twisted. By using these properties, omniphobic structures on the inner wall of the tube by the "roll-up" method are fabricated. Fabricated omniphobic tubes still repels liquids, even complex liquids like blood. According to the ex vivo blood tests for medical usage, the tube can reduce thrombus formation by 99%, like the heparin-coated tube. So, it is believed the tube can be soon replaced typical coating-based medical surfaces or anticoagulation blood vessel.
Collapse
Affiliation(s)
- Dongkwon Seo
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - Yang Hyun Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Gijung Kim
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunku Shin
- Exopert Corporation, Seoul, 02841, Republic of Korea
| | - Su Kyoung Lee
- Korea Artificial Organ Center, Seoul, 02841, Republic of Korea
| | - Ji Eon Kim
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Honggu Chun
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jae Seung Jung
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Yeonho Choi
- Department of Bio-Convergence Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
- Exopert Corporation, Seoul, 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
12
|
Li W, Chan CW, Li Z, Siu SY, Chen S, Sun H, Liu Z, Wang Y, Hu C, Pugno NM, Zare RN, Wu H, Ren K. All-perfluoropolymer, nonlinear stability-assisted monolithic surface combines topology-specific superwettability with ultradurability. Innovation (N Y) 2023; 4:100389. [PMID: 36895759 PMCID: PMC9988671 DOI: 10.1016/j.xinn.2023.100389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Developing versatile and robust surfaces that mimic the skins of living beings to regulate air/liquid/solid matter is critical for many bioinspired applications. Despite notable achievements, such as in the case of developing robust superhydrophobic surfaces, it remains elusive to realize simultaneously topology-specific superwettability and multipronged durability owing to their inherent tradeoff and the lack of a scalable fabrication method. Here, we present a largely unexplored strategy of preparing an all-perfluoropolymer (Teflon), nonlinear stability-assisted monolithic surface for efficient regulating matters. The key to achieving topology-specific superwettability and multilevel durability is the geometric-material mechanics design coupling superwettability stability and mechanical strength. The versatility of the surface is evidenced by its manufacturing feasibility, multiple-use modes (coating, membrane, and adhesive tape), long-term air trapping in 9-m-deep water, low-fouling droplet transportation, and self-cleaning of nanodirt. We also demonstrate its multilevel durability, including strong substrate adhesion, mechanical robustness, and chemical stability, all of which are needed for real-world applications.
Collapse
Affiliation(s)
- Wanbo Li
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chiu-Wing Chan
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zeyu Li
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Sin-Yung Siu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Siyu Chen
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Han Sun
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zeyu Liu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yisu Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chong Hu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Nicola Maria Pugno
- Department of Civil, Environmental and Mechanical Engineering, Laboratory of Bio-Inspired, Bionic, Nano, Meta Materials and Mechanics, Università di Trento, 38100 Trento, Italy.,School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Kangning Ren
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China.,HKBU Institute of Research and Continuing Education, Shenzhen 518057, China
| |
Collapse
|
13
|
Kodihalli Shivaprakash N, Banerjee PS, Banerjee SS, Barry C, Mead J. Advanced polymer processing technologies for micro‐ and nanostructured surfaces: A review. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
| | - Pratip Sankar Banerjee
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Shib Shankar Banerjee
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Carol Barry
- Nanomanufacturing Center, Department of Plastic Engineering University of Massachusetts Lowell Lowell Massachusetts USA
| | - Joey Mead
- Nanomanufacturing Center, Department of Plastic Engineering University of Massachusetts Lowell Lowell Massachusetts USA
| |
Collapse
|
14
|
Zhang Z, Pei G, Zhao K, Pang P, Gao W, Ye T, Ma B, Luo J, Deng J. Fresnel Diffraction Strategy Enables the Fabrication of Flexible Superomniphobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14508-14516. [PMID: 36377419 DOI: 10.1021/acs.langmuir.2c02658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Doubly re-entrant surfaces inspired by springtails exhibit excellent repellency to low-surface-tension liquid. However, the flexible doubly re-entrant surfaces are difficult to fabricate, especially for the overhang of the structure. Herein, we demonstrate a simple Fresnel aperture diffraction modulation strategy in microscale lithography coupled with a molding process to obtain the flexible doubly re-entrant superomniphobic surfaces with nanoscale overhangs. The negative nanoscale overhang features were formed in a single-layer photoresist due to the fine-modulation of the optical intensity fluctuation of the Fresnel aperture diffraction. The as-prepared flexible non-fluorinated polydimethylsiloxane (PDMS) doubly re-entrant microstructure based on the Fresnel aperture diffraction (D-BF) surface (without any additional treatments) could repel ethanol droplets (21.8 mN m-1) in the Cassie-Baxter state. The robust nanoscale overhangs obtained by the molding process enable the maximum breakthrough pressure for the low-surface-tension ethanol droplets on the D-BF surfaces up to about 230 Pa, allowing ethanol liquids with Weber numbers up to 8.7 to fully bounce off. The fabricated non-fluorinated D-BF superomniphobic surface maintains outstanding liquid repellency after the surface wettability modification and deformation test.
Collapse
Affiliation(s)
- Zhonggang Zhang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Guangyao Pei
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Keli Zhao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Peng Pang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Wei Gao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Binghe Ma
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Jian Luo
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| | - Jinjun Deng
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, 127 Youyi Road, Xi'an710072, China
| |
Collapse
|
15
|
Zhang Z, Ma B, Ye T, Gao W, Pei G, Luo J, Deng J, Yuan W. One-Step Fabrication of Flexible Bioinspired Superomniphobic Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39665-39672. [PMID: 35983670 DOI: 10.1021/acsami.2c12483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible superomniphobic doubly re-entrant (Dual-T) microstructures inspired by springtails have attracted growing attention due to their excellent liquid-repellent properties. However, the simple and practical manufacturing processes of the flexible Dual-T microstructures are urgently needed. Here, we proposed a one-step molding process coupled with the lithography technique to fabricate the elastomeric polydimethylsiloxane (PDMS) Dual-T microstructure surfaces with high uniformity. The angle between the downward overhang and the horizontal direction could reach 90° (vertical overhang). The flexible superomniphobic Dual-T microstructure surfaces, without fluorination treatment and physical treatments, could repel liquids with a surface tension lower than 20 mN m-1 in the Cassie-Baxter state. Owing to the excellent robustness of the one-step molding downward overhanging, the max breakthrough pressure of this surface could reach up to 164.3 Pa for ethanol droplets. Furthermore, the flexible superomniphobic Dual-T surface allowed impinging ethanol droplets to completely rebound at the Weber number up to 7.1 with an impact velocity of ∼0.32 m s-1. The Dual-T microstructure surface maintained excellent superomniphobicity even after surface oxygen plasma treatment and exhibited excellent structural robustness and recoverability to various large mechanical deformations.
Collapse
Affiliation(s)
- Zhonggang Zhang
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Binghe Ma
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Gao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guangyao Pei
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jian Luo
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinjun Deng
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Weizheng Yuan
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
16
|
Esmaeilzadeh P, Ghazanfari MH, Molaei Dehkordi A. Tuning the Wetting Properties of SiO 2-Based Nanofluids to Create Durable Surfaces with Special Wettability for Self-Cleaning, Anti-Fouling, and Oil–Water Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pouriya Esmaeilzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11155-9564, Iran
| | | | - Asghar Molaei Dehkordi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11155-9564, Iran
| |
Collapse
|
17
|
Shayan Nasr M, Esmaeilnezhad E, Choi HJ. An overview on the enhanced gas condensate recovery with novel and green methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26160-26181. [PMID: 35080726 DOI: 10.1007/s11356-022-18847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A consideration of the negative environmental aspects of fossil fuels has made natural gas the best choice to meet the human demand for energy. The condensate gas reservoir is one source of gases that tolerates skin problems (liquid blockage). Conventional methods for inhibiting or removing liquid blockages are momentary treatments, non-eco-friendly, and expensive. Therefore, new methods have been introduced, such as wettability alteration toward liquid repellency, renewable energies, thermochemical reactions and waves for heating reservoirs, and CO2 injection. This paper reviews the methods for altering the wettability of porous media by fluorochemicals, fluorinated nanoparticles (NPs), and free fluorocarbon materials from natural substances. NPs, particularly silicon-based types, as a green, clean, and emerging technology that are more compatible with the environment, were investigated for their ability to alter the wettability and upgrade conventional materials, such as polymers and surfactants. The feasibility of using renewable energies, thermochemical reactions, and waves for heating the gas condensate reservoir to overcome the skin problem and return the reservoir to the reasonable and economical gas production is reviewed. Finally, CO2 injection is introduced as a multi-purpose green method to enhance gas condensate recovery and allow CO2 sequestration.
Collapse
Affiliation(s)
- Mahdi Shayan Nasr
- Department of Petroleum Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Ehsan Esmaeilnezhad
- Department of Petroleum Engineering, Hakim Sabzevari University, Sabzevar, Iran.
| | - Hyoung Jin Choi
- Department of Polymer Science and Engineering, Inha University, Incheon, 22212, Korea.
| |
Collapse
|
18
|
Yong J, Yang Q, Hou X, Chen F. Emerging Separation Applications of Surface Superwettability. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:688. [PMID: 35215017 PMCID: PMC8878479 DOI: 10.3390/nano12040688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Human beings are facing severe global environmental problems and sustainable development problems. Effective separation technology plays an essential role in solving these challenges. In the past decades, superwettability (e.g., superhydrophobicity and underwater superoleophobicity) has succeeded in achieving oil/water separation. The mixture of oil and water is just the tip of the iceberg of the mixtures that need to be separated, so the wettability-based separation strategy should be extended to treat other kinds of liquid/liquid or liquid/gas mixtures. This review aims at generalizing the approach of the well-developed oil/water separation to separate various multiphase mixtures based on the surface superwettability. Superhydrophobic and even superoleophobic surface microstructures have liquid-repellent properties, making different liquids keep away from them. Inspired by the process of oil/water separation, liquid polymers can be separated from water by using underwater superpolymphobic materials. Meanwhile, the underwater superaerophobic and superaerophilic porous materials are successfully used to collect or remove gas bubbles in a liquid, thus achieving liquid/gas separation. We believe that the diversified wettability-based separation methods can be potentially applied in industrial manufacture, energy use, environmental protection, agricultural production, and so on.
Collapse
Affiliation(s)
- Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Y.); (X.H.)
| | - Qing Yang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Y.); (X.H.)
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Y.); (X.H.)
| |
Collapse
|
19
|
Kharraz JA, Farid MU, Jassby D, An AK. A systematic study on the impact of feed composition and substrate wettability on wetting and fouling of omniphobic and janus membranes in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
21
|
Zhu P, Wang L. Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chem Rev 2021; 122:7010-7060. [PMID: 34918913 DOI: 10.1021/acs.chemrev.1c00530] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microfluidics and wettability are interrelated and mutually reinforcing fields, experiencing synergistic growth. Surface wettability is paramount in regulating microfluidic flows for processing and manipulating fluids at the microscale. Microfluidics, in turn, has emerged as a versatile platform for tailoring the wettability of materials. We present a critical review on the microfluidics-enabled soft manufacture (MESM) of materials with well-controlled wettability and their multidisciplinary applications. Microfluidics provides a variety of liquid templates for engineering materials with exquisite composition and morphology, laying the foundation for precisely controlling the wettability. Depending on the degree of ordering, liquid templates are divided into individual droplets, one-dimensional (1D) arrays, and two-dimensional (2D) or three-dimensional (3D) assemblies for the modular fabrication of microparticles, microfibers, and monolithic porous materials, respectively. Future exploration of MESM will enrich the diversity of chemical composition and physical structure for wettability control and thus markedly broaden the application horizons across engineering, physics, chemistry, biology, and medicine. This review aims to systematize this emerging yet robust technology, with the hope of aiding the realization of its full potential.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Hu S, Reddyhoff T, Li J, Cao X, Shi X, Peng Z, deMello AJ, Dini D. Biomimetic Water-Repelling Surfaces with Robustly Flexible Structures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31310-31319. [PMID: 34171192 DOI: 10.1021/acsami.1c10157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomimetic liquid-repelling surfaces have been the subject of considerable scientific research and technological application. To design such surfaces, a flexibility-based oscillation strategy has been shown to resolve the problem of liquid-surface positioning encountered by the previous, rigidity-based asymmetry strategy; however, its usage is limited by weak mechanical robustness and confined repellency enhancement. Here, we design a flexible surface comprising mesoscale heads and microscale spring sets, in analogy to the mushroomlike geometry discovered on springtail cuticles, and then realize this through three-dimensional projection microstereolithography. Such a surface exhibits strong mechanical robustness against ubiquitous normal and shear compression and even endures tribological friction. Simultaneously, the surface elevates water repellency for impacting droplets by enhancing impalement resistance and reducing contact time, partially reaching an improvement of ∼80% via structural tilting movements. This is the first demonstration of flexible interfacial structures to robustly endure tribological friction as well as to promote water repellency, approaching real-world applications of water repelling. Also, a flexibility gradient is created on the surface to directionally manipulate droplets, paving the way for droplet transport.
Collapse
Affiliation(s)
- Songtao Hu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tom Reddyhoff
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jinbang Li
- School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
| | - Xiaobao Cao
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Xi Shi
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhike Peng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
23
|
Hu S, Cao X, Reddyhoff T, Shi X, Peng Z, deMello AJ, Dini D. Flexibility-Patterned Liquid-Repelling Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29092-29100. [PMID: 34078079 DOI: 10.1021/acsami.1c05243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Droplets impacting solid surfaces is ubiquitous in nature and of practical importance in numerous industrial applications. For liquid-repelling applications, rigidity-based asymmetric redistribution and flexibility-based structural oscillation strategies have been proven on artificial surfaces; however, these are limited by strict impacting positioning. Here, we show that the gap between these two strategies can be bridged by a flexibility-patterned design similar to a trampoline park. Such a flexibility-patterned design is realized by three-dimensional projection micro-stereolithography and is shown to enhance liquid repellency in terms of droplet impalement resistance and contact time reduction. This is the first demonstration of the synergistic effect obtained by a hybrid solution that exploits asymmetric redistribution and structural oscillation in liquid-repelling applications, paving the rigidity-flexibility cooperative way of wettability tuning. Also, the flexibility-patterned surface is applied to accelerate liquid evaporation.
Collapse
Affiliation(s)
- Songtao Hu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaobao Cao
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Tom Reddyhoff
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Xi Shi
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhike Peng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
24
|
Yang X, Yang H, Hu X, Li F, Yang Z. Photonic crystals for perovskite‐based optoelectronic applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xia Yang
- Department of Materials Science and Engineering University of Science and Technology Beijing Beijing P. R. China
| | - Hanjun Yang
- Key Laboratory of Luminescence and Optical Information Ministry of Education School of Science Beijing Jiaotong University Beijing P. R. China
| | - Xiaotian Hu
- Institute of Polymers and Energy Chemistry Nanchang University Nanchang P. R. China
| | - Fangfang Li
- Department of Materials Science and Engineering University of Science and Technology Beijing Beijing P. R. China
| | - Zhou Yang
- Department of Materials Science and Engineering University of Science and Technology Beijing Beijing P. R. China
| |
Collapse
|
25
|
Mayer A, Scheer HC. Guiding Chart for Initial Layer Choice with Nanoimprint Lithography. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:710. [PMID: 33799870 PMCID: PMC7998794 DOI: 10.3390/nano11030710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/23/2022]
Abstract
When nanoimprint serves as a lithography process, it is most attractive for the ability to overcome the typical residual layer remaining without the need for etching. Then, 'partial cavity filling' is an efficient strategy to provide a negligible residual layer. However, this strategy requires an adequate choice of the initial layer thickness to work without defects. To promote the application of this strategy we provide a 'guiding chart' for initial layer choice. Due to volume conservation of the imprint polymer this guiding chart has to consider the geometric parameters of the stamp, where the polymer fills the cavities only up to a certain height, building a meniscus at its top. Furthermore, defects that may develop during the imprint due to some instability of the polymer within the cavity have to be avoided; with nanoimprint, the main instabilities are caused by van der Waals forces, temperature gradients, and electrostatic fields. Moreover, practical aspects such as a minimum polymer height required for a subsequent etching of the substrate come into play. With periodic stamp structures the guiding chart provided will indicate a window for defect-free processing considering all these limitations. As some of the relevant factors are system-specific, the user has to construct his own guiding chart in praxis, tailor-made to his particular imprint situation. To facilitate this task, all theoretical results required are presented in a graphical form, so that the quantities required can simply be read from these graphs. By means of examples, the implications of the guiding chart with respect to the choice of the initial layer are discussed with typical imprint scenarios, nanoimprint at room temperature, at elevated temperature, and under electrostatic forces. With periodic structures, the guiding chart represents a powerful and straightforward tool to avoid defects in praxis, without in-depth knowledge of the underlying physics.
Collapse
Affiliation(s)
- Andre Mayer
- Chair for Large Area Optoelectronics, School of Electrical, Information and Media Engineering, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany
| | - Hella-Christin Scheer
- School of Electrical, Information and Media Engineering, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany;
| |
Collapse
|
26
|
Yin Q, Guo Q, Wang Z, Chen Y, Duan H, Cheng P. 3D-Printed Bioinspired Cassie-Baxter Wettability for Controllable Microdroplet Manipulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1979-1987. [PMID: 33351582 DOI: 10.1021/acsami.0c18952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is a great challenge to fabricate a surface with Cassie-Baxter wettability that can be continuously adjusted from hydrophilicity to superhydrophobicity by changing of geometric parameters. In this paper, we propose and demonstrate a bioinspired surface fabricated by using a projection micro-stereolithography (PμSL) based 3D printing technique to address the challenge. Independent of materials, the bioinspired textured surface has a maximum contact angle (CA) of 171°, which is even higher than that of the omniphobic springtail skin we try to imitate. Most significantly, we are able to control the CA of the bioinspired surface in the range of 55-171° and the adhesion force from 71 to 99 μN continuously by only changing the geometric parameters of the bioinspired microstructures. The underlying mechanisms of the CA control of our bioinspired surface are also revealed by using a multi-phase lattice Boltzmann model. Furthermore, we demonstrate potential applications in droplet-based microreactors, nonloss water transportation, and coalescence of water droplets by employing our 3D-printed bioinspired structures with their remarkable precise Cassie-Baxter wettability control and petal effects. The present results potentially pave a new way for designing next generation functional surfaces for microdroplet manipulation, droplet-based biodetection, antifouling surfaces, and cell culture.
Collapse
Affiliation(s)
- Qiu Yin
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
| | - Qing Guo
- MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhaolong Wang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
| | - Yiqin Chen
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
| | - Huigao Duan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
| | - Ping Cheng
- MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
27
|
Sterzenbach T, Helbig R, Hannig C, Hannig M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig 2020; 24:4237-4260. [PMID: 33111157 PMCID: PMC7666681 DOI: 10.1007/s00784-020-03646-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND All soft and solid surface structures in the oral cavity are covered by the acquired pellicle followed by bacterial colonization. This applies for natural structures as well as for restorative or prosthetic materials; the adherent bacterial biofilm is associated among others with the development of caries, periodontal diseases, peri-implantitis, or denture-associated stomatitis. Accordingly, there is a considerable demand for novel materials and coatings that limit and modulate bacterial attachment and/or propagation of microorganisms. OBJECTIVES AND FINDINGS The present paper depicts the current knowledge on the impact of different physicochemical surface characteristics on bioadsorption in the oral cavity. Furthermore, it was carved out which strategies were developed in dental research and general surface science to inhibit bacterial colonization and to delay biofilm formation by low-fouling or "easy-to-clean" surfaces. These include the modulation of physicochemical properties such as periodic topographies, roughness, surface free energy, or hardness. In recent years, a large emphasis was laid on micro- and nanostructured surfaces and on liquid repellent superhydrophic as well as superhydrophilic interfaces. Materials incorporating mobile or bound nanoparticles promoting bacteriostatic or bacteriotoxic properties were also used. Recently, chemically textured interfaces gained increasing interest and could represent promising solutions for innovative antibioadhesion interfaces. Due to the unique conditions in the oral cavity, mainly in vivo or in situ studies were considered in the review. CONCLUSION Despite many promising approaches for modulation of biofilm formation in the oral cavity, the ubiquitous phenomenon of bioadsorption and adhesion pellicle formation in the challenging oral milieu masks surface properties and therewith hampers low-fouling strategies. CLINICAL RELEVANCE Improved dental materials and surface coatings with easy-to-clean properties have the potential to improve oral health, but extensive and systematic research is required in this field to develop biocompatible and effective substances.
Collapse
Affiliation(s)
- Torsten Sterzenbach
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Ralf Helbig
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421, Homburg/Saar, Germany
| |
Collapse
|
28
|
Shi X, Zhang Y, Wu D, Wu T, Jiang S, Jiao Y, Wu S, Zhang Y, Hu Y, Ding W, Chu J. Femtosecond Laser-Assisted Top-Restricted Self-Growth Re-Entrant Structures on Shape Memory Polymer for Dynamic Pressure Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12346-12356. [PMID: 32967422 DOI: 10.1021/acs.langmuir.0c02335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioinspired surface material with re-entrant texture has been proven effective in exhibiting good pressure resistance to droplets with low surface tension under static conditions. In this work, we combined femtosecond laser cutting with shape memory polymer (SMP) and tape to fabricate re-entrant micropillar arrays by proposing a top-restricted self-growth (TRSG) strategy. Our proposed TRSG strategy simplifies the fabrication process and improves the processing efficiency of the re-entrant structure-based surface material. The structural parameters of the re-entrant micropillar array (microdisk diameter D, center-to-center distance P, and height H) can be adjusted through our TRSG processing method. To better characterize the anti-infiltration ability of various re-entrant micropillars, we studied the dynamic process of ethylene glycol droplet deformation by applying external vertical vibration to the surface material. Three parameters (vibration mode, amplitude, and frequency) of the external excitation and structural parameters of the re-entrant micropillar array were systemically investigated. We found that the surface material had better dynamic pressure resistance when P and D of the re-entrant texture were 650 and 500 μm, respectively, after heating for 6 min. This work provides new insights into the preparation and characterization of the surface material, which may find potential applications in microdroplet manipulation, drug testing, and biological sensors.
Collapse
Affiliation(s)
- Xiangchao Shi
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Yachao Zhang
- CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Tao Wu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Shaojun Jiang
- CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yunlong Jiao
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Sizhu Wu
- School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Weiping Ding
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Jung WB, Jang S, Cho SY, Jeon HJ, Jung HT. Recent Progress in Simple and Cost-Effective Top-Down Lithography for ≈10 nm Scale Nanopatterns: From Edge Lithography to Secondary Sputtering Lithography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907101. [PMID: 32243015 DOI: 10.1002/adma.201907101] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Indexed: 05/24/2023]
Abstract
The development of a simple and cost-effective method for fabricating ≈10 nm scale nanopatterns over large areas is an important issue, owing to the performance enhancement such patterning brings to various applications including sensors, semiconductors, and flexible transparent electrodes. Although nanoimprinting, extreme ultraviolet, electron beams, and scanning probe litho-graphy are candidates for developing such nanopatterns, they are limited to complicated procedures with low throughput and high startup cost, which are difficult to use in various academic and industry fields. Recently, several easy and cost-effective lithographic approaches have been reported to produce ≈10 nm scale patterns without defects over large areas. This includes a method of reducing the size using the narrow edge of a pattern, which has been attracting attention for the past several decades. More recently, secondary sputtering lithography using an ion-bombardment technique was reported as a new method to create high-resolution and high-aspect-ratio structures. Recent progress in simple and cost-effective top-down lithography for ≈10 nm scale nanopatterns via edge and secondary sputtering techniques is reviewed. The principles, technical advances, and applications are demonstrated. Finally, the future direction of edge and secondary sputtering lithography research toward issues to be resolved to broaden applications is discussed.
Collapse
Affiliation(s)
- Woo-Bin Jung
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sungwoo Jang
- Semiconductor R&D Center, Samsung Electronics Co., Ltd, 1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Soo-Yeon Cho
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hwan-Jin Jeon
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University, Siheung-si, Gyeonggi-do, 15073, Republic of Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
30
|
Hu S, Cao X, Reddyhoff T, Puhan D, Vladescu SC, Wang J, Shi X, Peng Z, deMello AJ, Dini D. Liquid repellency enhancement through flexible microstructures. SCIENCE ADVANCES 2020; 6:eaba9721. [PMID: 32923610 PMCID: PMC7457340 DOI: 10.1126/sciadv.aba9721] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/18/2020] [Indexed: 05/29/2023]
Abstract
Artificial liquid-repellent surfaces have attracted substantial scientific and industrial attention with a focus on creating functional topological features; however, the role of the underlying structures has been overlooked. Recent developments in micro-nanofabrication allow us now to construct a skin-muscle type system combining interfacial liquid repellence atop a mechanically functional structure. Specifically, we design surfaces comprising bioinspired, mushroom-like repelling heads and spring-like flexible supports, which are realized by three-dimensional direct laser lithography. The flexible supports elevate liquid repellency by resisting droplet impalement and reducing contact time. This, previously unknown, use of spring-like flexible supports to enhance liquid repellency provides an excellent level of control over droplet manipulation. Moreover, this extends repellent microstructure research from statics to dynamics and is envisioned to yield functionalities and possibilities by linking functional surfaces and mechanical metamaterials.
Collapse
Affiliation(s)
- Songtao Hu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaobao Cao
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Tom Reddyhoff
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Debashis Puhan
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | | | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Dübendorf 8600, Switzerland
| | - Xi Shi
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhike Peng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
31
|
Abstract
Superomniphobic surfaces, which repel droplets of polar and apolar liquids, are used for reducing frictional drag, packaging electronics and foods, and separation processes, among other applications. These surfaces exploit perfluorocarbons that are expensive, vulnurable to physical damage, and have a long persistence in the environment. Thus, new approaches for achieving superomniphobicity from common materials are desirable. In this context, microtextures comprising “mushroom-shaped” doubly reentrant pillars (DRPs) have been shown to repel drops of polar and apolar liquids in air irrespective of the surface make-up. However, it was recently demonstrated that DRPs get instantaneously infiltrated by the same liquids on submersion because while they can robustly prevent liquid imbibition from the top, they are vulnerable to lateral imbibition. Here, we remedy this weakness through bio-inspiration derived from cuticles of Dicyrtomina ornata, soil-dwelling bugs, that contain cuboidal secondary granules with mushroom-shaped caps on each face. Towards a proof-of-concept demonstration, we created a perimeter of biomimicking pillars around arrays of DRPs using a two-photon polymerization technique; another variation of this design with a short wall passing below the side caps was investigated. The resulting gas-entrapping microtextured surfaces (GEMS) robustly entrap air on submersion in wetting liquids, while also exhibiting superomniphobicity in air. To our knowledge, this is the first-ever microtexture that confers upon intrinsically wetting materials the ability to simultaneously exhibit superomniphobicity in air and robust entrapment of air on submersion. These findings should advance the rational design of coating-free surfaces that exhibit ultra-repellence (or superomniphobicity) towards liquids.
Collapse
|
32
|
Gonzalez-Avila SR, Nguyen DM, Arunachalam S, Domingues EM, Mishra H, Ohl CD. Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS). SCIENCE ADVANCES 2020; 6:eaax6192. [PMID: 32258392 PMCID: PMC7101208 DOI: 10.1126/sciadv.aax6192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/31/2019] [Indexed: 05/27/2023]
Abstract
Cavitation refers to the formation and collapse of vapor bubbles near solid boundaries in high-speed flows, such as ship propellers and pumps. During this process, cavitation bubbles focus fluid energy on the solid surface by forming high-speed jets, leading to damage and downtime of machinery. In response, numerous surface treatments to counteract this effect have been explored, including perfluorinated coatings and surface hardening, but they all succumb to cavitation erosion eventually. Here, we report on biomimetic gas-entrapping microtextured surfaces (GEMS) that robustly entrap air when immersed in water regardless of the wetting nature of the substrate. Crucially, the entrapment of air inside the cavities repels cavitation bubbles away from the surface, thereby preventing cavitation damage. We provide mechanistic insights by treating the system as a potential flow problem of a multi-bubble system. Our findings present a possible avenue for mitigating cavitation erosion through the application of inexpensive and environmentally friendly materials.
Collapse
Affiliation(s)
| | - Dang Minh Nguyen
- Department for Soft Matter, Institute for Physics, Otto-von-Guerick University, 39106 Magdeburg, Germany
- School of Physical and Mathematical Sciences, Department of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore
| | - Sankara Arunachalam
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Eddy M. Domingues
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Himanshu Mishra
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Claus-Dieter Ohl
- Department for Soft Matter, Institute for Physics, Otto-von-Guerick University, 39106 Magdeburg, Germany
- School of Physical and Mathematical Sciences, Department of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
33
|
Hu S, Cao X, Reddyhoff T, Puhan D, Vladescu SC, Wang Q, Shi X, Peng Z, deMello AJ, Dini D. Self-Compensating Liquid-Repellent Surfaces with Stratified Morphology. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4174-4182. [PMID: 31889435 DOI: 10.1021/acsami.9b22896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Artificial liquid-repellent surfaces have recently attracted vast scientific attention; however, achieving mechanical robustness remains a formidable challenge before industrialization can be realized. To this end, inspired by plateaus in geological landscapes, a self-compensating strategy is developed to pave the way for the synthesis of durable repellent surfaces. This self-compensating surface comprises tall hydrophobic structural elements, which can repel liquid droplets. When these elements are damaged, they expose shorter structural elements that also suspend the droplets and thus preserve interfacial repellency. An example of this plateau-inspired stratified surface was created by three-dimensional (3D) direct laser lithography micro-nano fabrication. Even after being subjected to serious frictional damage, it maintained static repellency to water with a contact angle above 147° and was simultaneously able to endure high pressures arising from droplet impacts. Extending the scope of nature-inspired functional surfaces from conventional biomimetics to geological landscapes, this work demonstrates that the plateau-inspired self-compensating strategy can provide an unprecedented level of robustness in terms of sustained liquid repellency.
Collapse
Affiliation(s)
- Songtao Hu
- State Key Laboratory of Mechanical System and Vibration , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xiaobao Cao
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich 8093 , Switzerland
| | - Tom Reddyhoff
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Debashis Puhan
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Sorin-Cristian Vladescu
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Qian Wang
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Xi Shi
- State Key Laboratory of Mechanical System and Vibration , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zhike Peng
- State Key Laboratory of Mechanical System and Vibration , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich 8093 , Switzerland
| | - Daniele Dini
- Department of Mechanical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| |
Collapse
|
34
|
Abstract
Superhydrophobic surfaces have drawn attention from scientists and engineers because of their extreme water repellency. More interestingly, these surfaces have also demonstrated an infinite influence on civil engineering materials. In this feature article, the history of wettability theory is described firstly. The approaches to construct hierarchical micro/nanostructures such as chemical vapor deposition (CVD), electrochemical, etching, and flame synthesis methods are introduced. Then, the advantages and limitations of each method are discussed. Furthermore, the recent progress of superhydrophobicity applied on civil engineering materials and its applications are summarized. Finally, the obstacles and prospects of superhydrophobic civil engineering materials are stated and expected. This review should be of interest to scientists and civil engineers who are interested in superhydrophobic surfaces and novel civil engineering materials.
Collapse
|
35
|
Filippov AE, Kovalev A, Gorb SN. Numerical simulation of the pattern formation of the springtail cuticle nanostructures. J R Soc Interface 2019; 15:rsif.2018.0217. [PMID: 30089687 DOI: 10.1098/rsif.2018.0217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/13/2018] [Indexed: 11/12/2022] Open
Abstract
Springtails (Collembola) are known to exhibit complex hierarchical nanostructures of their exoskeleton surface that repels water and other fluids with remarkable efficiency. These nanostructures were previously widely studied due to their structure, chemistry and fluid-repelling properties. These ultrastructural and chemical studies revealed the involvement of different components in different parts of the nanopattern, but the overall process of self-assembly into the complex rather regular structures observed remains unclear. Here, we model this process from a theoretical point of view partially using solutions related to the so-called Tammes problem. By using densities of three different reacting substances, we obtained a typical morphology that is highly similar to the ones observed on the cuticle of some springtail species. These results are important not only for our understanding of the formation of hierarchical nanoscale structures in nature, but also for the fabrication of novel surface coatings.
Collapse
Affiliation(s)
- A E Filippov
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten, 1-9, 24118 Kiel, Germany .,Donetsk Institute for Physics and Engineering, NASU, Donetsk, Ukraine
| | - A Kovalev
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten, 1-9, 24118 Kiel, Germany
| | - S N Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten, 1-9, 24118 Kiel, Germany
| |
Collapse
|
36
|
Lu KJ, Chen Y, Chung TS. Design of omniphobic interfaces for membrane distillation - A review. WATER RESEARCH 2019; 162:64-77. [PMID: 31255782 DOI: 10.1016/j.watres.2019.06.056] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Membrane distillation (MD) has a great potential in treating high salinity industrial wastewater due to its unique characteristics. Nevertheless, the implementation of MD for industrial wastewater reclamation must be conducted with precaution because low-surface-tension contaminates in feed solutions may easily wet the membranes. In recent years, omniphobic membranes that exhibit strong repellence towards liquids with a wide range of surface tensions have been proposed as a promising solution to deal with the wetting problem. In this paper, we aim to provide a comprehensive review of omniphobic interfaces and illustrate their fundamental working principles, innovative design approaches and novel applications on membrane distillation. The review may provide insights in designing stable solid-liquid-vapor interfaces and serve as a guidance for the development of robust anti-wetting membranes for industrial wastewater reclamation via membrane distillation.
Collapse
Affiliation(s)
- Kang Jia Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuanmiaoliang Chen
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore; NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
37
|
Das R, Arunachalam S, Ahmad Z, Manalastas E, Mishra H. Bio-inspired gas-entrapping membranes (GEMs) derived from common water-wet materials for green desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Pan S, Chen M, Wu L. Fabrication of a flexible transparent superomniphobic polydimethylsiloxane surface with a micropillar array. RSC Adv 2019; 9:26165-26171. [PMID: 35531005 PMCID: PMC9070391 DOI: 10.1039/c9ra04706a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/16/2019] [Indexed: 11/29/2022] Open
Abstract
Although superomniphobic surfaces have attracted extensive interest owing to many important applications, successful fabrication of such surfaces still remains a critical challenge. Herein, we present a flexible transparent superomniphobic polydimethylsiloxane (PDMS) surface with a micropillar array using Si nanowires as the mould. The as-obtained PDMS not only exhibits excellent liquid-repellent performance with a static contact angle of over 150° and sliding angle of less than 6° against a wide range of liquids, but also maintains the super-repellency even under acid/base corrosion, mechanical damage, and unidirectional stretching.
Collapse
Affiliation(s)
- Shengyang Pan
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education, Fudan University Shanghai 200433 China
| | - Min Chen
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education, Fudan University Shanghai 200433 China
| | - Limin Wu
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education, Fudan University Shanghai 200433 China
| |
Collapse
|
39
|
Sun Y, Guo Z. A scalable, self-healing and hot liquid repelling superamphiphobic spray coating with remarkable mechanochemical robustness for real-life applications. NANOSCALE 2019; 11:13853-13862. [PMID: 31298250 DOI: 10.1039/c9nr02893e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A simultaneous demonstration of scalability, mechanochemical robustness, self-healing and hot liquid repelling features is still a major challenge in fabricating superamphiphobic coatings. In this work, we developed a facile and effective silica-inorganic adhesive-based spray coating for the preparation of self-healing and hot liquid repelling superamphiphobic coatings that demonstrate good mechanical durability (under repeated adhesive tape-peeling tests, ultrasonic treatment, sandpaper abrasion and sand flow impact tests) and superstrong chemical robustness when exposed to highly corrosive media, such as 98% sulfuric acid and 5% chromic acid, for a long time. In addition, our superamphiphobic paints can be coated on large-sized substrates to create large robust coatings for real-world applications, which are still regarded as the tightest bottlenecks in the development of superamphiphobic materials. The large coatings also showed excellent liquid repellence when placed for a long time in the outdoor environment, and upon repeatable quartz sand abrasion and treading stepping test cycles. Moreover, the anti-smudge ability, semitransparency, repeated self-healing ability, self-cleaning behaviour both in air and oil, and hot liquid repelling behavior of the resultant coatings are also investigated. Taking multifaceted stability and scalability into consideration, our described coatings are promising for more vital applications such as windows, infrastructures, crude oil pipelines, in harsh chemical engineering, etc.
Collapse
Affiliation(s)
- Yihan Sun
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China. and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China. and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| |
Collapse
|
40
|
Wang H, Zhang Z, Wang Z, Liang Y, Cui Z, Zhao J, Li X, Ren L. Multistimuli-Responsive Microstructured Superamphiphobic Surfaces with Large-Range, Reversible Switchable Wettability for Oil. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28478-28486. [PMID: 31307191 DOI: 10.1021/acsami.9b07941] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The switchable wettability is essential for widespread applications in droplet manipulation, rewritable liquid patterning, fluid carrying, and so forth. However, it remains difficult to achieve the multistimuli-responsive, large-range, and reversible wetting switching especially for liquids with low surface tensions through surface topographical management. Here, we apply a simple and effective template-free self-assembly strategy to fabricate microstructured superamphiphobic surfaces that can reversibly switch the wetting performance for oil by transforming the surface morphology in response to multiple stimuli of magnetic fields and mechanical strains. Notably, the noticeably different wetting switching of oil triggered by different stimuli is demonstrated. The contact angles of hexadecane droplets on the as-prepared surfaces can be reversibly switched between 150 ± 1° and 38 ± 2° in response to mechanical strains. Furthermore, the underlying mechanism of wetting switching has been further elucidated using mathematical models. Interestingly, these switchable surfaces dramatically demonstrate the ability to transport oil droplets, without requiring lubricating liquid films. This work not only achieves the large-range and reversible wetting switching for oil but also opens new avenues for fabricating tunable superamphiphobic surfaces with transformable mushroom-like microstructures that can be easily extended to microstructure-dependent friction or adhesion control and used in other fields.
Collapse
Affiliation(s)
| | | | - Zuankai Wang
- Department of Mechanical Engineering , City University of Hong Kong , Hong Kong 999077 , People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Liu X, Gu H, Ding H, Du X, He Z, Sun L, Liao J, Xiao P, Gu Z. Programmable Liquid Adhesion on Bio-Inspired Re-Entrant Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902360. [PMID: 31305010 DOI: 10.1002/smll.201902360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/14/2019] [Indexed: 06/10/2023]
Abstract
Surfaces combining antispreading and high adhesion can find wide applications in the manipulation of liquid droplets, generation of micropatterns and liquid enrichment. To fabricate such surfaces, almost all the traditional methods demand multi-step processes and chemical modification. And even so, most of them cannot be applied for some liquids with extremely low surface energy. In the past decade, multiply re-entrant structures have aroused much attention because of their universal and modification-independent antiadhesion or antipenetration ability. Unfortunately, theories and applications about their liquid adhesion behavior are still rare. In this work, inspired by the springtail skin and gecko feet in the adhered state, it is demonstrated that programmable liquid adhesion is realized on the 3D-printed micro doubly re-entrant arrays. By arranging the arrays reasonably, three different Cassie adhesion behaviors can be obtained: I) no residue adhesion, II) tunable adhesion, and III) absolute adhesion. Furthermore, various arrays are designed to tune macro/micro liquid droplet manipulation, which can find applications in the transportation of liquid droplets, liquid enrichment, generation of tiny droplets, and micropatterns.
Collapse
Affiliation(s)
- Xiaojiang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hongcheng Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haibo Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xin Du
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhenzhu He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liangdong Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Junlong Liao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Suzhou Key Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Suzhou, 215123, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
| |
Collapse
|
42
|
Zahid M, Mazzon G, Athanassiou A, Bayer IS. Environmentally benign non-wettable textile treatments: A review of recent state-of-the-art. Adv Colloid Interface Sci 2019; 270:216-250. [PMID: 31277037 DOI: 10.1016/j.cis.2019.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
Among superhydrophobic materials, non-wettable textiles are probably the ones that come in contact or interact with the human body most frequently. Hence, textile treatments for water or oil repellency should be non-toxic, biocompatible, and comply with stringent health standards. Moreover, considering the volume of the worldwide textile industry, these treatments should be scalable, sustainable, and eco-friendly. Due to this awareness, more and more non-wettable textile treatments with eco-friendly processes and green or non-toxic chemicals are being adopted and reported. Although fluorinated alkylsilanes or fluorinated polymers with C8 chemistry (with ≥ 8 fluorinated carbon atoms) are the best performing materials to render textiles water or oil repellent, they pose substantial health and environmental problems and are being banned. For this reason, water/solvent-borne, C8-free vehicles for non-wettable treatment formulations are probably the only ones that can have commercialization prospects. Hence, researchers have come up with a variety of new, non-toxic, green formulations and materials to render fabrics liquid repellent that constitute the focus of this review paper. As such, this review article discusses and summarizes recent developments and techniques on various sustainable superhydrophobic treatments for textiles, with comparable performance and durability to formulations based on fluorinated C8 compounds. The current state-of-the-art technologies, potential commercialization prospects, and relevant limitations are discussed and summarized with examples. The review also attempts to indicate promising future strategies and new materials that can transform the process for non-wettable textiles into an all-sustainable technology.
Collapse
Affiliation(s)
- Muhammad Zahid
- Smart Materials, Istituto Italiano di Technologia, Via Morego, 30, 16163 Genova, Italy.
| | - Giulia Mazzon
- Smart Materials, Istituto Italiano di Technologia, Via Morego, 30, 16163 Genova, Italy; Dipartimento di Scienze Ambientali, Informatica e Statistica (DAIS), Università Ca' Foscari, Dorsoduro 3246, 30123 Venezia, Italy
| | | | - Ilker S Bayer
- Smart Materials, Istituto Italiano di Technologia, Via Morego, 30, 16163 Genova, Italy.
| |
Collapse
|
43
|
Sun J, Li H, Huang Y, Zheng X, Liu Y, Zhuang J, Wu D. Simple and Affordable Way To Achieve Polymeric Superhydrophobic Surfaces with Biomimetic Hierarchical Roughness. ACS OMEGA 2019; 4:2750-2757. [PMID: 31459509 PMCID: PMC6648443 DOI: 10.1021/acsomega.8b03138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/21/2019] [Indexed: 06/10/2023]
Abstract
A water contact angle greater than 150° together with a sliding angle less than 10° is a special surface phenomenon that appears on superhydrophobic surfaces. In this paper, a brief introduction of the development history and present research on superhydrophobic surfaces was given. Polymeric superhydrophobic surfaces with biomimetic hierarchical roughness were fabricated by a simple method of hot embossing without any chemical treatments. Stainless steel meshes with different mesh numbers were used as template. Moreover, the influences of processing parameters, including mesh number, mold temperature, and pressure, were deeply investigated. Hierarchical microplatforms, microfibers, and oriented arrayed nanowrinkles structure on them, which were resembled with the nanowrinkles structure and hierarchical roughness on a red rose petal, were observed by a scanning electron microscope. A water contact angle of 154° can be achieved after parameter optimization. The method proposed in this study offered a fine and affordable choice for the fabrication of polymeric superhydrophobic surfaces. With the rapid development of functional applications in micro- and nanodevices, this method will show greater superiority in large-area and large-scale production due to its advantages of low cost, high efficiency, and high reliability.
Collapse
Affiliation(s)
- Jingyao Sun
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanwen Li
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yao Huang
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiuting Zheng
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Liu
- State
Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China
| | - Jian Zhuang
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Daming Wu
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State
Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China
| |
Collapse
|
44
|
Seo D, Cha SK, Kim G, Shin H, Hong S, Cho YH, Chun H, Choi Y. Flexible and Stable Omniphobic Surfaces Based on Biomimetic Repulsive Air-Spring Structures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5877-5884. [PMID: 30648844 DOI: 10.1021/acsami.8b20521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In artificial biological circulation systems such as extracorporeal membrane oxygenation, surface wettability is a critical factor in blood clotting problems. Therefore, to prevent blood from clotting, omniphobic surfaces are required to repel both hydrophilic and oleophilic liquids and reduce surface friction. However, most omniphobic surfaces have been fabricated by combining chemical reagent coating and physical structures and/or using rigid materials such as silicon and metal. It is almost impossible for chemicals to be used in the omniphobic surface for biomedical devices due to durability and toxicity. Moreover, a flexible and stable omniphobic surface is difficult to be fabricated by using conventional rigid materials. This study demonstrates a flexible and stable omniphobic surface by mimicking the re-entrant structure of springtail's skin. Our surface consists of a thin nanohole membrane on supporting microstructures. This structure traps air under the membrane, which can repel the liquid on the surface like a spring and increase the contact angle regardless of liquid type. By theoretical wetting model and simulation, we confirm that the omniphobic property is derived from air trapped in the structure. Also, our surface well maintains the omniphobicity under a highly pressurized condition. As a proof of our concept and one of the real-life applications, blood experiments are performed with our flat and curved surfaces and the results including contact angle, advancing/receding angles, and residuals show significant omniphobicity. We hope that our omniphobic surface has a significant impact on blood-contacting biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Hyun Cho
- Department of Thoracic and Cardiovascular Surgery , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul 06351 , Republic of Korea
| | | | | |
Collapse
|
45
|
Arunachalam S, Das R, Nauruzbayeva J, Domingues EM, Mishra H. Assessing omniphobicity by immersion. J Colloid Interface Sci 2019; 534:156-162. [DOI: 10.1016/j.jcis.2018.08.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/25/2022]
|
46
|
Sun J, Yun C, Cui B, Li P, Liu G, Wang X, Chu F. A Facile Approach for Fabricating Microstructured Surface Based on Etched Template by Inkjet Printing Technology. Polymers (Basel) 2018; 10:E1209. [PMID: 30961134 PMCID: PMC6290637 DOI: 10.3390/polym10111209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/04/2022] Open
Abstract
Microstructures are playing an important role in manufacturing functional devices, due to their unique properties, such as wettability or flexibility. Recently, various microstructured surfaces have been fabricated to realize functional applications. To achieve the applications, photolithography or printing technology is utilized to produce the microstructures. However, these methods require preparing templates or masks, which are usually complex and expensive. Herein, a facile approach for fabricating microstructured surfaces was studied based on etched template by inkjet printing technology. Precured polydimethylsiloxane substrate was etched by inkjet printing water-soluble polyacrylic acid solution. Then, the polydimethylsiloxane substrate was cured and rinsed, which could be directly used as template for fabricating microstructured surfaces. Surfaces with raised dots, lines, and squares, were facilely obtained using the etched templates by inkjet printing technology. Furthermore, controllable anisotropic wettability was exhibited on the raised line microstructured surface. This work provides a flexible and scalable way to fabricate various microstructured surfaces. It would bring about excellent performance, which could find numerous applications in optoelectronic devices, biological chips, microreactors, wearable products, and related fields.
Collapse
Affiliation(s)
- Jiazhen Sun
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chenghu Yun
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Bo Cui
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Pingping Li
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guangping Liu
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xin Wang
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fuqiang Chu
- Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Printing & Packaging Materials and Technology of Shandong Province, School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
47
|
Wu Y, Zeng J, Si Y, Chen M, Wu L. Large-Area Preparation of Robust and Transparent Superomniphobic Polymer Films. ACS NANO 2018; 12:10338-10346. [PMID: 30299933 DOI: 10.1021/acsnano.8b05600] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Transparent superamphiphobic surfaces that repel various liquids have many important applications, but there are critical challenges in their fabrication, such as expensive or complicated fabrication methods, contradictions between the rough surface for superamphiphobicity and smooth surface for transparency, large-area fabrication, etc. Herein, we report a simple and effective strategy for large-scale fabrication of robust, transparent, and superomniphobic polymer films by combined unidirectional rubbing and heating-assisted assembly technology. The obtained polymer films display two kinds of special structures of monolayer ordered re-entrant geometries with either hexagonally triangular protrusions or with hexagonally rectangular micropillars, depending upon the sphere diameters of silica templates, and demonstrate excellent repellence to water and low-surface-tension liquids, as well as high transparency.
Collapse
Affiliation(s)
- Yi Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China , Fudan University , Shanghai 200433 , China
| | - Jing Zeng
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China , Fudan University , Shanghai 200433 , China
| | - Yinsong Si
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China , Fudan University , Shanghai 200433 , China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China , Fudan University , Shanghai 200433 , China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China , Fudan University , Shanghai 200433 , China
| |
Collapse
|
48
|
Lu KJ, Zuo J, Chang J, Kuan HN, Chung TS. Omniphobic Hollow-Fiber Membranes for Vacuum Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4472-4480. [PMID: 29561139 DOI: 10.1021/acs.est.8b00766] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Management of produced water from shale gas production is a global challenge. Vacuum membrane distillation (VMD) is considered a promising solution because of its various advantages. However, low-surface-tension species in produced water can easily deposit on the membrane surface and cause severe fouling or wetting problems. To solve the problems, an omniphobic polyvinylidene difluoride (PVDF) hollow-fiber membrane has been developed via silica nanoparticle deposition followed by a Teflon AF 2400 coating in this study. The resultant membrane shows good repellency toward various liquids with different surface tensions and chemistries, including water, ethylene glycol (EG), cooking oil, and ethanol. It also exhibits stable performance in 7 h VMD tests with a feed solution containing up to 0.6 mM of sodium dodecyl sulfate (SDS). In addition, the effects of surface energy and surface morphology as well as nanoparticle size on membrane omniphobicity have been systematically investigated. This work may provide valuable guidance to molecularly design omniphobic VMD membranes for produced water treatment.
Collapse
Affiliation(s)
- Kang Jia Lu
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Jian Zuo
- Singapore Institute of Technology , 10 Dover Drive , Singapore 138683
| | - Jian Chang
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Hong Nan Kuan
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Tai-Shung Chung
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| |
Collapse
|
49
|
Kim DS, Suh A, Yang S, Yoon DK. Grooving of nanoparticles using sublimable liquid crystal for transparent omniphobic surface. J Colloid Interface Sci 2018; 513:585-591. [PMID: 29190570 DOI: 10.1016/j.jcis.2017.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 01/10/2023]
Abstract
Hierarchical assembly of nanoparticles (NPs) is of interest for omniphobic surfaces in the way that hierarchical scale roughness possibly provides effective liquid repellency and also it is relatively easy to build large-area coatings via the bottom-up assembly process. However, all NP assemblies often lacks mechanical robustness. Hence, the development of the effective fabrication method to make well-deposited hierarchical NPs assembly is demanded. In this report, we have demonstrated an all-NP three-dimensional hierarchical surface that is omniphobic yet highly transparent and mechanically robust. By taking advantage of sublimation and recondensation of smectic A liquid crystals (LCs) in a simple thermal annealing process, we patterned NP aggregates in one-dimensional grooves directed by LCs. The resultant groove-like NP-assembled surface showed omniphobicity, repelling water, glycerol, ethylene glycol, and olive oil (with contact angle of 156.5°, 147°, 136.5°, and 123.2°, respectively) because of the low surface energy of the fluorinated NPs and dual roughness. The coating is highly transparent with ∼90% transmittance in the visible wavelength. We investigate the mechanical robustness of the all NP coatings by sand abrasion, which shows nearly identical omniphobicity and transparency after the sand abrasion.
Collapse
Affiliation(s)
- Dae Seok Kim
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, Republic of Korea; UMR Gulliver 7083 CNRS, ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Ahram Suh
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Shu Yang
- Department of Material Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, United States
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, Republic of Korea; Department of Chemistry and KINC, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
50
|
Wu Y, Zhou S, You B, Wu L. Bioinspired Design of Three-Dimensional Ordered Tribrachia-Post Arrays with Re-entrant Geometry for Omniphobic and Slippery Surfaces. ACS NANO 2017; 11:8265-8272. [PMID: 28745868 DOI: 10.1021/acsnano.7b03433] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydro- and oleophobic (namely, omniphobic) coatings or surfaces have many important applications, but tremendous challenges in fabrication aspects still remain. Herein, we report a bioinspired design and nanofabrication of three-dimensional (3D) tribrachia-post arrays with re-entrant geometry (3D TPARG) for superhydrophobic and oleophobic polymer films or surfaces. By simply controlling the temperatures and time to treat silica colloidal templates, we can readily fabricate 3D ordered polymer arrays of tribrachia-posts or hexagonal tribrachia-posts with re-entrant geometries that resemble the skin of a springtail insect after the template is removed. These polymer surfaces exhibit excellent and self-healing superhydrophobicity and oleophobicity even against temperature, acids, alkalis, and mechanical damage. Moreover, their liquid-infused nanostructured surfaces still display very good liquid-sliding ability for water and oils. Our 3D TPARG design strategy may help the development of omniphobic polymer coatings or surfaces for practical applications in self-cleaning surfaces, liquid transport, antifouling materials, and many other important fields.
Collapse
Affiliation(s)
- Yi Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University , Shanghai 200433, China
| | - Shuxue Zhou
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University , Shanghai 200433, China
| | - Bo You
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University , Shanghai 200433, China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University , Shanghai 200433, China
| |
Collapse
|