1
|
Pecorario S, Royakkers J, Scaccabarozzi AD, Pallini F, Beverina L, Bronstein H, Caironi M. Effects of Molecular Encapsulation on the Photophysical and Charge Transport Properties of a Naphthalene Diimide Bithiophene Copolymer. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8324-8335. [PMID: 36186667 PMCID: PMC9520976 DOI: 10.1021/acs.chemmater.2c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Engineering the molecular structure of conjugated polymers is key to advancing the field of organic electronics. In this work, we synthesized a molecularly encapsulated version of the naphthalene diimide bithiophene copolymer PNDIT2, which is among the most popular high charge mobility organic semiconductors in n-type field-effect transistors and non-fullerene acceptors in organic photovoltaic blends. The encapsulating macrocycles shield the bithiophene units while leaving the naphthalene diimide units available for intermolecular interactions. With respect to PNDIT2, the encapsulated counterpart displays an increased backbone planarity. Molecular encapsulation prevents preaggregation of the polymer chains in common organic solvents, while it permits π-stacking in the solid state and promotes thin film crystallinity through an intermolecular-lock mechanism. Consequently, n-type semiconducting behavior is retained in field-effect transistors, although charge mobility is lower than in PNDIT2 due to the absence of the fibrillar microstructure that originates from preaggregation in solution. Hence, molecularly encapsulating conjugated polymers represent a promising chemical strategy to tune the molecular interaction in solution and the backbone conformation and to consequently control the nanomorphology of casted films without altering the electronic structure of the core polymer.
Collapse
Affiliation(s)
- Stefano Pecorario
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3, Milan 20133, Italy
- Department
of Energy, Micro and Nanostructured Materials Laboratory—NanoLab, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy
| | - Jeroen Royakkers
- Sensor
Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Alberto D. Scaccabarozzi
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3, Milan 20133, Italy
| | - Francesca Pallini
- Department
of Materials Science, Università
di Milano-Bicocca, via Cozzi 55, 20125 Milan, Italy
| | - Luca Beverina
- Department
of Materials Science, Università
di Milano-Bicocca, via Cozzi 55, 20125 Milan, Italy
| | - Hugo Bronstein
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Mario Caironi
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3, Milan 20133, Italy
| |
Collapse
|
2
|
Cui K, Zhang Y, Chen G, Cui Y, Wu W, Zhao N, Liu T, Xiao Z. Molecular Regulation of Polymeric Raman Probes for Ultrasensitive Microtumor Diagnosis and Noninvasive Microvessle Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106925. [PMID: 35092156 DOI: 10.1002/smll.202106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Raman imaging is a powerful tool for the diagnosis of cancers and visualization of various biological processes. Polymers possessing excellent biocompatibility are promising probes for Raman imaging. However, few polymers are reported to serve as Raman probes for in vivo imaging, mainly due to the intrinsic weak Raman signal intensity and fluorescence interference of these polymers. Herein, a poly(indacenodithiophene-benzothiadiazole) (IDT-BT) polymer is presented, which emits unprecedentedly strong Raman signals under the near-infrared wavelength (785 nm) excitation, thus functioning as a Raman probe for ultrasensitive in vivo Raman imaging. Further mechanistic studies unveil that the unique Raman feature of the IDT-BT polymer relies on molecularly regulating its absorbance edge adjacent to the desired excitation wavelength, thus avoiding fluorescence interference and simultaneously emitting strong Raman scattering under preresonant excitation. Taking advantage of this discipline, the IDT-BT polymeric probe successfully realizes intraoperative Raman imaging of micrometastasis as small as 0.3 mm × 0.3 mm, comparable to the most sensitive Raman probes currently reported. Impressively, the IDT-BT enables noninvasive microvascular imaging, which is not achieved using other Raman probes. This work opens a new avenue toward the development of polymeric Raman probes for in vivo Raman imaging.
Collapse
Affiliation(s)
- Kai Cui
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yongming Zhang
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Gaoxian Chen
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yanna Cui
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wenwei Wu
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Na Zhao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Tize Liu
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| |
Collapse
|
3
|
Turkin A, Malý P, Lambert C. Fluorescence band exchange narrowing in a series of squaraine oligomers: energetic vs. structural disorder. Phys Chem Chem Phys 2021; 23:18393-18403. [PMID: 34612380 DOI: 10.1039/d1cp02136b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The influence of oligosquaraine chain length on the energies and shape of absorption and emission bands and the exciton coherence length is studied in CHCl3 where the oligomers adopt a random coil structure. From the observed fluorescence band narrowing an effective coherence length of Ncoh = 2.5 was estimated for the nonamer. Applying a theoretical Frenkel exciton model the absorption and emission spectra were simulated which confirmed the experimental results. From the relative amplitude of the 00 peak to the vibronic shoulder the coherence length was estimated which yields a somewhat higher saturation value of Ncoh≈ 3 for the nonamer, which is in very good agreement with the theoretical amplitude ratio. The coherence length is much smaller than the geometrical length because the electronic delocalisation is reduced by structural disorder. Taking into account the energetic (diagonal) and structural (off-diagonal) disorder we observed a different influence on the absorption and fluorescence spectra. For the emission spectra, exciton delocalisation leads to a narrowing of the band caused by averaging over energetic disorder, but for the absorption band the spectra are broadened by excitonic splitting and structural disorder.
Collapse
Affiliation(s)
- Arthur Turkin
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | |
Collapse
|
4
|
Abstract
Harnessing cost-efficient printable semiconductor materials as near-infrared (NIR) emitters in light-emitting diodes (LEDs) is extremely attractive for sensing and diagnostics, telecommunications, and biomedical sciences. However, the most efficient NIR LEDs suitable for printable electronics rely on emissive materials containing precious transition metal ions (such as platinum), which have triggered concerns about their poor biocompatibility and sustainability. Here, we review and highlight the latest progress in NIR LEDs based on non-toxic and low-cost functional materials suitable for solution-processing deposition. Different approaches to achieve NIR emission from organic and hybrid materials are discussed, with particular focus on fluorescent and exciplex-forming host-guest systems, thermally activated delayed fluorescent molecules, aggregation-induced emission fluorophores, as well as lead-free perovskites. Alternative strategies leveraging photonic microcavity effects and surface plasmon resonances to enhance the emission of such materials in the NIR are also presented. Finally, an outlook for critical challenges and opportunities of non-toxic NIR LEDs is provided.
Collapse
Affiliation(s)
- Kunping Guo
- Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, London WC1E 6BT, UK
| | - Marcello Righetto
- Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, London WC1E 6BT, UK
| | - Alessandro Minotto
- Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, London WC1E 6BT, UK
| | - Andrea Zampetti
- Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, London WC1E 6BT, UK
| | - Franco Cacialli
- Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, London WC1E 6BT, UK
| |
Collapse
|
5
|
Lambert C, Hoche J, Schreck MH, Holzapfel M, Schmiedel A, Selby J, Turkin A, Mitric R. Ultrafast Energy Transfer Dynamics in a Squaraine Heterotriad. J Phys Chem A 2021; 125:2504-2511. [PMID: 33739846 DOI: 10.1021/acs.jpca.1c00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A squaraine heterotriad consisting of three different covalently linked squaraine chromophores was synthesized, and its absorption spectra were interpreted in terms of Kasha's exciton coupling theory. Using the exciton couplings derived from model dyads (ca. 700 cm-1) as the input, we were able to predict the exciton state energies of the heterotriad. Transient absorption spectroscopy with femtosecond time resolution showed that excitation of the highest exciton state populates a state mainly localized at one terminal squaraine chromophore, and energy transfer to the lowest exciton state localized at the other terminal squaraine occurs within 30 fs. Field-induced surface hopping dynamics simulations support the assumption of ultrafast energy transfer. Moreover, they show the close relationship between internal conversion and energy transfer in the intermediate to weak coupling regime. The latter is a consequence of excitation localization caused by molecular vibrations.
Collapse
Affiliation(s)
- Christoph Lambert
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.,Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Joscha Hoche
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Maximilian H Schreck
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Marco Holzapfel
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Joshua Selby
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Arthur Turkin
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Roland Mitric
- Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.,Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
6
|
Wang V, Zhao Y, Javey A. Performance Limits of an Alternating Current Electroluminescent Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005635. [PMID: 33270301 DOI: 10.1002/adma.202005635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/29/2020] [Indexed: 06/12/2023]
Abstract
The use of an alternating current (AC) voltage is a simple, versatile method of producing electroluminescence from generic emissive materials without the need for contact engineering. Recently, it was shown that AC-driven, capacitive electroluminescent devices with carbon nanotube network contacts can be used to generate and study electroluminescence from a variety of molecular materials emitting in the infrared-to-ultraviolet range. Here, performance trade-offs in these devices are studied through comprehensive device simulations and illustrative experiments, enhancing understanding of the mechanism and capability of electroluminescent devices based on alternating as opposed to direct current (DC) schemes. AC-driven electroluminescent devices can overcome several limitations of conventional DC-driven electroluminescent devices, including the requirement for proper alignment of material energy levels and the need to process emitting materials into uniform thin films. By simultaneously optimizing device geometry, driving parameters, and material characteristics, the performance of these devices can be tuned. Importantly, the turn-on voltage of AC-driven electroluminescent devices approaches the bandgap of the emitting material as the gate oxide thickness is scaled, and internally efficient electroluminescence can be achieved using low-mobility single-layer emitter films with varying thicknesses and energy barrier heights relative to the contact.
Collapse
Affiliation(s)
- Vivian Wang
- Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yingbo Zhao
- Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
7
|
Thomas TH, Rivett JPH, Gu Q, Harkin DJ, Richter JM, Sadhanala A, Yong CK, Schott S, Broch K, Armitage J, Gillett AJ, Menke SM, Rao A, Credgington D, Sirringhaus H. Chain Coupling and Luminescence in High-Mobility, Low-Disorder Conjugated Polymers. ACS NANO 2019; 13:13716-13727. [PMID: 31738516 DOI: 10.1021/acsnano.9b07147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Optoelectronic devices based on conjugated polymers often rely on multilayer device architectures, as it is difficult to design all the different functional requirements, in particular the need for efficient luminescence and fast carrier transport, into a single polymer. Here we study the photophysics of a recently discovered class of conjugated polymers with high charge carrier mobility and low degree of energetic disorder and investigate whether it is possible in this system to achieve by molecular design a high photoluminescence quantum yield without sacrificing carrier mobility. Tracing exciton dynamics over femtosecond to microsecond time scales, we show that nearly all nonradiative exciton recombination arises from interactions between chromophores on different chains. We evaluate the temperature dependence and role of electron-phonon coupling leading to fast internal conversion in systems with strong interchain coupling and the extent to which this can be turned off by varying side chain substitution. By sterically decreasing interchain interaction, we present an effective approach to increase the fluorescence quantum yield of low-energy gap polymers. We present a red-NIR-emitting amorphous polymer with the highest reported film luminescence quantum efficiency of 18% whose mobility concurrently exceeds that of amorphous-Si. This is a key result toward the development of single-layer optoelectronic devices that require both properties.
Collapse
Affiliation(s)
- Tudor H Thomas
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - Jasmine P H Rivett
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - Qifei Gu
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - David J Harkin
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - Johannes M Richter
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - Aditya Sadhanala
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - Chaw Keong Yong
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - Sam Schott
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - Katharina Broch
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - John Armitage
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - Alexander J Gillett
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - S Matthew Menke
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - Akshay Rao
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - Dan Credgington
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| | - Henning Sirringhaus
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , U.K
| |
Collapse
|
8
|
Ngara ZS, Okada D, Oki O, Yamamoto Y. Energy Transfer-Assisted Whispering Gallery Mode Lasing in Conjugated Polymer/Europium Hybrid Microsphere Resonators. Chem Asian J 2019; 14:1637-1641. [PMID: 30302941 DOI: 10.1002/asia.201801219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/13/2018] [Indexed: 11/11/2022]
Abstract
Lanthanide metal complexes display luminescence with narrow bandwidth. Here, we present coupling of the luminescence from europium ion (Eu3+ ) with whispering gallery modes (WGMs) in conjugated polymer microsphere resonators. Self-assembly of fluorene-terpyridine alternating copolymer, coordinated by Eu3+ (F8tpy-Eu3+ ), forms well-defined microspheres with an average diameter of 3.2 μm. Upon focused laser excitation, a microsphere of F8tpy copolymer displays WGM photoluminescence (PL) at a wide spectral range from 420 to 680 nm. In contrast, F8tpy-Eu3+ hybrid microspheres exhibit sharp WGM PL at a narrow spectral range of 615-630 nm, which is characteristic of luminescence from Eu3+ . The PL behavior indicates that photoinduced energy transfer from F8tpy to Eu3+ occurs efficiently. Furthermore, the intensity of the PL peak increases nonlinearly upon strong pumping, indicating that a lasing action appears with the threshold of 1.85 mJ cm-2 . These results will pave the way for developing microlasers and photonic devices from soft organic materials.
Collapse
Affiliation(s)
- Zakarias S Ngara
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.,Department of Physics, Faculty of Science and Engineering, Nusa Cendana University, Adisucipto street, Penfui Kupang, NTT, 85001, Indonesia
| | - Daichi Okada
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Osamu Oki
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yohei Yamamoto
- Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.,Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
9
|
Schreck MH, Breitschwerdt L, Marciniak H, Holzapfel M, Schmidt D, Würthner F, Lambert C. fs–ps Exciton dynamics in a stretched tetraphenylsquaraine polymer. Phys Chem Chem Phys 2019; 21:15346-15355. [DOI: 10.1039/c9cp02900a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A squaraine polymer shows surprisingly fast light induced energy transfer between two different structural sections on the ps/fs time scale.
Collapse
Affiliation(s)
- Maximilian H. Schreck
- Institute of Organic Chemistry
- Center for Nanosystems Chemistry
- Universität Würzburg
- D-97074 Würzburg
- Germany
| | - Lena Breitschwerdt
- Institute of Organic Chemistry
- Center for Nanosystems Chemistry
- Universität Würzburg
- D-97074 Würzburg
- Germany
| | - Henning Marciniak
- Institute of Organic Chemistry
- Center for Nanosystems Chemistry
- Universität Würzburg
- D-97074 Würzburg
- Germany
| | - Marco Holzapfel
- Institute of Organic Chemistry
- Center for Nanosystems Chemistry
- Universität Würzburg
- D-97074 Würzburg
- Germany
| | - David Schmidt
- Institute of Organic Chemistry
- Center for Nanosystems Chemistry
- Universität Würzburg
- D-97074 Würzburg
- Germany
| | - Frank Würthner
- Institute of Organic Chemistry
- Center for Nanosystems Chemistry
- Universität Würzburg
- D-97074 Würzburg
- Germany
| | - Christoph Lambert
- Institute of Organic Chemistry
- Center for Nanosystems Chemistry
- Universität Würzburg
- D-97074 Würzburg
- Germany
| |
Collapse
|
10
|
Zhang X, Dong H, Hu W. Organic Semiconductor Single Crystals for Electronics and Photonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801048. [PMID: 30039629 DOI: 10.1002/adma.201801048] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/22/2018] [Indexed: 05/26/2023]
Abstract
Organic semiconducting single crystals (OSSCs) are ideal candidates for the construction of high-performance optoelectronic devices/circuits and a great platform for fundamental research due to their long-range order, absence of grain boundaries, and extremely low defect density. Impressive improvements have recently been made in organic optoelectronics: the charge-carrier mobility is now over 10 cm2 V-1 s-1 and the fluorescence efficiency reaches 90% for many OSSCs. Moreover, high mobility and strong emission can be integrated into a single OSSC, for example, showing a mobility of up to 34 cm2 V-1 s-1 and a photoluminescence yield of 41.2%. These achievements are attributed to the rational design and synthesis of organic semiconductors as well as improvements in preparation technology for crystals, which accelerate the application of OSSCs in devices and circuits, such as organic field-effect transistors, organic photodetectors, organic photovoltaics, organic light-emitting diodes, organic light-emitting transistors, and even electrically pumped organic lasers. In this context, an overview of these fantastic advancements in terms of the fundamental insights into developing high-performance organic semiconductors, efficient strategies for yielding desirable high-quality OSSCs, and their applications in optoelectronic devices and circuits is presented. Finally, an overview of the development of OSSCs along with current challenges and future research directions is provided.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
11
|
Leventis A, Royakkers J, Rapidis AG, Goodeal N, Corpinot MK, Frost JM, Bučar DK, Blunt MO, Cacialli F, Bronstein H. Highly Luminescent Encapsulated Narrow Bandgap Polymers Based on Diketopyrrolopyrrole. J Am Chem Soc 2018; 140:1622-1626. [DOI: 10.1021/jacs.7b13447] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anastasia Leventis
- Department of Chemistry & Physics, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jeroen Royakkers
- Department of Chemistry & Physics, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alexandros G. Rapidis
- Department
of Physics and Astronomy and LCN, University College London, Gower
Street, London WC1E 6BT, United Kingdom
| | - Niall Goodeal
- Department of Chemistry & Physics, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Merina K. Corpinot
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Jarvist M. Frost
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Dejan-Krešimir Bučar
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Matthew Oliver Blunt
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Franco Cacialli
- Department
of Physics and Astronomy and LCN, University College London, Gower
Street, London WC1E 6BT, United Kingdom
| | - Hugo Bronstein
- Department of Chemistry & Physics, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
Yen HJ, Tsai CL, Chen SH, Liou GS. Electrochromism and Nonvolatile Memory Device Derived from Triphenylamine-Based Polyimides with Pendant Viologen Units. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600715] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/22/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Hung-Ju Yen
- Functional Polymeric Materials Laboratory; Institute of Polymer Science and Engineering; National Taiwan University; 1 Roosevelt Road, 4th Sec. Taipei 10617 Taiwan
| | - Chia-Liang Tsai
- Functional Polymeric Materials Laboratory; Institute of Polymer Science and Engineering; National Taiwan University; 1 Roosevelt Road, 4th Sec. Taipei 10617 Taiwan
| | - Shih-Han Chen
- Functional Polymeric Materials Laboratory; Institute of Polymer Science and Engineering; National Taiwan University; 1 Roosevelt Road, 4th Sec. Taipei 10617 Taiwan
| | - Guey-Sheng Liou
- Functional Polymeric Materials Laboratory; Institute of Polymer Science and Engineering; National Taiwan University; 1 Roosevelt Road, 4th Sec. Taipei 10617 Taiwan
| |
Collapse
|
13
|
Liu CS, Chen M, Tian JY, Wang L, Li M, Fang SM, Wang X, Zhou LM, Wang ZW, Du M. Metal-Organic Framework Supported on Processable Polymer Matrix by In Situ Copolymerization for Enhanced Iron(III) Detection. Chemistry 2017; 23:3885-3890. [DOI: 10.1002/chem.201604210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Chun-Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface Science; Zhengzhou University of Light Industry; Zhengzhou 450002 P.R. China
| | - Min Chen
- Henan Provincial Key Laboratory of Surface & Interface Science; Zhengzhou University of Light Industry; Zhengzhou 450002 P.R. China
| | - Jia-Yue Tian
- Henan Provincial Key Laboratory of Surface & Interface Science; Zhengzhou University of Light Industry; Zhengzhou 450002 P.R. China
| | - Lei Wang
- College of Chemistry; Tianjin Normal University; Tianjin 300387 P.R. China
| | - Min Li
- Henan Provincial Key Laboratory of Surface & Interface Science; Zhengzhou University of Light Industry; Zhengzhou 450002 P.R. China
| | - Shao-Ming Fang
- Henan Provincial Key Laboratory of Surface & Interface Science; Zhengzhou University of Light Industry; Zhengzhou 450002 P.R. China
| | - Xi Wang
- College of Chemistry; Tianjin Normal University; Tianjin 300387 P.R. China
| | - Li-Ming Zhou
- Henan Provincial Key Laboratory of Surface & Interface Science; Zhengzhou University of Light Industry; Zhengzhou 450002 P.R. China
| | - Zhuo-Wei Wang
- Henan Provincial Key Laboratory of Surface & Interface Science; Zhengzhou University of Light Industry; Zhengzhou 450002 P.R. China
| | - Miao Du
- Henan Provincial Key Laboratory of Surface & Interface Science; Zhengzhou University of Light Industry; Zhengzhou 450002 P.R. China
- College of Chemistry; Tianjin Normal University; Tianjin 300387 P.R. China
| |
Collapse
|