1
|
Han MT, Wu L, Wang JP, Sui MY, Sun GY. A unified evaluation descriptor for π-bridges applied to metalloporphyrin derivatives. Phys Chem Chem Phys 2024; 26:23962-23970. [PMID: 39235451 DOI: 10.1039/d4cp02787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Establishing the structure of porphyrins with a A-π-D-π-A configuration is one of the effective strategies to maintain their dominance and compensate shortcomings through flexible changes in fragments. In this regard, π-bridges have attracted wide attention as a parameter affecting molecular backbones, electron transfer, energy levels, absorption, and other properties. However, the essence and influence of π-bridges have not yet been confirmed. In order to satisfy the requirements of intelligent application in molecular design, this study aimed to investigate the control effect of differences in π-bridge composition (thiophene and selenophene) and connection type (single bonds, ethylenic bonds and fused) on photoelectric performance. Y6 and PC61BM were used as acceptors to build donor/acceptor (D/A) interfaces and characterize the film morphology in three dimensions. Results showed that the essence of π-bridges involves a strong bridging effect (adjusting ability) between A and D fragments rather than highlighting its own nature. The large value could obtain high open circuit voltages (VOC), large separation and small recombination rates as well as stable and tight morphology. Therefore, adjusting ability is a unified descriptor for evaluating π-bridges, and it is an effective strategy to adjust material properties and morphology. This insight and discovery may provide a new evaluation descriptor for the screening and design of π-bridges.
Collapse
Affiliation(s)
- Meng-Tian Han
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China.
| | - Liu Wu
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China.
| | - Jian-Ping Wang
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, Xi'an, Shaanxi 710123, China
| | - Ming-Yue Sui
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China.
| | - Guang-Yan Sun
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China.
- School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, Zhuhai, Guangdong, 519041, China
| |
Collapse
|
2
|
Zhang L, Deng D, Lu K, Wei Z. Optimization of Charge Management and Energy Loss in All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302915. [PMID: 37399575 DOI: 10.1002/adma.202302915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
All-small-molecule organic solar cells (ASM-OSCs) have received tremendous attention in recent decades because of their advantages over their polymer counterparts. These advantages include well-defined chemical structures, easy purification, and negligible batch-to-batch variation. Remarkable progress with a power conversion efficiency (PCE) of over 17% has recently been achieved with improved charge management (FF × JSC) and reduced energy loss (Eloss). Morphology control is the key factor in the progress of ASM-OSCs, which remains a significant challenge because of the similarities in the molecular structures of the donors and acceptors. In this review, the effective strategies for charge management and/or Eloss reduction from the perspective of effective morphology control are summarized. The aim is to provide practical insights and guidance for material design and device optimization to promote further development of ASM-OSCs to a level where they can compete with or even surpass the efficiency of polymer solar cells.
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
3
|
Guo Y, Wu J, Lin Z, Tang F, Yuan L, Wu H, Peng X. Novel Beta-Functionalized Porphyrins Approaching 11% Efficiency for Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17531-17539. [PMID: 38530924 DOI: 10.1021/acsami.4c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Porphyrins and their derivatives possess high molar extinction coefficients and strong electron-donating abilities and have been widely used in organic solar cells (OSCs). Though porphyrins can be easily functionalized at the four meso-positions and the eight β-positions, nearly all porphyrin photovoltaic materials are reported to be functionalized at the meso-positions, and the porphyrin photovoltaic materials functionalized at the β-positions are to be explored. Herein, the regioselective β-positions of a porphyrin are first brominated without using rare metal iridium catalysts, and then, after two more reactions, two antipodal β-substituted porphyrin donors EHDPP-Por and BODPP-Por are synthesized, in which four DPP (diketopyrrolopyrrole) units are connected symmetrically with acetylene at four of the β-positions, for OSCs. The all-small-molecule organic solar cells based on EHDPP-Por:Y6 and BODPP-Por:Y6 active layers achieved power conversion efficiencies of 10.19 and 10.99%, respectively, which are higher than most of the binary OSCs based on the porphyrins functionalized at the meso-positions, demonstrating that β-functionalized porphyrins are very promising for OSCs.
Collapse
Affiliation(s)
- Yinchun Guo
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Jifa Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhenkun Lin
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Feng Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Lin Yuan
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Hanping Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
4
|
Liu F, Jiang Y, Xu R, Su W, Wang S, Zhang Y, Liu K, Xu S, Zhang W, Yi Y, Ma W, Zhu X. Nonfullerene Acceptor Featuring Unique Self-Regulation Effect for Organic Solar Cells with 19 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202313791. [PMID: 38050643 DOI: 10.1002/anie.202313791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
The blend nanomorphology of electron-donor (D) and -acceptor (A) materials is of vital importance to achieving highly efficient organic solar cells. Exogenous additives especially aromatic additives are always needed to further optimize the nanomorphology of blend films, which is hardly compatible with industrial manufacture. Herein, we proposed a unique approach to meticulously modulate the aggregation behavior of NFAs in both crystal and thin film nanomorphology via self-regulation effect. Nonfullerene acceptor Z9 was designed and synthesized by tethering phenyl groups on the inner side chains of the Y6 backbone. Compared with Y6, the tethered phenyl groups participated in the molecular aggregation via the π-π stacking of phenyl-phenyl and phenyl-2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC-2F) groups, which induced 3D charge transport with phenyl-mediated super-exchange electron coupling. Moreover, ordered molecular packing with suitable phase separation was observed in Z9-based blend films. High power conversion efficiencies (PCEs) of 19.0 % (certified PCE of 18.6 %) for Z9-based devices were achieved without additives, indicating the great potential of the self-regulation strategy in NFA design.
Collapse
Affiliation(s)
- Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenli Su
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaogang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kerui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Ge J, Xie L, Peng R, Ge Z. Organic Photovoltaics Utilizing Small-Molecule Donors and Y-Series Nonfullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206566. [PMID: 36482012 DOI: 10.1002/adma.202206566] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/14/2022] [Indexed: 05/19/2023]
Abstract
The emerging Y-series nonfullerene acceptors (Y-NFA) has prompted the rapid progress of power conversion efficiency (PCE) of all-small-molecule organic solar cells (ASM-OSCs) from around 12% to 17%. The excellent PCE improvement benefits from not only the outstanding properties of Y-series acceptors but also the successful development of small-molecule donors. The short-circuit current density, fill factor, and nonradiative recombination are all optimized to the unprecedented values, providing a scenery that is obviously different from the ITIC-series based ASM-OSCs. In this review, OSCs utilizing small-molecule donors and Y-NFA are summarized and classified in order to provide an up-to-date development overview and give an insight on structure-property correlation. Then, the characteristics of bulk-heterojunction (BHJ) formation of ASM-OSCs are discussed and compared with that of polymer-based OSCs. Finally, the challenges and outlook on designing ground-breaking small-molecule donor and forming an ideal BHJ morphology are discussed.
Collapse
Affiliation(s)
- Jinfeng Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Xie
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ruixiang Peng
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
He J, Liang Z, Lin L, Liang S, Xu J, Ni W, Li M, Geng Y. Polythiophenes with alkylthiophene side chains for efficient polymer solar cells. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Gao H, Sun Y, Meng L, Han C, Wan X, Chen Y. Recent Progress in All-Small-Molecule Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205594. [PMID: 36449633 DOI: 10.1002/smll.202205594] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Active layer material plays a critical role in promoting the performance of an organic solar cell (OSC). Small-molecule (SM) materials have the merits of well-defined chemical structures, few batch-to-batch variations, facile synthesis and purification procedures, and easily tuned properties. SM-donor and non-fullerene acceptor (NFA) innovations have recently produced all-small-molecule (ASM) devices with power conversion efficiencies that exceed 17% and approach those of their polymer-based counterparts, thereby demonstrating their great future commercialization potential. In this review, recent progress in both SM donors and NFAs to illustrate structure-property relationships and various morphology-regulation strategies are summarized. Finally, ASM-OSC challenges and outlook are discussed.
Collapse
Affiliation(s)
- Huanhuan Gao
- College of New Energy, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yanna Sun
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenyang Han
- College of New Energy, Xi'an Shiyou University, Xi'an, 710065, China
| | - Xiangjian Wan
- Key Laboratory of Functional Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- Key Laboratory of Functional Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Xu X, Li Y, Peng Q. Ternary Blend Organic Solar Cells: Understanding the Morphology from Recent Progress. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107476. [PMID: 34796991 DOI: 10.1002/adma.202107476] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Ternary blend organic solar cells (TB-OSCs) incorporating multiple donor and/or acceptor materials into the active layer have emerged as a promising strategy to simultaneously improve the overall device parameters for realizing higher performances than binary devices. Whereas introducing multiple materials also results in a more complicated morphology than their binary blend counterparts. Understanding the morphology is crucially important for further improving the device performance of TB-OSC. This review introduces the solubility and miscibility parameters that affect the morphology of ternary blends. Then, this review summarizes the recent processes of morphology study on ternary blends from the aspects of molecular crystallinity, molecular packing orientation, domain size and purity, directly observation of morphology, vertical phase separation as well as morphological stability. Finally, summary and prospects of TB-OSCs are concluded.
Collapse
Affiliation(s)
- Xiaopeng Xu
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ying Li
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
9
|
Guo Q, Ding Y, Dai Z, Chen Z, Du M, Wang Z, Gao L, Duan C, Guo Q, Zhou E. Multiple-cation wide-bandgap perovskite solar cells grown using cesium formate as the Cs precursor with high efficiency under sunlight and indoor illumination. Phys Chem Chem Phys 2022; 24:17526-17534. [PMID: 35851910 DOI: 10.1039/d2cp02358j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Owing to the advantages of adjustable bandgap, low-cost fabrication and superior photovoltaic performance, wide-bandgap (WBG) perovskite solar cells (PSCs) are considered as the promising top-cell for multi-junction solar cells. At the same time, WBG PSCs have also shown great potential for indoor photovoltaic applications. To further improve the performance of WBG PSCs, in this work, we fabricated efficient WBG PSCs via introducing cesium formate (CsFa) as the Cs precursor. Due to the HCOO·Pb+ and HCOOH·Cs+ complex formation and HCOOH volatilization accompanying the crystallization process, the crystallization of the perovskite using the CsFa precursor (CsFa-perovskite) is promoted. Compared to the perovskite prepared using the CsBr precursor (CsBr-perovskite), the WBG CsFa-perovskite shows better perovskite crystallization, reduced trap-state density, and better phase stability under light illumination. Finally, the 1.63 eV WBG PSCs based on the CsFa-perovskite achieve a significant PCE of 20.01% under one sun illumination (AM 1.5G, 100 mW cm-2), which is higher than that of PSCs based on the CsBr-perovskite (18.27%). Moreover, the PCE of CsFa-perovskite PSCs also under indoor warm-white 2700 K LED light illumination (1000 lux) is as high as 38.52%. Our results demonstrate that CsFa as the Cs precursor is a promising candidate to promote the device performance of WBG PSCs.
Collapse
Affiliation(s)
- Qiang Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Yuanjia Ding
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Zheng Dai
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Zongwei Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Mengzhen Du
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Zongtao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China.,CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Lei Gao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Chen Duan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Qing Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| |
Collapse
|
10
|
Thambidurai M, Omer MI, Shini F, Dewi HA, Jamaludin NF, Koh TM, Tang X, Mathews N, Dang C. Enhanced Thermal Stability of Planar Perovskite Solar Cells Through Triphenylphosphine Interface Passivation. CHEMSUSCHEM 2022; 15:e202102189. [PMID: 35289479 DOI: 10.1002/cssc.202102189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/16/2022] [Indexed: 06/14/2023]
Abstract
While extensive research has driven the rapid efficiency trajectory noted to date for organic-inorganic perovskite solar cells (PSCs), their thermal stability remains one of the key issues hindering their commercialization. Herein, a significant reduction in surface defects (a precursor to perovskite instability) could be attained by introducing triphenylphosphine (TPP), an effective Lewis base passivator, to the vulnerable perovskite/spiro-OMeTAD interface. Not only did TPP passivation enable a high power conversion efficiency (PCE) of 20.22 % to be achieved, these devices also exhibited superior ambient and thermal stability. Unlike the pristine device, which exhibited a sharp descend to 16 % of its initial PCE on storing in relative humidity of 10 %, at 85 °C for more than 720 h, the TPP-passivated devices retained 71 % of its initial PCE. Hence, this study presents a facile yet excellent approach to attain high-performing yet thermally stable PSCs.
Collapse
Affiliation(s)
- M Thambidurai
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
| | - Mohamed I Omer
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Foo Shini
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Herlina Arianita Dewi
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
| | - Nur Fadilah Jamaludin
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
| | - Teck Ming Koh
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
| | - Xiaohong Tang
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Nripan Mathews
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Cuong Dang
- Centre for OptoElectronics and Biophotonics (COEB), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Energy Research Institute @NTU (ERI@N), Research Techno Plaza X-Frontier Block, Level 5, 50 Nanyang Drive, 637553, Singapore
| |
Collapse
|
11
|
Gayathri RD, Gokulnath T, Park HY, Kim J, Kim H, Kim J, Kim B, Lee Y, Yoon J, Jin SH. Impact of Aryl End Group Engineering of Donor Polymers on the Morphology and Efficiency of Halogen-Free Solvent-Processed Nonfullerene Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10616-10626. [PMID: 35170936 DOI: 10.1021/acsami.1c22784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
End group engineering on the side chain of π-conjugated donor polymers is explored as an effective way to develop efficient photovoltaic devices. In this work, we designed and synthesized three new π-conjugated polymers (PBDT-BZ-1, PBDT-S-BZ, and PBDT-BZ-F) with terminal aryl end groups on the side chain of chlorine-substituted benzo[1,2-b:4,5b']dithiophene (BDT). End group modifications showed notable changes in energy levels, dipole moments, exciton lifetimes, energy losses, and charge transport properties. Remarkably, the three new polymers paired with IT-4F (halogen-free solvent processed/toluene:DPE) displayed high power conversion efficiencies (PCEs) compared to a polymer (PBDT-Al-5) without a terminal end group (PCE of 7.32%). Interestingly, PBDT-S-BZ:IT-4F (PCE of 13.73%) showed a higher PCE than the benchmark PM7:IT-4F. The improved performance of PBDT-S-BZ well correlates with its improved charge mobility, well-interdigitated surface morphology, and high miscibility with a low Flory-Huggins interaction parameter (1.253). Thus, we successfully established a correlation between the end group engineering and bulk properties of the new polymers for realizing the high performance of halogen-free nonfullerene organic solar cells.
Collapse
Affiliation(s)
- Rajalapati Durga Gayathri
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| | - Thavamani Gokulnath
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| | - Ho-Yeol Park
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| | - Jeonghyeon Kim
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| | - Hyerin Kim
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| | - Jongyoun Kim
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Republic of Korea
| | - BongSoo Kim
- Department of Chemistry, UNIST, Ulsan 44919, Republic of Korea
| | - Youngu Lee
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Republic of Korea
| | - Jinhwan Yoon
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| | - Sung-Ho Jin
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
12
|
Shi Y, Ma R, Wang X, Liu T, Li Y, Fu S, Yang K, Wang Y, Yu C, Jiao L, Wei X, Fang J, Xue D, Yan H. Influence of Fluorine Substitution on the Photovoltaic Performance of Wide Band Gap Polymer Donors for Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5740-5749. [PMID: 35040622 DOI: 10.1021/acsami.1c23196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The design and development of wide band gap (WBG) polymer donors are critical for achieving high power conversion efficiencies (PCEs) in polymer solar cells. In this work, four WBG polymer donors, Q4, Q5, Q6, and Q7, with different numbers and positions of fluorine substitution (n = 0, 2, 2, and 4, respectively) were prepared, and the effect of fluorination on their photovoltaic performance was systematically investigated. When blended with a small-molecule electron acceptor MeIC, the devices based on Q4, Q5, Q6, and Q7 showed PCEs of 10.34, 11.06, 5.26, and 0.48%, respectively. When coupled with a low band gap polymer acceptor PYIT to fabricate all-polymer solar cells (all-PSCs), while the other three polymers (Q5-Q7) exhibited much lower PCEs in the range of 0.12-6.71%, the Q4 polymer-based all-PSCs showed the highest PCE of 15.06%, comparable to that of the devices fabricated with the star polymer donor PM6 (PCE = 15.00%). Detailed physicochemical and morphological studies revealed that an over-substitution of F in Q7 results in undesired low-lying HOMO levels and phase separation with the acceptors, thus resulting in its inferior PCEs. Moreover, the less F-substitution and controlling of the positions of F-substitution position in Q4 and Q5 can improve the HOMO energy level matching as well as morphologies between these two polymers with the acceptors, which in turn gives rise to higher performances. Clearly, our results indicate that Q4 is a promising donor candidate for high-performance all-PSCs, and the fine-tuning of both the number and positions of F-substitution in the polymer backbone is essential in developing high-performance WBG polymer donors.
Collapse
Affiliation(s)
- Yongqiang Shi
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Ruijie Ma
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Xin Wang
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Tao Liu
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Sheng Fu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Kun Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yang Wang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Changjiang Yu
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Xianwen Wei
- School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui 241002, China
| | - Junfeng Fang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Physics and Materials Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Dongfeng Xue
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
13
|
Mao D, Chen XR, Li DH, Liu XY, Cui G, Li L. Ultrafast charge transfer in a nonfullerene all-small-molecule organic solar cell: a nonadiabatic dynamics simulation with optimally tuned range-separated functional. Phys Chem Chem Phys 2022; 24:27173-27183. [DOI: 10.1039/d2cp03822f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The combination of nonadiabatic dynamics simulation and optimally tuned range-separated functional might be a powerful tool for elucidating the ultrafast charge transfer in nonfullerene all-small-molecule organic solar cells.
Collapse
Affiliation(s)
- Dan Mao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Xin-Rui Chen
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Dong-Heng Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China
| |
Collapse
|
14
|
Qiu N, Liu C, Lang H, Xu J, Su R, Jiang J, Tian J, Li J. Efficient all-small-molecule organic solar cells based on a fluorinated small-molecule donor. NEW J CHEM 2022. [DOI: 10.1039/d2nj00505k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A fluorinated donor with a deep HOMO energy level enables efficient all-small-molecule organic solar cells.
Collapse
Affiliation(s)
- Nailiang Qiu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| | - Chunyan Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
- School of Materials Science & Engineering, Tianjin Key Laboratory for Photoelectric Materials and Devices, Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin, China
| | - Haijiao Lang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| | - Jingyang Xu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| | - Rui Su
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| | - Jie Jiang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| | - Jiaqi Tian
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| | - Jisen Li
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, China
| |
Collapse
|
15
|
|
16
|
Shi K, Qiu B, Zhu C, Yao J, Xia X, Zhang J, Meng L, Huang S, Lu X, Wan Y, Zhang ZG, Li Y. Effects of Alkyl Side Chains of Small Molecule Donors on Morphology and the Photovoltaic Property of All-Small-Molecule Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54237-54245. [PMID: 34726374 DOI: 10.1021/acsami.1c15377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Unraveling the relationship between nanoscale morphology of active layers and chemical structures of organic semiconductor photovoltaic materials is crucially important for further advancing the development of all-small-molecule organic solar cells (SM-OSCs). Here, in order to delve into the effect of flexible side chains of small molecule donors on the photovoltaic properties of SM-OSCs, we synthesized two new small molecule donors substituted by different flexible alkyl chains (iso-octyl chains for SM1-EH and n-octyl chains for SM1-Oct). As a result, the two small molecules present different absorption properties, energy levels, and stacking characteristics. When blending with Y6 as an acceptor, the SM1-Oct-based SM-OSC demonstrated a higher PCE value of 11.73%, while the SM1-EH-based device presents a relatively poorer PCE value of 8.42%. In addition, the morphology analysis demonstrated that, compared with the SM1-EH:Y6 blend, the SM1-Oct:Y6 blend film displayed better molecular stacking properties with stronger multilevel diffraction and preferable phase separation, resulting in the higher hole mobility, more efficient charge separation efficiency, and better device performance. These results underline that reasonably adjusting the flexible alkyl chains of small molecule donors can be an effective approach to further advance the development of the SM-OSCs field.
Collapse
Affiliation(s)
- Keli Shi
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Beibei Qiu
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Can Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Yao
- College of Materials Science and Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Jinyuan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shihua Huang
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhi-Guo Zhang
- College of Materials Science and Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
17
|
Wang X, Liu P, Yap B, Xia R, Wong WY, He Z. High-quality WS 2 film as a hole transport layer in high-efficiency non-fullerene organic solar cells. NANOSCALE 2021; 13:16589-16597. [PMID: 34585178 DOI: 10.1039/d1nr03728e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid-exfoliated 2D transition metal disulfides (TMDs) are potential substitutes for poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as hole transport layers (HTLs) in Organic Solar Cells (OSCs). Herein, high-yield and high-quality WS2 flake layers are prepared by comprehensively controlling the initial concentration, sonication processing time and centrifugal speed. The WS2 layers deposited on in situ transparent indium tin oxide (ITO) without plasma treatment show higher uniformity and conductivity than that formed on ITO after plasma treatment. With a significant increase in the short-circuit current density (JSC), the power conversion efficiency (PCE) of PM6:Y6-based non-fullerene OSCs using optimized WS2 as the HTL is higher than that using PEDOT:PSS as the HTL(15.75% vs. 15.31%). Combining the morphology characteristics with carrier recombination characteristics, the higher quality of the ITO/WS2 composite substrate leads to better charge transport and a lower bimolecular recombination rate in OSCs, thereby improving the device performance.
Collapse
Affiliation(s)
- Xiaojing Wang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China.
| | - Peng Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China.
| | - Boonkar Yap
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China.
- Electronic and Communications Department, College of Engineering, Universiti Tenaga Nasional, Kajang, Selangor 43000, Malaysia
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, Selangor 43000, Malaysia
| | - Ruidong Xia
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, 999077, China
| | - Zhicai He
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, China.
| |
Collapse
|
18
|
Effects of Side-Chain Engineering with the S Atom in Thieno[3,2- b]thiophene-porphyrin to Obtain Small-Molecule Donor Materials for Organic Solar Cells. Molecules 2021; 26:molecules26206134. [PMID: 34684713 PMCID: PMC8538340 DOI: 10.3390/molecules26206134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/23/2022] Open
Abstract
To explore the effect of the introduction of heteroatoms on the properties of porphyrin materials, a new porphyrin-based derivative small-molecule donor named as PorTT-T was designed and synthesized based on alkyl-thieno[3,2-b]thiophene(TT)-substituted porphyrins. The linker bridge and end groups of PorTT-T were the same as those of XLP-II small-molecule donor materials, while the side-chain attached to the core of thieno[3,2-b]thiophene(TT)-substituted porphyrin was different. Measurements of intrinsic properties showed that PorTT-T has wide absorption and appropriate energy levels in the UV-visible range. A comparison of the morphologies of the two materials using atomic force microscopy showed that PorTT-T has a better surface morphology with a smaller root-mean-square roughness, and can present closer intermolecular stacking as compared to XLP-II. The device characterization results showed that PorTT-T with the introduced S atom has a higher open circuit voltage of 0.886 eV, a higher short circuit current of 12.03 mAcm−2, a fill factor of 0.499, a high photovoltaic conversion efficiency of 5.32%, better external quantum efficiency in the UV-visible range, and higher hole mobility.
Collapse
|
19
|
Cuesta V, Singhal R, de la Cruz P, Sharma GD, Langa F. Reducing Energy Loss in Organic Solar Cells by Changing the Central Metal in Metalloporphyrins. CHEMSUSCHEM 2021; 14:3494-3501. [PMID: 33274829 DOI: 10.1002/cssc.202002664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The effect of central donor core on the properties of A-π-D-π-A donors, where D is a porphyrin macrocycle, cyclopenta[2,1-b:3,4-b']dithiophene is the π bridge, and A is a dicyanorhodanine terminal unit, was investigated for the fabrication of the organic solar cells (OSCs), along [6,6]-phenyl-C71-butyric acid methyl ester (PC71 BM) as electron acceptor. A new molecule consisting of Ni-porphyrin central donor core (VC9) showed deep HOMO energy level and OSCs based on optimized VC9:PC71 BM realized overall power conversion efficiency (PCE) of 10.66 % [short-circuit current density (JSC )=15.48 mA/cm2 , fill factor (FF)=0.65] with high open circuit voltage (VOC ) of 1.06 V and very low energy loss of 0.49 eV, whereas the Zn-porphyrin analogue VC8:PC71 BM showed PCE of 9.69 % with VOC of 0.89 V, JSC of 16.25 mA/cm2 and FF of 0.67. Although the OSCs based on VC8 showed higher JSC in comparison to VC9, originating from the broader absorption profile of VC8 that led to more exciton generation, the higher value of PCE of VC9 is owing to the higher VOC and reduced energy loss.
Collapse
Affiliation(s)
- Virginia Cuesta
- Department of inorganic, organic and biochemistry, Universidad de Castilla - La Mancha, Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Campus de la Fábrica de Armas, Toledo, Spain
| | - Rahul Singhal
- Department of Physics, Malviya National Institute of Technology, JLN Marg, Jaipur (Raj.), 302017, India
| | - Pilar de la Cruz
- Department of inorganic, organic and biochemistry, Universidad de Castilla - La Mancha, Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Campus de la Fábrica de Armas, Toledo, Spain
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Deemed University, Rupa ki Nangal, Jamdoli, Jaipur (Raj.), 302031, India
| | - Fernando Langa
- Department of inorganic, organic and biochemistry, Universidad de Castilla - La Mancha, Institute of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Campus de la Fábrica de Armas, Toledo, Spain
| |
Collapse
|
20
|
Pan X, Wu J, Xiao L, Yap B, Xia R, Peng X. Porphyrin Acceptors with Two Perylene Diimide Dimers for Organic Solar Cells. CHEMSUSCHEM 2021; 14:3614-3621. [PMID: 34107177 DOI: 10.1002/cssc.202100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Three small-molecule acceptors (Por-PDI, TEHPor-PDI, and BBOPor-PDI) with different side chains were synthesized by using a porphyrin core as the electron-donating unit and connecting electron-withdrawing perylene diimide dimers via acetylene bridges. The bulk heterojunction organic solar cells based on the three acceptors and a polymer donor provided power conversion efficiencies (PCEs) of 3.68-5.21 % when the active layers were fabricated with pyridine additives. Though the synthesis of Por-PDI is easier with fewer reaction steps and higher yields, the devices based on Por-PDI showed the best performance with a PCE of 5.21 %. The more ordered intermolecular packing due to the reduced steric hindrance at the porphyrin core of Por-PDI could contribute to the more balanced hole/electron mobilities, higher maximum charge generation rate, and less bimolecular recombination in Por-PDI devices, which are beneficial for the higher PCE.
Collapse
Affiliation(s)
- Xiaojie Pan
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Jifa Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Liangang Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Boonkar Yap
- The International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Electronic and Communications Department, College of Engineering, Universiti Tenaga Nasional, Kajang, Selangor, 43000, Malaysia
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, Selangor, 43000, Malaysia
| | - Ruidong Xia
- The International School of Advanced Materials, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| |
Collapse
|
21
|
Keshtov ML, Konstantinov IO, Kuklin SA, Khokhlov AR, Ostapov IE, Xie Z, Komarov PV, Alekseev VG, Dahiya H, Sharma GD. High‐Performance Fullerene Free Polymer Solar Cells Based on New Thiazole ‐Functionalized Benzo[1,2‐b:4,5‐b′]dithiophene D‐A Copolymer Donors. ChemistrySelect 2021. [DOI: 10.1002/slct.202101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mukhamed. L. Keshtov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
| | - Igor O. Konstantinov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
| | - Sergei A. Kuklin
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
| | - Aleksei R. Khokhlov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
- Department of Physics of Polymers and Crystals Faculty of Physics M.V. Lomonosov Moscow State University Leninskie Gory 1 119991 Moscow Russia
| | - Ilya E. Ostapov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
- Department of Physics of Polymers and Crystals Faculty of Physics M.V. Lomonosov Moscow State University Leninskie Gory 1 119991 Moscow Russia
| | - Zhiyuan Xie
- Changchun Institute of Applied Chemistry of Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry Changchun China
| | - Pavel V. Komarov
- A. N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences Vavilova St., 28 119991 Moscow Russian Federation
- Tver State University Sadovyi per. 35 Tver 170002 Russia
| | | | - Hemraj Dahiya
- Department of Physics The LNM Institute for Information Technology, Jamdoli Jaipur (Raj.) 302031 India
| | - Ganesh D. Sharma
- Department of Physics The LNM Institute for Information Technology, Jamdoli Jaipur (Raj.) 302031 India
| |
Collapse
|
22
|
Liu M, Xu Y, Gao Z, Zhang C, Yu J, Wang J, Ma X, Hu H, Yin H, Zhang F, Man B, Sun Q. Natural biomaterial sarcosine as an interfacial layer enables inverted organic solar cells to exhibit over 16.4% efficiency. NANOSCALE 2021; 13:11128-11137. [PMID: 34132712 DOI: 10.1039/d0nr09090e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The natural biomaterial sarcosine as an electron transport layer (ETL) to modify ITO or ITO/ZnO was successfully introduced into inverted organic solar cells (OSCs) with PM6:BTP-BO-4Cl as the active layer. The introduction of sarcosine on the surface of ITO or ITO/ZnO resulted in lower work function (WF) and higher surface energy. The active layers processed on the surfaces of ITO or ITO/ZnO presented a more optimized morphology and a more ordered molecular arrangement after their modification with sarcosine. The introduction of sarcosine as an ETL promoted charge transport and collection in the OSCs. Therefore, the power conversion efficiency (PCE) of the OSCs increased to 13.53% from 3.86% by modifying ITO with sarcosine. The PCE of the OSCs with ZnO as ETLs improved to 16.45% from 14.85% by modifying ZnO with sarcosine. The improved PCEs benefited from the simultaneously improved short-circuit current density (JSC), fill factor (FF), and open-circuit voltage (VOC). Therefore, this work demonstrates that sarcosine has great potential as an ETL to improve the performance of OSCs.
Collapse
Affiliation(s)
- Mei Liu
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liang Z, Gao M, Zhang B, Wu J, Peng Z, Li M, Ye L, Geng Y. Fluorination Enables Tunable Molecular Interaction and Photovoltaic Performance in Non-Fullerene Solar Cells Based on Ester-Substituted Polythiophene. Front Chem 2021; 9:687996. [PMID: 34041227 PMCID: PMC8141579 DOI: 10.3389/fchem.2021.687996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Owing to the advantages of low synthetic cost and high scalability of synthesis, polythiophene and its derivatives (PTs) have been of interest in the community of organic photovoltaics (OPVs). Nevertheless, the typical efficiency of PT based photovoltaic devices reported so far is much lower than those of the prevailing push-pull type conjugated polymer donors. Recent studies have underscored that the excessively low miscibility between PT and nonfullerene acceptor is the major reason accounting for the unfavorable active layer morphology and the inferior performance of OPVs based on a well-known PT, namely PDCBT-Cl and a non-halogenated nonfullerene acceptor IDIC. How to manipulate the miscibility between PT and acceptor molecule is important for further improving the device efficiency of this class of potentially low-cost blend systems. In this study, we introduced different numbers of F atoms to the end groups of IDIC to tune the intermolecular interaction of the hypo-miscible blend system (PDCBT-Cl:IDIC). Based on calorimetric, microscopic, and scattering characterizations, a clear relationship between the number of F atoms, miscibility, and device performance was established. With the increased number of F atoms in IDIC, the resulting acceptors exhibited enhanced miscibility with PDCBT-Cl, and the domain sizes of the blend films were reduced substantially. As a result, distinctively different photovoltaic performances were achieved for these blend systems. This study demonstrates that varying the number of F atoms in the acceptors is a feasible way to manipulate the molecular interaction and the film morphology toward high-performance polythiophene:nonfullerene based OPVs.
Collapse
Affiliation(s)
- Ziqi Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Mengyuan Gao
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Bo Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Junjiang Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Zhongxiang Peng
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Miaomiao Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China
| |
Collapse
|
24
|
Sun Y, Liu T, Kan Y, Gao K, Tang B, Li Y. Flexible Organic Solar Cells: Progress and Challenges. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100001] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yanna Sun
- Science Center for Material Creation and Energy Conversion Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Tao Liu
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Materials and Clean Energy Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals Shandong Normal University Jinan 250014 P. R. China
| | - Yuanyuan Kan
- Science Center for Material Creation and Energy Conversion Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Ke Gao
- Science Center for Material Creation and Energy Conversion Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Bo Tang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Materials and Clean Energy Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals Shandong Normal University Jinan 250014 P. R. China
- Department of Chemistry Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
25
|
Zhan J, Wang L, Zhang M, Zhu L, Hao T, Zhou G, Zhou Z, Chen J, Zhong W, Qiu C, Leng S, Zou Y, Shi Z, Zhu H, Feng W, Zhang M, Li Y, Zhang Y, Liu F. Manipulating Crystallization Kinetics of Conjugated Polymers in Nonfullerene Photovoltaic Blends toward Refined Morphologies and Higher Performances. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02872] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Junzhe Zhan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lei Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianyu Hao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guanqing Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zichun Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiajun Chen
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenkai Zhong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chaoqun Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shifeng Leng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, P. R. China
| | - Zhiwen Shi
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, P. R. China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Feng Liu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
26
|
Liu X, Ma R, Wang Y, Du S, Tong J, Shi X, Li J, Bao X, Xia Y, Liu T, Yan H. Significantly Boosting Efficiency of Polymer Solar Cells by Employing a Nontoxic Halogen-Free Additive. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11117-11124. [PMID: 33635064 DOI: 10.1021/acsami.0c22014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traditional additives like 1,8-diiodooctane and 1-chloronaphthalene were successfully utilized morphology optimization of various polymer solar cells (PSCs) in an active layer, but their toxicity brought by halogen atoms limits their corresponding large-scale manufacturing. Herein, a new nontoxic halogen-free additive named benzyl benzoate (BB) was introduced into the classic PSCs (PTB7-Th:PC71BM), and an optimal power conversion efficiency (PCE) of 9.43% was realized, while there was a poor PCE for additive free devices (4.83%). It was shown that BB additives could inhibit PC71BM's overaggregation, which increased the interface contact area and formed a better penetration path of an active layer. In addition, BB additives could not only boost the distribution of a PTB7-Th donor at the surface, beneficial to suppressing exciton recombination in inverted devices but also boost the crystallinity of a blend layer, which is conducive to exciton dissociation and charge transport. Our work effectively improved a device performance by using a halogen-free additive, which can be referential for industrialization.
Collapse
Affiliation(s)
- Xingpeng Liu
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ruijie Ma
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yufei Wang
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Sanshan Du
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junfeng Tong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaoyan Shi
- College of Science, Henan University of Technology, Zhengzhou 450001, China
| | - Jianfeng Li
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yangjun Xia
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tao Liu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
27
|
Keshtov ML, Kuklin SA, Khokhlov AR, Peregudov AS, Chen FC, Xie Z, Sharma GD. Efficient ternary polymer solar cell using wide bandgap conjugated polymer donor with two non‐fullerene small molecule acceptors enabled power conversion efficiency of 16% with low energy loss of 0.47 eV. NANO SELECT 2021. [DOI: 10.1002/nano.202000146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mukhamed L. Keshtov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Sergei. A. Kuklin
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Alexei R. Khokhlov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Aleksander S. Peregudov
- Institute of Organoelement Compounds of the Russian Academy of Sciences Moscow Russian Federation
| | - Fang C. Chen
- Department of Photonics College of Electrical and Computer Engineering National Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Chiao Tung University Hsinchu Taiwan
| | - Zhiyuan Xie
- State Key Laboratory of Polymer Physics and Chemistry Chinese Academy of Sciences Changchun Institute of Applied Chemistry Changchun P.R. China
| | - Ganesh D. Sharma
- Department of Physics The LNM Institute of Information Technology Jamdoli Jaipur Rajasthan 302031 India
| |
Collapse
|
28
|
Wang Z, Gao K, Kan Y, Zhang M, Qiu C, Zhu L, Zhao Z, Peng X, Feng W, Qian Z, Gu X, Jen AKY, Tang BZ, Cao Y, Zhang Y, Liu F. The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances. Nat Commun 2021; 12:332. [PMID: 33436619 PMCID: PMC7804468 DOI: 10.1038/s41467-020-20515-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/03/2020] [Indexed: 01/07/2023] Open
Abstract
The active layer morphology transition of organic photovoltaics under non-equilibrium conditions are of vital importance in determining the device power conversion efficiency and stability; however, a general and unified picture on this issue has not been well addressed. Using combined in situ and ex situ morphology characterizations, morphological parameters relating to kinetics and thermodynamics of morphology evolution are extracted and studied in model systems under thermal annealing. The coupling and competition of crystallization and demixing are found to be critical in morphology evolution, phase purification and interfacial orientation. A unified model summarizing different phase diagrams and all possible kinetic routes is proposed. The current observations address the fundamental issues underlying the formation of the complex multi-length scale morphology in bulk heterojunction blends and provide useful morphology optimization guidelines for processing devices with higher efficiency and stability.
Collapse
Affiliation(s)
- Zaiyu Wang
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China
| | - Ke Gao
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Yuanyuan Kan
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ming Zhang
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chaoqun Qiu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Lei Zhu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhe Zhao
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaobin Peng
- State Key Lab of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, 256401, Zibo, Shandong, China
| | - Zhiyuan Qian
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA. .,Department of Chemistry, City University of Hong Kong, 999077, Kowloon, Hong Kong, China.
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China
| | - Yong Cao
- State Key Lab of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, China
| | - Yongming Zhang
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
29
|
Li R, Yuan Y, Liang L, Lu J, Cui CX, Niu H, Wu Z, Liu G, Hu Z, Xie R, Huang F, Zhang Y. Cu( ii)-Porphyrin based near-infrared molecules: synthesis, characterization and photovoltaic application. NEW J CHEM 2021. [DOI: 10.1039/d0nj04800c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Three novel Cu(ii)-porphyrin-based near-infrared non-fullerene acceptors were developed, which show strong intramolecular charge transfer absorption spectra.
Collapse
|
30
|
Luo Y, Luo Y, Huang X, Liu S, Cao Z, Guo L, Li Q, Cai YP, Wang Y. A New Ester-Substituted Quinoxaline-Based Narrow Bandgap Polymer Donor for Organic Solar Cells. Macromol Rapid Commun 2020; 42:e2000683. [PMID: 33350003 DOI: 10.1002/marc.202000683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2020] [Indexed: 12/28/2022]
Abstract
The electron-deficient ester group substitution in the sidechain of the commonly used electron-withdrawing quinoxaline (Qx) unit is seldom studied, while ester-substituted Qx units possess easy syntheses and facile modulation of the polymer solubility, and the enhanced electron-withdrawing property of ester substituted Qx unit can theoretically broaden the optical absorption of the resulting polymers and improve the open circuit voltage in the corresponding organic solar cells (OSCs). In this work, a novel ester-substituted Qx-based narrow bandgap polymer (NBG) donor material PBDTT-EFQx, which exhibits an absorption edge of 790 nm (bandgap < 1.6 eV), is designed and synthesized. Results show that the OSCs composed of PBDTT-EFQx and PC71 BM present the highest power conversion efficiency (PCE) of 6.8%, compared to PCEs of 5.0% for PBDTT-EFQx:ITIC based devices and 4.1% for PBDTT-EFQx:N2200 based devices, respectively. Characterizations and analyses indicate that the PC71 BM-based OSCs have well-matched energy levels, better complementary light absorption, the highest and most balanced carrier mobilities, as well as the lowest degree of recombination losses, and therefore, leading to the highest PCE among the three types of OSCs. This work reveals that the ester-substituted quinoxaline unit is one of the potential building blocks for NBG polymer donors.
Collapse
Affiliation(s)
- Yue Luo
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Yingtong Luo
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Xuelong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, P. R. China
| | - Shengjian Liu
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Zhixiong Cao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, P. R. China
| | - Lingzhi Guo
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Qingduan Li
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Yue-Peng Cai
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Yang Wang
- Allstar Tech (Zhongshan) Co., Ltd, Yanjiang West 1, No.6 Road, Keji Avenue, Torch Hi-tech Industrial Development Zone, Zhongshan, Guangdong, 528437, P. R. China
| |
Collapse
|
31
|
An asymmetric acceptor enabling 77.51% fill factor in organic solar cells. Sci Bull (Beijing) 2020; 65:1876-1879. [PMID: 36738051 DOI: 10.1016/j.scib.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
|
32
|
Xie Q, Liu Y, Liao X, Cui Y, Huang S, Hu L, He Q, Chen L, Chen Y. Isomeric Effect of Wide Bandgap Polymer Donors with High Crystallinity to Achieve Efficient Polymer Solar Cells. Macromol Rapid Commun 2020; 41:e2000454. [PMID: 33089590 DOI: 10.1002/marc.202000454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Indexed: 11/06/2022]
Abstract
Two highly crystalline polymer donors (PBTz4T2C-a, PBTz4T2C-b) with isomers (4T2C-a, 4T2C-b) are synthesized and applied in polymer solar cells. The developed polymers possess proper energy levels and complementary absorption with an efficient electron acceptor IT2F. It is interesting that the photophysical properties, crystallinity, and active layer morphology characteristic can be significantly changed by just slightly regulating the substitution position of the carboxylate groups. A series of simulation calculations of the two isomers are conducted in the geometry and electronic properties to explore the difference induced by the position adjustment of carboxylate groups. The results decipher that 4T2C-b moiety features much stronger intramolecular noncovalent S⋯O interactions compared to that of 4T2C-a, implying a higher coplanarity and much stronger crystallinity, and leading to excessive phase separation in PBTz4T2C-b:IT2F blend film. In contrast, PBTz4T2C-a with 4T2C-a moiety exhibits suitable crystallinity with a lower the highest occupied molecular orbital level, higher film absorption coefficient, and charge mobilities, resulting in a much higher power conversion efficiency of 11.02%. This research demonstrates that the molecular conformation is of great importance to be considered for developing high-performance polymer donors.
Collapse
Affiliation(s)
- Qian Xie
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yikun Liu
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xunfan Liao
- Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Yongjie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Shaorong Huang
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lei Hu
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qiannan He
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
33
|
Liao Z, Yang K, Hou L, Li J, Lv J, Singh R, Kumar M, Chen Q, Dong X, Xu T, Hu C, Duan T, Kan Z, Lu S, Xiao Z. Thiazole-Functionalized Terpolymer Donors Obtained via Random Ternary Copolymerization for High-Performance Polymer Solar Cells. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhihui Liao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ke Yang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems (Ministry of Education), School of Power Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Licheng Hou
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jun Li
- Library & Information Center, Anhui University of Finance and Economics, Bengbu 233030, P.R. China
| | - Jie Lv
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ranbir Singh
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, South Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Manish Kumar
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, South Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Qianqian Chen
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Xiyue Dong
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tongle Xu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chao Hu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Tainan Duan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Zhipeng Kan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Shirong Lu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| |
Collapse
|
34
|
Gao K, Kan Y, Chen X, Liu F, Kan B, Nian L, Wan X, Chen Y, Peng X, Russell TP, Cao Y, Jen AKY. Low-Bandgap Porphyrins for Highly Efficient Organic Solar Cells: Materials, Morphology, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906129. [PMID: 32583916 DOI: 10.1002/adma.201906129] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/06/2020] [Indexed: 06/11/2023]
Abstract
With developments in materials, thin-film processing, fine-tuning of morphology, and optimization of device fabrication, the performance of organic solar cells (OSCs) has improved markedly in recent years. Designing low-bandgap materials has been a focus in order to maximize solar energy conversion. However, there are only a few successful low-bandgap donor materials developed with near-infrared (NIR) absorption that are well matched to the existing efficient acceptors. Porphyrin has shown great potential as a useful building block for constructing low-bandgap donor materials due to its large conjugated plane and strong absorption. Porphyrin-based donor materials have been shown to contribute to many record-high device efficiencies in small molecule, tandem, ternary, flexible, and OSC/perovskite hybrid solar cells. Specifically, non-fullerene small-molecule solar cells have recently shown a high power conversion efficiency of 12% using low-bandgap porphyrin. All these have validated the great potential of porphyrin derivatives as effective donor materials and made DPPEZnP-TRs a family of best low-bandgap donor materials in the OSC field so far. Here, recent progress in the rational design, morphology, dynamics, and multi-functional applications starting from 2015 will be highlighted to deepen understanding of the structure-property relationship. Finally, some future directions of porphyrin-based OSCs are presented.
Collapse
Affiliation(s)
- Ke Gao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Yuanyuan Kan
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Xuebin Chen
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Feng Liu
- Department of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University, Shanghai, 200240, P. R. China
| | - Bin Kan
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
| | - Li Nian
- South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiangjian Wan
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, P. R. China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195-2120, USA
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
35
|
An Q, Wang J, Gao W, Ma X, Hu Z, Gao J, Xu C, Hao M, Zhang X, Yang C, Zhang F. Alloy-like ternary polymer solar cells with over 17.2% efficiency. Sci Bull (Beijing) 2020; 65:538-545. [PMID: 36659185 DOI: 10.1016/j.scib.2020.01.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 01/21/2023]
Abstract
Ternary strategy has been considered as an efficient method to achieve high performance polymer solar cells (PSCs). A power conversion efficiency (PCE) of 17.22% is achieved in the optimized ternary PSCs with 10 wt% MF1 in acceptors. The over 8% PCE improvement by employing ternary strategy is attributed to the simultaneously increased JSC of 25.68 mA cm-2, VOC of 0.853 V and FF of 78.61% compared with Y6 based binary PSCs. The good compatibility of MF1 and Y6 can be confirmed from Raman mapping, contact angle, cyclic voltammetry and morphology, which is the prerequisite to form alloy-like state. Electron mobility in ternary active layers strongly depends on MF1 content in acceptors due to the different lowest unoccupied molecular orbital (LUMO) levels of Y6 and MF1, which can well explain the wave-like varied FF of ternary PSCs. The third-party certified PCE of 16.8% should be one of the highest values for single bulk heterojunction PSCs. This work provides sufficient references for selecting materials to achieve efficient ternary PSCs.
Collapse
Affiliation(s)
- Qiaoshi An
- School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jian Wang
- College of Physics and Electronic Engineering, Taishan University, Taian 271021, China
| | - Wei Gao
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 400072, China
| | - Xiaoling Ma
- School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Zhenghao Hu
- School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Gao
- School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Chunyu Xu
- School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Minghui Hao
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaoli Zhang
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 400072, China.
| | - Fujun Zhang
- School of Science, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
36
|
Li J, Liang Z, Li X, Li H, Wang Y, Qin J, Tong J, Yan L, Bao X, Xia Y. Insights into Excitonic Dynamics of Terpolymer-Based High-Efficiency Nonfullerene Polymer Solar Cells: Enhancing the Yield of Charge Separation States. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8475-8484. [PMID: 31965782 DOI: 10.1021/acsami.9b20364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ternary copolymerization strategy is considered an effective method to achieve high-performance photovoltaic conjugated polymers. Herein, a donor-acceptor1-donor-acceptor2-type random copolymer, named PBDTNS-TZ-BDD (T1), containing one electron-rich unit alkylthionaphthyl-flanked benzo[1,2-b/4,5-b'] di-thiophene (BDTNS) as D and two electron-deficient moieties benzo[1,2-c/4,5-c']dithiophene-4,8-dione (BDD) and fluorinated benzotriazole as A, was synthesized to investigate the excitonic dynamic effect. Also, the D-A-type alternating copolymer PBDTNS-BDD (P1) was also prepared for a clear comparison. Although the UV-Vis spectra and energy levels of P1 and T1 are similar, the power conversion efficiencies (PCEs) of the related devices are 11.50% (T1/ITIC) and 8.89% (P1/ITIC), respectively. The reason for this is systematically investigated and analyzed by theoretical calculation, photoluminescence, and pump-probe transient absorption spectroscopy. The density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculation results show that the terpolymer T1 with a lower exciton binding energy and a longer lifetime of spontaneous luminescence can synergistically increase the number of excitons reaching the donor/acceptor interface. The results of the pump-probe transient absorption spectroscopy show that the yield of charge separation of T1/ITIC is higher than that of the P1/ITIC blend film, and improved PCE could be achieved via copolymerization strategies. Moreover, the fabrication of the T1-based device is also simple without any additive or postprocessing. Therefore, it provides a promising and innovative method to design high-performance terpolymer materials.
Collapse
Affiliation(s)
- Jianfeng Li
- School of Materials Science and Engineering , Lanzhou Jiaotong University , Lanzhou 730070 , P. R. China
| | - Zezhou Liang
- School of Materials Science and Engineering , Lanzhou Jiaotong University , Lanzhou 730070 , P. R. China
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Xiaoming Li
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , P. R. China
- College of Chemistry and Pharmaceutical Engineering , Hebei University of Science and Technology , Shijiazhuang 050018 , P. R. China
| | - Hongdong Li
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Yufei Wang
- School of Materials Science and Engineering , Lanzhou Jiaotong University , Lanzhou 730070 , P. R. China
| | - Jicheng Qin
- School of Materials Science and Engineering , Lanzhou Jiaotong University , Lanzhou 730070 , P. R. China
| | - Junfeng Tong
- School of Materials Science and Engineering , Lanzhou Jiaotong University , Lanzhou 730070 , P. R. China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronics and Information Engineering , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , P. R. China
| | - Yangjun Xia
- School of Materials Science and Engineering , Lanzhou Jiaotong University , Lanzhou 730070 , P. R. China
| |
Collapse
|
37
|
Almodôvar VAS, Tomé AC. Porphyrin–diketopyrrolopyrrole conjugates and related structures: Synthesis, properties and applications. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619300271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A large diversity of porphyrin–diketopyrrolopyrrole conjugates and related structures formed by diketopyrrolopyrrole units and pyrrole-based moieties such as phthalocyanine, porphycene, calix[4]pyrrole or BODIPY have been reported since 2010. The new compounds, whether small molecules or polymeric materials, exhibit very interesting photophysical properties and have been tested in a range of technical or biological applications. This review summarizes the advances in the synthesis of such compounds. Their photophysical properties and potential applications are also briefly discussed.
Collapse
Affiliation(s)
- Vítor A. S. Almodôvar
- LAQV–REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Augusto C. Tomé
- LAQV–REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
38
|
Wu LN, Sui MY, Xiao S, Xie YZ, Sun GY. Design of single-porphyrin donors toward high open-circuit voltage for organic solar cells via an energy level gradient-distribution screening strategy of fragments: a theoretical study. Phys Chem Chem Phys 2020; 22:4015-4022. [PMID: 32022038 DOI: 10.1039/c9cp04903g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Open-circuit voltage (VOC) is a key factor for improving the power conversion efficiency (PCE) of bulk heterojunction (BHJ) organic solar cells (OSCs). At present, increasing attention has been devoted towards modifying π bridges in single-porphyrin small molecule donors with an A-π-D-π-A configuration to reduce the highest occupied molecular orbital (HOMO) levels and improve the VOC of devices. However, how to screen the π bridges is a key issue. In this work, nine π bridges were screened by the HOMO level gradient-distribution strategy of fragments (electron-donating donor (D), π bridges, and electron-withdrawing acceptor (A)), where fragments meeting the requirements were combined into five novel small molecule donors. Meanwhile, in order to test whether the strategy is beneficial to increasing VOC, [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) was selected as the acceptor material. The energy levels of all molecules were compared and the photoelectric properties (i.e., energy gap, energy driving force, reorganization energy, intermolecular charge transfer rate, charge recombination rate, and VOC) of the five small molecules were studied. The results showed that the HOMO levels of porphyrin donors could be significantly lowered via this strategy, and VOC was raised without losing the short-circuit current (JSC) and fill factor (FF) of the devices. Meanwhile, the designed five small molecules could be used as donor candidates to improve the performance of OSCs.
Collapse
Affiliation(s)
- Li-Na Wu
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, China.
| | | | | | | | | |
Collapse
|
39
|
Liu F, Xiao C, Feng G, Li C, Wu Y, Zhou E, Li W. End Group Engineering on the Side Chains of Conjugated Polymers toward Efficient Non-Fullerene Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6151-6158. [PMID: 31918543 DOI: 10.1021/acsami.9b22275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Side chains properties of conjugated polymers, such as the length, branching point, and heteroatom, have been widely studied for application in organic solar cells (OSCs), but the end groups of side chains have been rarely reported. In this work, we systematically explored a series of new conjugated polymers with distinct side-chain end groups for high performance non-fullerene OSCs. The key components for the polymers contained functionalized units as the end groups of side chains, such as Br, alkyloxy (OMe), and alkylthienyl (T) groups. We found that the new conjugated polymers have similar absorption spectra and crystallinity with the polymer without substitution, but they showed distinct photovoltaic performance in solar cells. When the polymer without functionalized units had a power conversion efficiency (PCE) of 9.94%, the modified conjugated polymers provided high PCEs of over 13% with significantly enhanced photocurrent and fill factors. In addition, they also show additive-free and highly stable characteristics. These results demonstrate that end group engineering on side chains is a promising strategy to design new conjugated polymers toward efficient OSCs.
Collapse
Affiliation(s)
- Feng Liu
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Guitao Feng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yonggang Wu
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P. R. China
| | - Erjun Zhou
- Henan Institutes of Advanced Technology , Zhengzhou University , Zhengzhou 450003 , P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
40
|
Liu Q, Bottle SE, Sonar P. Developments of Diketopyrrolopyrrole-Dye-Based Organic Semiconductors for a Wide Range of Applications in Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903882. [PMID: 31797456 DOI: 10.1002/adma.201903882] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
In recent times, fused aromatic diketopyrrolopyrrole (DPP)-based functional semiconductors have attracted considerable attention in the developing field of organic electronics. Over the past few years, DPP-based semiconductors have demonstrated remarkable improvements in the performance of both organic field-effect transistor (OFET) and organic photovoltaic (OPV) devices due to the favorable features of the DPP unit, such as excellent planarity and better electron-withdrawing ability. Driven by this success, DPP-based materials are now being exploited in various other electronic devices including complementary circuits, memory devices, chemical sensors, photodetectors, perovskite solar cells, organic light-emitting diodes, and more. Recent developments in the use of DPP-based materials for a wide range of electronic devices are summarized, focusing on OFET, OPV, and newly developed devices with a discussion of device performance in terms of molecular engineering. Useful guidance for the design of future DPP-based materials and the exploration of more advanced applications is provided.
Collapse
Affiliation(s)
- Qian Liu
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Steven E Bottle
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
41
|
Liu Y, Chen Y. Integrated Perovskite/Bulk-Heterojunction Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1805843. [PMID: 30773710 DOI: 10.1002/adma.201805843] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/17/2019] [Indexed: 05/24/2023]
Abstract
The recently emerged integrated perovskite/bulk-heterojunction (BHJ) organic solar cells (IPOSCs) without any recombination layers have generated wide attention. This type of device structure can take the advantages of tandem cells using both perovskite solar and near-infrared (NIR) BHJ organic solar materials for wide-range sunlight absorption and the simple fabrication of single junction cells, as the low bandgap BHJ layer can provide additional light harvesting in the NIR region and the high open-circuit voltage can be maintained at the same time. This progress report highlights the recent developments in such IPOSCs and the possible challenges ahead. In addition, the recent development of perovskite solar cells and NIR organic solar cells is also covered to fully underline the importance and potential of IPOSCs.
Collapse
Affiliation(s)
- Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
42
|
Song W, Zhang Y, Zhang K, Wang K, Zhang L, Chen L, Huang Y, Chen M, Lei H, Chen H, Fang D. Ionic Conductive Gels for Optically Manipulatable Microwave Stealth Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902162. [PMID: 31993290 PMCID: PMC6974938 DOI: 10.1002/advs.201902162] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/06/2019] [Indexed: 05/07/2023]
Abstract
Smart structures with manipulatable properties are highly demanded in many fields. However, there is a critical challenge in the pursuit of transparent windows that allow optical waves (wavelength of µm-nm) for transmitting while blocking microwave (wavelength of cm) in terms of absorbing electromagnetic energy, specifically for meeting the frequency requirement for the 5th generation (5G) mobile networks. For fundamentally establishing novel manipulatable microwave absorbing structures, here, new polymeric aqueous gels as both optically transparent materials and microwave absorbing materials are demonstrated, in which polar networks play significant roles in attenuating electromagnetic energy. By manipulating the hydrogen bonding networks, the resulting optically transparent solid-state gels are able to offer the capabilities for absorbing microwaves. Interestingly, such gels can be switched into an optically opaque state via converting the amorphous state into a polycrystal state when the temperature is decreased. Such ionic conductive gels can endow the assembled sandwich windows with effective microwave absorbing capability in the range of 15-40 GHz, covering a branch of 5G frequency bands. The results highlight a new strategy for using ionic conductive gels to design and fabricate manipulatable microwave stealth structures for various applications.
Collapse
Affiliation(s)
- Wei‐Li Song
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
| | - Ya‐Jing Zhang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Kai‐Lun Zhang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Ke Wang
- Key Laboratory of Space UtilizationTechnology and Engineering Center for space UtilizationChinese Academy of SciencesBeijing100094China
| | - Lu Zhang
- Key Laboratory of Space UtilizationTechnology and Engineering Center for space UtilizationChinese Academy of SciencesBeijing100094China
| | - Li‐Li Chen
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yixing Huang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
| | - Mingji Chen
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
| | - Hongshuai Lei
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
| | - Haosen Chen
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
| | - Daining Fang
- Institute of Advanced Structure TechnologyBeijing Institute of TechnologyBeijing100081P. R. China
- Beijing Key Laboratory of Lightweight Multi‐Functional Composite Materials and StructuresBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
43
|
Tsai MC, Hung CM, Chen ZQ, Chiu YC, Chen HC, Lin CY. Design of New n-Type Porphyrin Acceptors with Subtle Side-Chain Engineering for Efficient Nonfullerene Solar Cells with Low Energy Loss and Optoelectronic Response Covering the Near-Infrared Region. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45991-45998. [PMID: 31702893 DOI: 10.1021/acsami.9b15975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of tailor-made highly efficient and near-infrared (NIR) porphyrin-based acceptors is designed and synthesized for fullerene-free bulk-heterojunction (BHJ) organic solar cells. Constructing BHJ active layers using a PTB7-Th donor and porphyrin acceptors (P-x), which have complementary absorption, accomplishes panchromatic photon-to-current conversion from 300 to 950 nm. Our study shows that side chains of the porphyrin acceptors fairly influence the molecular ordering and nanomorphology of the BHJ active layers. Significantly, the porphyrin acceptor with four dodecoxyl side chains (P-2) achieves an open-circuit voltage (VOC) of 0.80 V, short-circuit current density (JSC) of 13.94 mA cm-2, fill factor of 64.8%, and overall power conversion efficiency of 7.23%. This great performance is attributable to the ascendant light-harvesting capability in the visible and near-infrared region, a high-lying LUMO energy level, a relatively high and more balanced carrier mobilities, and more ordered face-on molecular packing, which is beneficial for obtaining high VOC and JSC.
Collapse
Affiliation(s)
- Ming-Chi Tsai
- Department of Applied Chemistry , National Chi Nan University , Puli 54561 , Taiwan
| | - Chieh-Ming Hung
- Department of Fiber and Composite Materials , Feng Chia University , Taichung 40724 , Taiwan
| | - Zi-Qin Chen
- Department of Fiber and Composite Materials , Feng Chia University , Taichung 40724 , Taiwan
| | - Yi-Chieh Chiu
- Department of Applied Chemistry , National Chi Nan University , Puli 54561 , Taiwan
| | - Hsieh-Chih Chen
- Department of Fiber and Composite Materials , Feng Chia University , Taichung 40724 , Taiwan
| | - Ching-Yao Lin
- Department of Applied Chemistry , National Chi Nan University , Puli 54561 , Taiwan
| |
Collapse
|
44
|
Sahu H, Ma H. Unraveling Correlations between Molecular Properties and Device Parameters of Organic Solar Cells Using Machine Learning. J Phys Chem Lett 2019; 10:7277-7284. [PMID: 31702163 DOI: 10.1021/acs.jpclett.9b02772] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the relationships between molecular properties and device parameters is highly desired not only to improve the overall performance of an organic solar cell but also to fulfill the requirements of a device for a particular application such as solar-to-fuel energy conversion (high open-circuit voltage (VOC)) or solar window applications (high short circuit current (JSC)). In this work, a series of machine learning models are built for three important device characteristics (VOC, JSC, and fill factor) using 13 crucial molecular properties as descriptors, resulting in an impressive predictive performance (r = 0.7). These models may play a vital role in designing promising organic materials for a specific photovoltaic application with high VOC/JSC. The importance of descriptors for each device parameter is unraveled, which may assist in tuning them and improve understanding of the energy conversion process.
Collapse
Affiliation(s)
- Harikrishna Sahu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Haibo Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
45
|
Liu Z, Huang Z, Chen Y, Xu T, Yu H, Guo X, Yan L, Zhang M, Wong W, Wang X. Efficient Polymer Solar Cells Based on New Random Copolymers with Porphyrin‐Incorporated Side Chains. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhixin Liu
- College of Chemistry and School of Physics and Optoelectronics Xiangtan University Xiangtan 411105 P. R. China
| | - Zhuohao Huang
- College of Chemistry and School of Physics and Optoelectronics Xiangtan University Xiangtan 411105 P. R. China
| | - Yuzhuo Chen
- College of Chemistry and School of Physics and Optoelectronics Xiangtan University Xiangtan 411105 P. R. China
| | - Tao Xu
- College of Chemistry and School of Physics and Optoelectronics Xiangtan University Xiangtan 411105 P. R. China
| | - Hao Yu
- College of Chemistry and School of Physics and Optoelectronics Xiangtan University Xiangtan 411105 P. R. China
| | - Xia Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Lei Yan
- College of Chemistry and School of Physics and Optoelectronics Xiangtan University Xiangtan 411105 P. R. China
| | - Maojie Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Laboratory of Advanced Optoelectronic Materials College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Xingzhu Wang
- College of Chemistry and School of Physics and Optoelectronics Xiangtan University Xiangtan 411105 P. R. China
| |
Collapse
|
46
|
Peng X, Zhang X, Qian Y, Lai T, Zhu X, Tu B, Peng X, Xie J, Zeng Q. Selective Adsorption of C 60 in the Supramolecular Nanopatterns of Donor-Acceptor Porphyrin Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14511-14516. [PMID: 31630522 DOI: 10.1021/acs.langmuir.9b02934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nanostructure of active layers consisting of donor and acceptor molecules is responsible for the separation and transfer processes of charge carriers, which may result in different photoelectric conversion efficiencies of organic photovoltaic cells (OPVCs). Therefore, intensive study on the relationships among nanostructures, intermolecular interactions, and molecular chemical skeletons is necessary for preparing controlled nanostructures of active layers by designing photovoltaic molecules. In this research, the self-assembled nanopatterns of three (DPP-ZnP-E)2-based molecules on highly oriented pyrolytic graphite surface were probed by scanning tunneling microscopy and analyzed by density functional theory calculations. The results indicated that different bridges, diethynylene, diethynylene-dithienyl, and diethynylene-phenylene, in (DPP-ZnP-E)2-based molecules not only made a difference to intermolecular interactions and cooperated with molecule-substrate interactions, consequently affecting the packed nanopattern, but also influenced the adsorption of fullerene acceptors in the nanopatterns of (DPP-ZnP-E)2-based molecules. C60 molecules were found to be selectively adsorbed atop the dithienyl groups of (DPP-ZnP-E)2-2T donor molecules probably by S···π interactions compared with (DPP-ZnP-E)2 or (DPP-ZnP-E)2-Ph molecules. This study on the assembled nanopatterns of the three (DPP-ZnP-E)2-based molecules would be conductive to (DPP-ZnP-E)2-based optoelectronic materials design in OPVCs.
Collapse
Affiliation(s)
- Xuan Peng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
- Center of Materials Science and Optoelectronic Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaojin Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , 381 Wushan Road , Guangzhou 510640 , China
| | - Yuxin Qian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Taiqi Lai
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , 381 Wushan Road , Guangzhou 510640 , China
| | - Xiaoyang Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Bin Tu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , 381 Wushan Road , Guangzhou 510640 , China
| | - Jingli Xie
- College of Biological, Chemical Science and Engineering , Jiaxing University , Jiaxing 314001 , China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , China
- Center of Materials Science and Optoelectronic Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
47
|
Wu H, Fan H, Liu W, Chen S, Yang C, Ye L, Ade H, Zhu X. Conjugation-Curtailing of Benzodithionopyran-Cored Molecular Acceptor Enables Efficient Air-Processed Small Molecule Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902656. [PMID: 31513342 DOI: 10.1002/smll.201902656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Small molecule solar cells (SMSCs) lag a long way behind polymer solar cells. A key limit is the less controllable morphology of small molecule materials, which can be aggravated when incorporating anisotropic nonfullerene acceptors. To fine-tune the blending morphology within SMSCs, a π-conjunction curtailing design is applied, which produces a efficient benzodithionopyran-cored molecular acceptor for nonfullerene SMSCs (NF-SMSCs). When blended with a molecular donor BDT3TR-SF to fabricate NF-SMSCs, the π-conjunction curtailed molecular acceptor NBDTP-M obtains an optimal power conversion efficiency (PCE) of up to 10.23%, which is much higher than that of NBDTTP-M of longer π-conjunction. It retains 93% of the PCE of devices fabricated in a glove box when all spin-coating and post-treating procedures are conducted in ambient air with relative humidity of 25%, which suggests the good air-processing capability of π-conjunction curtailed molecules. Detailed X-ray scattering investigations indicate that the BDT3TR-SF:NBDTP-M blend exhibits a blend morphology featuring fine interpenetrating networks with smaller domains and higher phase purity, which results in more efficient charge generation, more balanced charge transport, and less recombination compared to the low-performance BDT3TR-SF:NBDTTP-M blend. This work provides a guideline for molecular acceptors' design toward efficient, low-cost, air-processed NF-SMSCs.
Collapse
Affiliation(s)
- Hao Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haijun Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanshan Chen
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Long Ye
- Department of Physics and Organic and Carbon Electronics Lab, North Carolina State University, Raleigh, NC, 27695, USA
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Lab, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
48
|
Synthesis and Photovoltaic Effect of Electron-Withdrawing Units for Low Band Gap Conjugated Polymers Bearing Bi(thienylenevinylene) Side Chains. Polymers (Basel) 2019; 11:polym11091461. [PMID: 31500164 PMCID: PMC6780057 DOI: 10.3390/polym11091461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023] Open
Abstract
A novel (E)-5-(2-(5-alkylthiothiophen-2-yl)vinyl)thien-2-yl (TVT)-comprising benzo[1,2-b:4,5-b']dithiophene (BDT) derivative (BDT-TVT) was designed and synthetized to compose two donor-acceptor (D-A) typed copolymers (PBDT-TVT-ID and PBDT-TVT-DTNT) with the electron-withdrawing unit isoindigo (ID) and naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole (NT), respectively. PBDT-TVT-ID and PBDT-TVT-DTNT showed good thermal stability (360 °C), an absorption spectrum from 300 nm to 760 nm and a relatively low lying energy level of Highest Occupied Molecular Orbital (EHOMO) (-5.36 to -5.45 eV), which could obtain a large open-circuit voltage (Voc) from photovoltaic devices with PBDT-TVT-ID or PBDT-TVT-DTNT. The photovoltaic devices with ITO/PFN/polymers: PC71BM/MoO3/Ag structure were assembled and exhibited a good photovoltaic performance with a power conversion efficiency (PCE) of 4.09% (PBDT-TVT-ID) and 5.44% (PBDT-TVT-DTNT), respectively. The best PCE of a PBDT-TVT-DTNT/PC71BM-based device mainly originated from its wider absorption, higher hole mobility and favorable photoactive layer morphology.
Collapse
|
49
|
Jin R, Li K, Han X. Improving optoelectronic and charge transport properties of D-π-D type diketopyrrolopyrrole-pyrene derivatives as multifunctional materials for organic solar cell applications. RSC Adv 2019; 9:22597-22603. [PMID: 35519482 PMCID: PMC9067137 DOI: 10.1039/c9ra04304g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022] Open
Abstract
A series of novel diketopyrrolopyrrole-pyrene-based molecules were designed for small molecule based organic solar cell (SMOSC) applications. Their electronic and charge transfer properties were investigated by applying the PBE0/6-31G(d,p) method. The absorption spectra were simulated using the TD-PBE0/6-31G(d,p) method. The results showed that the frontier molecular orbital (FMO) energy levels, reorganization energy, the energetic driving force, and absorption spectra can be tuned by the introduction of different aromatic heterocyclic groups to the side of diketopyrrolopyrrole fragments' backbones. Additionally, the designed molecules possess suitable FMOs to match those of typical acceptors PC61BM and PC71BM. Meanwhile, the designed molecules can act as good ambipolar charge transport materials in SMOSC applications. Meanwhile, the electron and hole reorganization energies of the designed molecules are smaller than those of the typical electron and hole transport materials, respectively. Moreover, the differences between electron and hole reorganization energies do not exceed 0.046 eV. Our results suggest that the designed molecules can act as promising candidates for donor and ambipolar charge transport materials in SMOSC applications.
Collapse
Affiliation(s)
- Ruifa Jin
- College of Chemistry and Chemical Engineering, Chifeng University Chifeng 024000 China .,Inner Mongolia Key Laboratory of Photoelectric Functional Materials Chifeng 024000 China
| | - Kexin Li
- College of Chemistry and Chemical Engineering, Chifeng University Chifeng 024000 China
| | - Xueli Han
- College of Chemistry and Chemical Engineering, Chifeng University Chifeng 024000 China
| |
Collapse
|
50
|
Zhong X, Chen H, Wang M, Gan S, He Q, Chen W, He F. Synergistic Effect of Chlorination and Selenophene: Achieving Elevated Solar Conversion in Highly Aggregated Systems. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiaowei Zhong
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hui Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Meijing Wang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Shenglong Gan
- Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Qiming He
- Institute for Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Wei Chen
- Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
- Institute for Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Feng He
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|