1
|
Pareja Tello R, Cerveró-Varona A, Prencipe G, Molinaro G, Pinnarò V, Haidar-Montes AA, Correia A, Hietala S, Stöckl J, Hirvonen J, Barreto G, Russo V, Barboni B, Santos HA. Development of Amniotic Epithelial Stem Cells Secretome-Loaded In Situ Inverse Electron Demand Diels-Alder-Cross-Linked Hydrogel as a Potential Immunomodulatory Therapeutical Tool. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2977-2990. [PMID: 39743747 DOI: 10.1021/acsami.4c16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Amniotic epithelial stem cells (AEC) hold potential for tissue regeneration, especially through their conditioned medium (AEC-CM) due to their immunomodulatory and regenerative effects. Nevertheless, advanced drug delivery systems such as hydrogels are needed to enable clinical applications. Herein, an in situ gellable hyaluronic acid and polyethylene glycol-based iEDDA-cross-linked hydrogel was developed for the encapsulation and controlled release of AEC-CM. The developed system was formed by norbornene-modified hyaluronic acid and tetrazine-modified polyethylene glycol functionalized with heparin. The hydrogel was formed by mixing both precursor polymers, displaying fast cross-linking kinetics and showcasing a highly porous inner structure and low swelling properties. Moreover, the heparin-functionalized system allowed the sustained release of predominant growth factors from AEC-CM over 14 days. In vitro studies in peripheral blood mononuclear cells (PBMCs) showed an enhanced suppression efficacy and a significant shift toward the M2 macrophage phenotype in comparison with nonencapsulated AEC-CM. Therefore, this work provides a suitable alternative for the encapsulation of AEC-CM in a hydrogel formulation, highlighting its potential as an alternative immunomodulatory therapeutic tool for tissue regeneration.
Collapse
Affiliation(s)
- Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014 Helsinki, Finland
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014 Helsinki, Finland
| | - Veronica Pinnarò
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Arlette Alina Haidar-Montes
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014 Helsinki, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland
| | - Johannes Stöckl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014 Helsinki, Finland
| | - Goncalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
- Orton Orthopedic Hospital, Tenholantie 10, 00280 Helsinki, Finland
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014 Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
2
|
Chopra N, Melrose J, Gu Z, Diwan AD. Biomimetic Proteoglycans for Intervertebral Disc (IVD) Regeneration. Biomimetics (Basel) 2024; 9:722. [PMID: 39727726 DOI: 10.3390/biomimetics9120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Intervertebral disc degeneration, which leads to low back pain, is the most prevalent musculoskeletal condition worldwide, significantly impairing quality of life and imposing substantial socioeconomic burdens on affected individuals. A major impediment to the development of any prospective cell-driven recovery of functional properties in degenerate IVDs is the diminishing IVD cell numbers and viability with ageing which cannot sustain such a recovery process. However, if IVD proteoglycan levels, a major functional component, can be replenished through an orthobiological process which does not rely on cellular or nutritional input, then this may be an effective strategy for the re-attainment of IVD mechanical properties. Furthermore, biomimetic proteoglycans (PGs) represent an established polymer that strengthens osteoarthritis cartilage and improves its biomechanical properties, actively promoting biological repair processes. Biomimetic PGs have superior water imbibing properties compared to native aggrecan and are more resistant to proteolytic degradation, increasing their biological half-life in cartilaginous tissues. Methods have also now been developed to chemically edit the structure of biomimetic proteoglycans, allowing for the incorporation of bioactive peptide modules and equipping biomimetic proteoglycans as delivery vehicles for drugs and growth factors, further improving their biotherapeutic credentials. This article aims to provide a comprehensive overview of prospective orthobiological strategies that leverage engineered proteoglycans, paving the way for novel therapeutic interventions in IVD degeneration and ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Zi Gu
- NanoBiotechnology Research Group, School of Chemical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashish D Diwan
- Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia
- Discipline of Orthopaedic Surgery, Royal Adelaide Hospital and University of Adelaide, Adelaide, ADL 5005, Australia
| |
Collapse
|
3
|
Sun M, Wang Q, Li T, Wang W, Li Z, Ji Y, Zhang S, Li Y, Liu W, Yu Y. ECM-mimetic glucomannan hydrogel promotes pressure ulcer healing by scavenging ROS, promoting angiogenesis and regulating macrophages. Int J Biol Macromol 2024; 280:135776. [PMID: 39304047 DOI: 10.1016/j.ijbiomac.2024.135776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Pressure ulcers (PUs) have emerged as a significant burden on both individuals and society. Effective treatment of PUs is a significant clinical challenge due to the compromised tissue microenvironment characterized by extracellular matrix (ECM) depletion, increased levels of reactive oxygen species (ROS), excessive inflammation and impaired angiogenesis. To this end, we have developed a glucomannan hydrogel (GM-Pgel) that mimics the skin's extracellular matrix to accelerate wound healing by regulating chronic inflammation in the PUs. This hydrogel not only faithfully replicates the components and nanofibrous architecture of ECM-like glycoproteins but also exhibits remarkable capabilities in enhancing neovascularization, scavenging ROS, and promoting macrophage polarization toward the M2 phenotype. In summary, this ECM-mimetic multifunctional hydrogel emerges as a promising dressing with diverse functionalities, capable of reshaping the compromised tissue environment without the need for additional drugs, exogenous cytokines, or cells. This presents a compelling and effective strategy for the repair and regeneration of chronic cutaneous wounds.
Collapse
Affiliation(s)
- Mingming Sun
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Qiuying Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Ting Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Wenzhu Wang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Zihan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Yufei Ji
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Shuangyue Zhang
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Yan Li
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Wenshuai Liu
- Research Center of Plastic Surgery Hospital, CAMS Key Laboratory of Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yan Yu
- China Rehabilitation Science Institute, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, PR China.
| |
Collapse
|
4
|
Kühn S, Magno V, Zimmermann R, Limasale YDP, Atallah P, Stoppa A, Männel MJ, Thiele J, Friedrichs J, Freudenberg U, Werner C. Microgels With Electrostatically Controlled Molecular Affinity to Direct Morphogenesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409731. [PMID: 39449199 DOI: 10.1002/adma.202409731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Concentration gradients of soluble signaling molecules-morphogens-determine the cellular organization in tissue development. Morphogen-releasing microgels have shown potential to recapitulate this principle in engineered tissue constructs, however, with limited control over the molecular cues in space and time. Inspired by the functionality of sulfated glycosaminoglycans (sGAGs) in morphogen signaling in vivo, a library of sGAG-based microgels is developed and designated as µGel Units to Instruct Development (µGUIDEs). Adjustment of the microgel's sGAG sulfation patterns and concentration enabled the programming of electrostatic affinities that control the release of morphogens. Based on computational analyses of molecular transport processes, µGUIDEs provided unprecedented precision in the spatiotemporal modulation of vascular endothelial growth factor (VEGF) gradients in a microgel-in-gel vasculogenesis model and kidney organoid cultures. The versatile approach offers new options for creating morphogen signaling centers to advance the understanding of tissue and organ development.
Collapse
Affiliation(s)
- Sebastian Kühn
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Valentina Magno
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Ralf Zimmermann
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Yanuar Dwi Putra Limasale
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Passant Atallah
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Aukha Stoppa
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Max J Männel
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
- Institute of Chemistry, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Jens Friedrichs
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Uwe Freudenberg
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Dresden University of Technology, Fetscherstraße 105, 01307, Dresden, Germany
| | - Carsten Werner
- Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence Physics of Life and Faculty of Chemistry and Food Chemistry, Dresden University of Technology, Fetscherstraße 105, 01307, Dresden, Germany
| |
Collapse
|
5
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Kuşoğlu A, Örnek D, Dansık A, Uzun C, Nur Özkan S, Sarıca S, Yangın K, Özdinç Ş, Sorhun DT, Solcan N, Doğanalp EC, Arlov Ø, Cunningham K, Karaoğlu IC, Kizilel S, Solaroğlu I, Bulutay P, Fırat P, Erus S, Tanju S, Dilege Ş, Vunjak‐Novakovic G, Tuncbag N, Öztürk E. Extracellular Matrix Sulfation in the Tumor Microenvironment Stimulates Cancer Stemness and Invasiveness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309966. [PMID: 39083319 PMCID: PMC11423251 DOI: 10.1002/advs.202309966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/08/2024] [Indexed: 09/26/2024]
Abstract
Tumor extracellular matrices (ECM) exhibit aberrant changes in composition and mechanics compared to normal tissues. Proteoglycans (PG) are vital regulators of cellular signaling in the ECM with the ability to modulate receptor tyrosine kinase (RTK) activation via their sulfated glycosaminoglycan (sGAG) side chains. However, their role on tumor cell behavior is controversial. Here, it is demonstrated that PGs are heavily expressed in lung adenocarcinoma (LUAD) patients in correlation with invasive phenotype and poor prognosis. A bioengineered human lung tumor model that recapitulates the increase of sGAGs in tumors in an organotypic matrix with independent control of stiffness, viscoelasticity, ligand density, and porosity, is developed. This model reveals that increased sulfation stimulates extensive proliferation, epithelial-mesenchymal transition (EMT), and stemness in cancer cells. The focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K) signaling axis is identified as a mediator of sulfation-induced molecular changes in cells upon activation of a distinct set of RTKs within tumor-mimetic hydrogels. The study shows that the transcriptomic landscape of tumor cells in response to increased sulfation resembles native PG-rich patient tumors by employing integrative omics and network modeling approaches.
Collapse
|
7
|
Ludwig-Husemann A, Schertl P, Shrivastava A, Geckle U, Hafner J, Schaarschmidt F, Willenbacher N, Freudenberg U, Werner C, Lee-Thedieck C. A Multifunctional Nanostructured Hydrogel as a Platform for Deciphering Niche Interactions of Hematopoietic Stem and Progenitor Cells. Adv Healthc Mater 2024; 13:e2304157. [PMID: 38870600 DOI: 10.1002/adhm.202304157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/10/2024] [Indexed: 06/15/2024]
Abstract
For over half a century, hematopoietic stem cells (HSCs) have been used for transplantation therapy to treat severe hematologic diseases. Successful outcomes depend on collecting sufficient donor HSCs as well as ensuring efficient engraftment. These processes are influenced by dynamic interactions of HSCs with the bone marrow niche, which can be revealed by artificial niche models. Here, a multifunctional nanostructured hydrogel is presented as a 2D platform to investigate how the interdependencies of cytokine binding and nanopatterned adhesive ligands influence the behavior of human hematopoietic stem and progenitor cells (HSPCs). The results indicate that the degree of HSPC polarization and motility, observed when cultured on gels presenting the chemokine SDF-1α and a nanoscale-defined density of a cellular (IDSP) or extracellular matrix (LDV) α4β1 integrin binding motif, are differently influenced on hydrogels functionalized with the different ligand types. Further, SDF-1α promotes cell polarization but not motility. Strikingly, the degree of differentiation correlates negatively with the nanoparticle spacing, which determines ligand density, but only for the cellular-derived IDSP motif. This mechanism potentially offers a means of predictably regulating early HSC fate decisions. Consequently, the innovative multifunctional hydrogel holds promise for deciphering dynamic HSPC-niche interactions and refining transplantation therapy protocols.
Collapse
Affiliation(s)
- Anita Ludwig-Husemann
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Schertl
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ananya Shrivastava
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Udo Geckle
- Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Johanna Hafner
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Frank Schaarschmidt
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technical University Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
8
|
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr Polym 2024; 337:122145. [PMID: 38710553 DOI: 10.1016/j.carbpol.2024.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.
Collapse
Affiliation(s)
- Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
9
|
Ullm F, Renner A, Freudenberg U, Werner C, Pompe T. The Influence of Sulfation Degree of Glycosaminoglycan-Functionalized 3D Collagen I Networks on Cytokine Profiles of In Vitro Macrophage-Fibroblast Cocultures. Gels 2024; 10:450. [PMID: 39057473 PMCID: PMC11276094 DOI: 10.3390/gels10070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Cell-cell interactions between fibroblasts and immune cells, like macrophages, are influenced by interaction with the surrounding extracellular matrix during wound healing. In vitro hydrogel models that mimic and modulate these interactions, especially of soluble mediators like cytokines, may allow for a more detailed investigation of immunomodulatory processes. In the present study, a biomimetic extracellular matrix model based on fibrillar 3D collagen I networks with a functionalization with heparin or 6-ON-desulfated heparin, as mimics of naturally occurring heparan sulfate, was developed to modulate cytokine binding effects with the hydrogel matrix. The constitution and microstructure of the collagen I network were found to be stable throughout the 7-day culture period. A coculture study of primary human fibroblasts/myofibroblasts and M-CSF-stimulated macrophages was used to show its applicability to simulate processes of progressed wound healing. The quantification of secreted cytokines (IL-8, IL-10, IL-6, FGF-2) in the cell culture supernatant demonstrated the differential impact of glycosaminoglycan functionalization of the collagen I network. Most prominently, IL-6 and FGF-2 were shown to be regulated by the cell culture condition and network constitution, indicating changes in paracrine and autocrine cell-cell communication of the fibroblast-macrophage coculture. From this perspective, we consider our newly established in vitro hydrogel model suitable for mechanistic coculture analyses of primary human cells to unravel the role of extracellular matrix factors in key events of tissue regeneration and beyond.
Collapse
Affiliation(s)
- Franziska Ullm
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany; (F.U.); (A.R.)
| | - Alexander Renner
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany; (F.U.); (A.R.)
| | - Uwe Freudenberg
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; (U.F.); (C.W.)
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; (U.F.); (C.W.)
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany; (F.U.); (A.R.)
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany; (U.F.); (C.W.)
| |
Collapse
|
10
|
He T, Tang W, Chen J, Xie J, Weng Z, Deng D, Zhang C, Wang X. Hydrogel-Based Treatment of House Dust Mite-Induced Atopic Dermatitis through Triple Cleaning of Mites, Bacteria, and ROS-Related Inflammation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33121-33134. [PMID: 38910289 DOI: 10.1021/acsami.4c05435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Atopic dermatitis (AD) is a chronic and recurrent inflammatory disease caused by abnormalities in skin immunoregulation. House dust mite can directly damage the skin barrier and thus sensitize the skin, which is one of the main allergens inducing AD in humans and widely exists in daily life. Meanwhile, the accompanying bacterial infections and exposure to additional allergens exacerbate the condition by generating excessive reactive oxygen species (ROS). Herein, we have developed the CPDP hydrogel with injectable and self-healing ability to combat pathogenic microorganisms and inflammatory environments for AD therapy. In vitro experiments have affirmed the efficacy of the CPDP hydrogel in combating mites, killing bacteria, and scavenging ROS. In a mouse model closely mimicking HDM-induced AD, the CPDP hydrogel has shown superior therapeutic effects, including reducing epidermal thickness and mast cell count, increasing collagen deposition, as well as down-regulating pro-inflammatory factors.
Collapse
Affiliation(s)
- Tianshuang He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Wanling Tang
- School of the Second Clinical Medical School, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Jinling Chen
- School of Queen Mary, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Jialiang Xie
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Zhenzhen Weng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Dan Deng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Chuxi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| | - Xiaolei Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, Jiangxi, P. R. China
| |
Collapse
|
11
|
Li J, Lu X, Weng M, Wang Y, Tang J, Xu Q, Zhang L, Bai J. Promoting tissue repair using deferoxamine nanoparticles loaded biomimetic gelatin/HA composite hydrogel. Biomed Mater 2024; 19:045009. [PMID: 38697149 DOI: 10.1088/1748-605x/ad46ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
To effectively address underlying issues and enhance the healing process of hard-to-treat soft tissue defects, innovative therapeutic approaches are required. One promising strategy involves the incorporation of bioactive substances into biodegradable scaffolds to facilitate synergistic tissue regeneration, particularly in vascular regeneration. In this study, we introduce a composite hydrogel design that mimics the extracellular matrix by covalently combining gelatin and hyaluronic acid (HA), with the encapsulation of deferoxamine nanoparticles (DFO NPs) for potential tissue regeneration applications. Crosslinked hydrogels were fabricated by controlling the ratio of HA in the gelatin-based hydrogels, resulting in improved mechanical properties, enhanced degradation ability, and optimised porosity, compared with hydrogel formed by gelatin alone. The DFO NPs, synthesized using a double emulsion method with poly (D,L-lactide-co-glycolide acid), exhibited a sustained release of DFO over 12 d. Encapsulating the DFO NPs in the hydrogel enabled controlled release over 15 d. The DFO NPs, composite hydrogel, and the DFO NPs loaded hydrogel exhibited excellent cytocompatibility and promoted cell proliferationin vitro. Subcutaneous implantation of the composite hydrogel and the DFO NPs loaded hydrogel demonstrated biodegradability, tissue integration, and no obvious adverse effects, evidenced by histological analysis. Furthermore, the DFO NPs loaded composite hydrogel exhibited accelerated wound closure and promoted neovascularisation and granular formation when tested in an excisional skin wound model in mice. These findings highlight the potential of our composite hydrogel system for promoting the faster healing of diabetes-induced skin wounds and oral lesions through its ability to modulate tissue regeneration processes.
Collapse
Affiliation(s)
- Jing Li
- Department of Stomatology, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiang Lu
- Department of Nursing, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mengjia Weng
- Department of Stomatology, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yiru Wang
- Department of Nursing, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jun Tang
- Department of Nursing, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qian Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiaojiao Bai
- Department of Nursing, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
13
|
Utatsu K, Motoyama K, Nakamura T, Onodera R, Higashi T. Tannic acid-based sustained-release system for protein drugs. Int J Pharm 2023; 643:123229. [PMID: 37454828 DOI: 10.1016/j.ijpharm.2023.123229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
In recent years, protein drug development has gained momentum, and simple and facile controlled-release systems without loss of activity are required. Herein, we developed a sustained-release system for protein drugs by exploiting the "astringency" mechanism, namely insoluble precipitate formation by interacting with tannic acid. Tannic acid formed insoluble precipitates with various protein drugs, such as nisin, insulin, lysozyme, ovalbumin, hyaluronidase, and human immunoglobulin G, through hydrophobic interactions and hydrogen bonds. The lysozyme/tannic acid complex retained in vitro lytic activity. Precipitates of the insulin/tannic acid complex prolonged hypoglycemic effects without loss of activity after subcutaneous administration. The ovalbumin/tannic acid complex enhanced anti-ovalbumin antibody production induced by ovalbumin, which may be attributed to its sustained-release profile. Accordingly, tannic acid is useful as a simple and user-friendly drug delivery system for protein drugs.
Collapse
Affiliation(s)
- Kosei Utatsu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
14
|
Abstract
Conditions, accidents, and aging processes have brought with them the need to develop implants with higher technology that allow not only the replacement of missing tissue but also the formation of tissue and the recovery of its function. The development of implants is due to advances in different areas such as molecular-biochemistry (which allows the understanding of the molecular/cellular processes during tissue repair), materials engineering, tissue regeneration (which has contributed advances in the knowledge of the properties of the materials used for their manufacture), and the so-called intelligent biomaterials (which promote tissue regeneration through inductive effects of cell signaling in response to stimuli from the microenvironment to generate adhesion, migration, and cell differentiation processes). The implants currently used are combinations of biopolymers with properties that allow the formation of scaffolds with the capacity to mimic the characteristics of the tissue to be repaired. This review describes the advances of intelligent biomaterials in implants applied in different dental and orthopedic problems; by means of these advances, it is expected to overcome limitations such as additional surgeries, rejections and infections in implants, implant duration, pain mitigation, and mainly, tissue regeneration.
Collapse
Affiliation(s)
- Mariana Sarai Silva-López
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico
| | - Luz E Alcántara-Quintana
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico
| |
Collapse
|
15
|
Lee KH, Kim JD, Jeong DH, Kim SM, Park CO, Lee KH. Development of a novel microneedle platform for biomarker assessment of atopic dermatitis patients. Skin Res Technol 2023; 29:e13413. [PMID: 37522507 PMCID: PMC10345975 DOI: 10.1111/srt.13413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease whose pathogenesis, cause, and treatment have been extensively studied. The association of AD with Th2 cytokines is well known; therefore, the analysis of this association is crucial for the diagnosis and treatment of AD. This study aimed to present a new method for measuring protein biomarkers in patients with AD, before and after treatment, using minimally invasive microneedles. MATERIALS AND METHODS First, hyaluronic acid-loaded microneedle patches (HA-MNs) for skin sample collection were fabricated. Next, after Institutional Review Board approval, 20 patients with AD were recruited and skin samples were taken before and after treatment using four different sampling techniques: (1) tape stripping, (2) hydrocolloid patches, (3) hollow microneedles, and (4) HA-MNs. Lastly, proteins were isolated from the collected samples, and AD-related biomarkers were analyzed by enzyme-linked immunosorbent assay. RESULTS Proteins were successfully extracted from the skin samples collected by tape stripping, hydrocolloid patches, and HA-MNs, except hollow microneedles. Interleukin (IL)-4, IL-13, and interferon-γ were detected in the HA-MNs only. By comparing the biomarker level correlation before and after treatment and the improvement score of the patients, we observed a significant negative correlation between IL-4 and IL-13 with an improvement in AD symptoms. CONCLUSION Overall, our results verified that HA-MNs can be used to effectively analyze protein levels of biomarkers from skin metabolites of patients with AD and can be applied to monitor the treatment progress of patients with AD in a minimally invasive manner.
Collapse
Affiliation(s)
| | | | | | - Su Min Kim
- Department of Dermatology and Cutaneous Biology Research InstituteSeverance HospitalYonsei University College of MedicineSeoulRepublic of Korea
| | - Chang Ook Park
- Department of Dermatology and Cutaneous Biology Research InstituteSeverance HospitalYonsei University College of MedicineSeoulRepublic of Korea
| | | |
Collapse
|
16
|
Kast V, Nadernezhad A, Pette D, Gabrielyan A, Fusenig M, Honselmann KC, Stange DE, Werner C, Loessner D. A Tumor Microenvironment Model of Pancreatic Cancer to Elucidate Responses toward Immunotherapy. Adv Healthc Mater 2023; 12:e2201907. [PMID: 36417691 PMCID: PMC11468239 DOI: 10.1002/adhm.202201907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic cancer is a devastating malignancy with minimal treatment options. Standard-of-care therapy, including surgery and chemotherapy, is unsatisfactory, and therapies harnessing the immune system have been unsuccessful in clinical trials. Resistance to therapy and disease progression are mediated by the tumor microenvironment, which contains excessive amounts of extracellular matrix and stromal cells, acting as a barrier to drug delivery. There is a lack of preclinical pancreatic cancer models that reconstruct the extracellular, cellular, and biomechanical elements of tumor tissues to assess responses toward immunotherapy. To address this limitation and explore the effects of immunotherapy in combination with chemotherapy, a multicellular 3D cancer model using a star-shaped poly(ethylene glycol)-heparin hydrogel matrix is developed. Human pancreatic cancer cells, cancer-associated fibroblasts, and myeloid cells are grown encapsulated in hydrogels to mimic key components of tumor tissues, and cell responses toward treatment are assessed. Combining the CD11b agonist ADH-503 with anti-PD-1 immunotherapy and chemotherapy leads to a significant reduction in tumor cell viability, proliferation, metabolic activity, immunomodulation, and secretion of immunosuppressive and tumor growth-promoting cytokines.
Collapse
Affiliation(s)
- Verena Kast
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
| | - Ali Nadernezhad
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
| | - Dagmar Pette
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
| | - Anastasiia Gabrielyan
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
| | - Maximilian Fusenig
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
| | - Kim C. Honselmann
- Department of SurgeryUniversity Medical Center Schleswig‐Holstein, Campus Lübeck23562LübeckGermany
| | - Daniel E. Stange
- Department of Visceral, Thoracic and Vascular SurgeryUniversity Hospital Carl Gustav CarusMedical FacultyTechnical University Dresden01307DresdenGermany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
- Center for Regenerative Therapies DresdenTechnical University DresdenFetscherstr. 10501307DresdenGermany
| | - Daniela Loessner
- Leibniz Institute of Polymer Research Dresden e.VMax Bergmann Centre of BiomaterialsHohe Straße 601069DresdenGermany
- Department of Chemical and Biological Engineering and Department of Materials Science and EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Anatomy and Developmental BiologyBiomedicine Discovery InstituteFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourneVIC3800Australia
| |
Collapse
|
17
|
Hu Y, Lyu C, Teng L, Wu A, Zhu Z, He Y, Lu J. Glycopolypeptide hydrogels with adjustable enzyme-triggered degradation: A novel proteoglycans analogue to repair articular-cartilage defects. Mater Today Bio 2023; 20:100659. [PMID: 37229212 PMCID: PMC10205498 DOI: 10.1016/j.mtbio.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Proteoglycans (PGs), also known as a viscous lubricant, is the main component of the cartilage extracellular matrix (ECM). The loss of PGs is accompanied by the chronic degeneration of cartilage tissue, which is an irreversible degeneration process that eventually develops into osteoarthritis (OA). Unfortunately, there is still no substitute for PGs in clinical treatments. Herein, we propose a new PGs analogue. The Glycopolypeptide hydrogels in the experimental groups with different concentrations were prepared by Schiff base reaction (Gel-1, Gel-2, Gel-3, Gel-4, Gel-5 and Gel-6). They have good biocompatibility and adjustable enzyme-triggered degradability. The hydrogels have a loose and porous structure suitable for the proliferation, adhesion, and migration of chondrocytes, good anti-swelling, and reduce the reactive oxygen species (ROS) in chondrocytes. In vitro experiments confirmed that the glycopolypeptide hydrogels significantly promoted ECM deposition and up-regulated the expression of cartilage-specific genes, such as type-II collagen, aggrecan, and glycosaminoglycans (sGAG). In vivo, the New Zealand rabbit knee articular cartilage defect model was established and the hydrogels were implanted to repair it, the results showed good cartilage regeneration potential. It is worth noting that the Gel-3 group, with a pore size of 122 ± 12 μm, was particularly prominent in the above experiments, and provides a theoretical reference for the design of cartilage-tissue regeneration materials in the future.
Collapse
Affiliation(s)
- Yinghan Hu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chengqi Lyu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Teng
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Anqian Wu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zeyu Zhu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - YuShi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
18
|
Sievers J, Mahajan V, Welzel PB, Werner C, Taubenberger A. Precision Hydrogels for the Study of Cancer Cell Mechanobiology. Adv Healthc Mater 2023; 12:e2202514. [PMID: 36826799 PMCID: PMC11468035 DOI: 10.1002/adhm.202202514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Cancer progression is associated with extensive remodeling of the tumor microenvironment (TME), resulting in alterations of biochemical and biophysical cues that affect both cancer and stromal cells. In particular, the mechanical characteristics of the TME extracellular matrix undergo significant changes. Bioengineered polymer hydrogels can be instrumental to systematically explore how mechanically changed microenvironments impact cancer cell behavior, including proliferation, survival, drug resistance, and invasion. This article reviews studies that have explored the impact of different mechanical cues of the cells' 3D microenvironment on cancer cell behavior using hydrogel-based in vitro models. In particular, advanced engineering strategies are highlighted for tailored hydrogel matrices recapitulating the TME's micrometer- and sub-micrometer-scale architectural and mechanical features, while accounting for its intrinsically heterogenic and dynamic nature. It is anticipated that such precision hydrogel systems will further the understanding of cancer mechanobiology.
Collapse
Affiliation(s)
- Jana Sievers
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Vaibhav Mahajan
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| | - Petra B. Welzel
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center of Regenerative Therapies Dresden and Cluster of Excellence Physics of LifeTU Dresden01062DresdenGermany
| | - Anna Taubenberger
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| |
Collapse
|
19
|
Norahan MH, Pedroza-González SC, Sánchez-Salazar MG, Álvarez MM, Trujillo de Santiago G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact Mater 2023; 24:197-235. [PMID: 36606250 PMCID: PMC9803907 DOI: 10.1016/j.bioactmat.2022.11.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic wounds have become one of the most important issues for healthcare systems and are a leading cause of death worldwide. Wound dressings are necessary to facilitate wound treatment. Engineering wound dressings may substantially reduce healing time, reduce the risk of recurrent infections, and reduce the disability and costs associated. In the path of engineering of an ideal wound dressing, hydrogels have played a leading role. Hydrogels are 3D hydrophilic polymeric structures that can provide a protective barrier, mimic the native extracellular matrix (ECM), and provide a humid environment. Due to their advantages, hydrogels (with different architectural, physical, mechanical, and biological properties) have been extensively explored as wound dressing platforms. Here we describe recent studies on hydrogels for wound healing applications with a strong focus on the interplay between the fabrication method used and the architectural, mechanical, and biological performance achieved. Moreover, we review different categories of additives which can enhance wound regeneration using 3D hydrogel dressings. Hydrogel engineering for wound healing applications promises the generation of smart solutions to solve this pressing problem, enabling key functionalities such as bacterial growth inhibition, enhanced re-epithelialization, vascularization, improved recovery of the tissue functionality, and overall, accelerated and effective wound healing.
Collapse
Affiliation(s)
- Mohammad Hadi Norahan
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Sara Cristina Pedroza-González
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mónica Gabriela Sánchez-Salazar
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Grissel Trujillo de Santiago
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| |
Collapse
|
20
|
Dong D, Cheng Z, Wang T, Wu X, Ding C, Chen Y, Xiong H, Liang J. Acid-degradable nanocomposite hydrogel and glucose oxidase combination for killing bacterial with photothermal augmented chemodynamic therapy. Int J Biol Macromol 2023; 234:123745. [PMID: 36806779 DOI: 10.1016/j.ijbiomac.2023.123745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Bacterial infection often delays diabetic wound healing, and even causes serious life-threatening complications. Herein, we successfully developed a Cu2O/Pt nanocubes-dopping alginate (ALG)- hyaluronic acid (HA) hydrogel (Cu2O/Pt hydrogel) by simple assembly of the Cu2O/Pt nanocubes and the ALG-HA mixture. The Cu2O/Pt hydrogel combined with the glucose oxidase (GOx) can be used for photothermal- and starving-enhanced chemodynamic therapy (CDT) against Gram-negative and Gram-positive bacteria. The GOx can catalyze the glucose to produce gluconic acid and H2O2 for starvation therapy, following which the released Cu2O/Pt nanocubes react with H2O2 in the acidic microenvironment to generate highly cytotoxic hydroxyl radicals (·OH) for CDT. Additionally, the Cu2O/Pt hydrogel can release copper ions gradually with the decrease of pH induced by gluconic acid, which can increase the protein expression and secretion of vascular endothelial growth factor (VEGF) and promote endothelial cell proliferation, migration and angiogenesis, subsequently promoting diabetic wound healing in rats. Our results suggested that the Cu2O/Pt hydrogel combined with GOx may be a potential therapeutic approach for treating the infected diabetic wound.
Collapse
Affiliation(s)
- Dong Dong
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Zihao Cheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Tongyao Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Xingyu Wu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Chang Ding
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Yong Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China.
| | - Huayu Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China.
| | - Jichao Liang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China.
| |
Collapse
|
21
|
Xiao H, Chen X, Liu X, Wen G, Yu Y. Recent advances in decellularized biomaterials for wound healing. Mater Today Bio 2023; 19:100589. [PMID: 36880081 PMCID: PMC9984902 DOI: 10.1016/j.mtbio.2023.100589] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The skin is one of the most essential organs in the human body, interacting with the external environment and shielding the body from diseases and excessive water loss. Thus, the loss of the integrity of large portions of the skin due to injury and illness may lead to significant disabilities and even death. Decellularized biomaterials derived from the extracellular matrix of tissues and organs are natural biomaterials with large quantities of bioactive macromolecules and peptides, which possess excellent physical structures and sophisticated biomolecules, and thus, promote wound healing and skin regeneration. Here, we highlighted the applications of decellularized materials in wound repair. First, the wound-healing process was reviewed. Second, we elucidated the mechanisms of several extracellular matrix constitutes in facilitating wound healing. Third, the major categories of decellularized materials in the treatment of cutaneous wounds in numerous preclinical models and over decades of clinical practice were elaborated. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues for research on decellularized biomaterials-based wound treatment.
Collapse
Affiliation(s)
- Huimin Xiao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xin Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
22
|
Xu Y, Rothe R, Voigt D, Sayed A, Huang C, Hauser S, Lee PW, Cui M, Sáenz JP, Boccaccini AR, Zheng K, Pietzsch J, Zhang Y. A self-assembled dynamic extracellular matrix-like hydrogel system with multi-scale structures for cell bioengineering applications. Acta Biomater 2023; 162:211-225. [PMID: 36931420 DOI: 10.1016/j.actbio.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Extracellular matrix (ECM) provides various types of direct interactions with cells and a dynamic environment, which can be remodeled through different assembly/degradation mechanisms to adapt to different biological processes. Herein, through introducing polyphosphate-modified hyaluronic acid and bioactive glass (BG) nano-fibril into a self-assembled hydrogel system with peptide-polymer conjugate, we can realize many new ECM-like functions in a synthetic polymer network. The hydrogel network formation is mediated by coacervation, followed by a gradual transition of peptide structure from α-helix to β-sheet. The ECM-like hydrogels can be degraded through a number of orthogonal mechanisms, including treatments with protease, hyaluronidase, alkaline phosphatase, and calcium ion. As 2D coating, the ECM-like hydrogels can be used to modify the planar surface to promote the adhesion of mesenchymal stromal cells, or to coat the cell surface in a layer-by-layer fashion to shield the interaction with the substrate. As ECM-like hydrogels for 3D cell culture, the system is compatible with injection and cell encapsulation. Upon incorporating fragmented electrospun bioactive glass nano-fibril into the hydrogels, the synergetic effects of soft hydrogel and stiff reinforcement nanofibers on recapitulating ECM functions result in reduced cell circularity in 3D. Finally, by injecting the ECM-like hydrogels into mice, gradual degradations over a time period of one month and high biocompatibility have been shown in vivo. The contribution of complex network dynamics and hierarchical structures to cell-biomatrix interaction can be investigated multi-dimensionally, as many mechanisms are orthogonal to each other and can be regulated individually. STATEMENT OF SIGNIFICANCE: A list of native ECM features has attracted the most interest and attention in the research of synthetic biomaterials. In this research, we have described a simple ECM-like hydrogel system in which the complex and elegant functions of native ECM can be recapitulated in a chemically defined synthetic system. The ECM-like hydrogel systems were developed to avoid undesired features of biological substances (e.g., ethical concerns, batch-to-batch variation, immunogenicity, and potential risk of contamination), as well as gaining new functions to facilitate bioengineering applications (e.g., 3D cell culture, injection, and high stability). To this end, we have developed an ECM-like hydrogel system and provide evidence that this purely synthetic biomaterial is a promising candidate for cell bioengineering applications.
Collapse
Affiliation(s)
- Yong Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, P. R. China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215006, P. R. China; B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany.
| | - Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research Department of Radiopharmaceutical and Chemical Biology, Dresden 01328, Germany; Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden 01062, Germany
| | - Dagmar Voigt
- Institute for Botany, Faculty of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | - Ahmed Sayed
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Can Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research Department of Radiopharmaceutical and Chemical Biology, Dresden 01328, Germany
| | - Pao-Wan Lee
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Meiying Cui
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - James P Sáenz
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, P. R. China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, P. R. China.
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research Department of Radiopharmaceutical and Chemical Biology, Dresden 01328, Germany; Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden 01062, Germany.
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden 01062, Germany.
| |
Collapse
|
23
|
Siddiqui T, Celikkaya H, Atasavum ZT, Popova S, Freudenberg U, Werner C, Kizil C. Three-Dimensional Biohybrid StarPEG-Heparin Hydrogel Cultures for Modeling Human Neuronal Development and Alzheimer's Disease Pathology. Methods Mol Biol 2023; 2561:159-170. [PMID: 36399269 DOI: 10.1007/978-1-0716-2655-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this chapter, we present the methodology currently used in our laboratory to generate a starPEG-MMP (starPEG)- and heparin maleimide HM06 (heparin)-based 3D cell culture system, in a hydrogel, that can be used to study human neuronal development and Alzheimer's disease (AD) pathology. A 3D cell culture system can mimic the in vivo cellular environment better than a 2D format, in which these cells exhibit neural network formation, electrophysiological activity, tissue-specific extracellular matrix (ECM) deposition, and neurotransmitter responsiveness. When treated with amyloid beta-42 (Aβ42) peptides, this system recapitulates many of the pathological effects of AD, including reduced neural stem cell proliferation, impaired neuronal network formation, dystrophic axonal ends, synaptic loss, failure to deposit ECM, elevated tau hyperphosphorylation, and formation of neurofibrillary tangles. Culturing human primary cortical astrocyte (pHA)- or induced pluripotent stem cell (iPSC)-derived human neural stem cells in this biohybrid hydrogel system has led to the discovery of novel regulatory pathways underlying neurodegenerative pathology in different phases of AD.
Collapse
Affiliation(s)
- Tohid Siddiqui
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
| | - Hilal Celikkaya
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
| | - Zeynep Tansu Atasavum
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Dresden, Germany
| | - Stanislava Popova
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Neuron-D GmbH, Dresden, Germany
| | - Uwe Freudenberg
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Dresden, Germany
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
24
|
Gericke M, Skodda LH, Heinze T. Reactive xylan derivatives for azid-/alkyne-click-chemistry approaches — From modular synthesis to gel-formation. Carbohydr Polym 2023; 300:120251. [DOI: 10.1016/j.carbpol.2022.120251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
|
25
|
Feng Z, Zhang Y, Yang C, Liu X, Huangfu Y, Zhang C, Huang P, Dong A, Liu J, Liu J, Kong D, Wang W. Bioinspired and Inflammation-Modulatory Glycopeptide Hydrogels for Radiation-Induced Chronic Skin Injury Repair. Adv Healthc Mater 2023; 12:e2201671. [PMID: 36183357 DOI: 10.1002/adhm.202201671] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Indexed: 02/03/2023]
Abstract
Clinical wound management of radiation-induced skin injury (RSI) remains a great challenge due to acute injuries induced by excessive reactive oxygen species (ROS), and the concomitant repetitive inflammatory microenvironment caused by an imbalance in macrophage homeostasis. Herein, a cutaneous extracellular matrix (ECM)-inspired glycopeptide hydrogel (GK@TAgel ) is rationally designed for accelerating wound healing through modulating the chronic inflammation in RSI. The glycopeptide hydrogel not only replicates ECM-like glycoprotein components and nanofibrous architecture, but also displays effective ROS scavenging and radioprotective capability that can reduce the acute injuries after exposure to irradiation. Importantly, the mannose receptor (MR) in GK@TAgel exhibits high affinity and bioactivity to drive the M2 macrophage polarization, thereby overcoming the persistent inflammatory microenvironment in chronic RSI. The repair of RSI in mice demonstrates that GK@TAgel significantly reduces the hyperplasia of epithelial, promotes appendage regeneration and angiogenesis, and decreased the proinflammatory cytokine expression, which is superior to the treatment of commercial radioprotective drug amifostine. Collectively, the ECM-mimetic hydrogel dressing can protect the tissue from irradiation and heal the chronic wound in RSI, holding great potential in clinical wound management and tissue regeneration.
Collapse
Affiliation(s)
- Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Chunfang Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiang Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yini Huangfu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.,Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing, 100144, China
| |
Collapse
|
26
|
Combining thermosensitive physical self-assembly and covalent cycloaddition chemistry as simultaneous dual cross-linking mechanisms for the preparation of injectable hydrogels with tuneable properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Costa RR, Reis RL, Pashkuleva I. Glycosaminoglycans as polyelectrolytes: implications in bioactivity and assembly of biomedical devices. INTERNATIONAL MATERIALS REVIEWS 2022; 67:765-795. [DOI: 10.1080/09506608.2022.2026860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/16/2021] [Indexed: 01/04/2025]
Affiliation(s)
- Rui R. Costa
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
- ICVS/3B's, PT Government Associated Laboratory, Braga, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
- ICVS/3B's, PT Government Associated Laboratory, Braga, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
- ICVS/3B's, PT Government Associated Laboratory, Braga, Portugal
| |
Collapse
|
28
|
Sahraneshin-Samani F, Kazemi-Ashtiani M, Karimi H, Shiravandi A, Baharvand H, Daemi H. Regioselective sulfated chitosan produces a biocompatible and antibacterial wound dressing with low inflammatory response. BIOMATERIALS ADVANCES 2022; 139:213020. [PMID: 35882163 DOI: 10.1016/j.bioadv.2022.213020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The aim of current study is to tailor chitosan derivate which is water-soluble while presents original biological features of chitosan. For this purpose, the 6-O chitosan sulfate (CS) with naked amine groups was synthesized via regioselective modification of chitosan (C) during which both crosslinking capacity and antibacterial properties of the C were remained intact. This was achieved by sulfation the C under controlled acidic conditions using chlorosulfonic acid/sulfuric acid mixture. Subsequently, a chemically crosslinked hydrogel of the CS was used as a wound dressing substrate. The modified sulfate groups retained the biocompatibility of C and showed antibacterial effects against gram-positive and gram-negative bacteria. In addition, the presence of sulfate groups in the CS chemical structure improved its anticoagulant activity compared to the unmodified C. Both in vitro and in vivo enzyme-linked immunosorbent assay (ELISA) measurements showed that CS had a higher potential to bind and scavenger anti-inflammatory cytokines, including IL-6 and transforming growth factor-β (TGF-β), both of which play critical roles in the early stage of the wound healing process. After treatment of full-thickness wounds with CS hydrogels, the macrophage cells (c.a. 6 × 104 cells) expressed significantly more M2 phenotype markers compared to the C group (4.2 × 104 cells). Furthermore, the CS hydrogel induced better re-epithelialization and vascularization of full-thickness wounds in mice compared to the C hydrogel during 30 days.
Collapse
Affiliation(s)
- Fazel Sahraneshin-Samani
- Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
| | - Mohammad Kazemi-Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hassan Karimi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Biomaterials, Zharfandishan Fanavar Zistbaspar (ZFZ) Chemical Company, Tehran, Iran
| | - Ayoub Shiravandi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Hamed Daemi
- Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran; Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
29
|
Zhang X, Feng J, Feng W, Xu B, Zhang K, Ma G, Li Y, Yang M, Xu FJ. Glycosaminoglycan-Based Hydrogel Delivery System Regulates the Wound Microenvironment to Rescue Chronic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31737-31750. [PMID: 35802505 DOI: 10.1021/acsami.2c08593] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chronic wounds cannot proceed through the normal, orderly, and timely sequence of repair. The adverse cycle between excess reactive oxide species (ROS) and a persistent inflammatory response is an important mechanism of impaired wound healing. Herein, by combining the intrinsic bioactivities of natural polysaccharides and natural drugs, a glycosaminoglycan-based hydrogel delivery system is proposed to regulate the wound microenvironment. Dynamic supramolecular cross-linking enables the hydrogel to easily encapsulate the drug and fully fill the wound area. As the backbone of the hydrogel, heparin captures inflammatory chemokines at the wound site, while hyaluronic acid mimics the function of ECM. The hydrophobic drug curcumin has been ingeniously encapsulated in the hydrogel through micellization, thereby exerting good ROS scavenging ability and anti-inflammatory activity. Evaluations in diabetic mice showed that this antioxidant and anti-inflammatory hydrogel was effective in reducing the influx of immune cells at the wound site and in down-regulating the inflammatory response. Accelerated wound healing was also observed, as evidenced by faster re-epithelialization and better ECM remodeling. The proposed hydrogel can regulate the microenvironment of wounds from multiple aspects and thereby achieve regression of wound repair, which may provide a new therapeutic strategy for chronic wounds.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jin Feng
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weina Feng
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Buxuan Xu
- Department of Orthopedics, The First Hospital of China Medical University, No. 155 Nanjingbei Street, Shenyang 110001, Liaoning, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guiping Ma
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maowei Yang
- Department of Orthopedics, The First Hospital of China Medical University, No. 155 Nanjingbei Street, Shenyang 110001, Liaoning, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
30
|
Wang H, Wang X, Wu D. Recent Advances of Natural Polysaccharide-based Double-network Hydrogels for Tissue Repair. Chem Asian J 2022; 17:e202200659. [PMID: 35837995 DOI: 10.1002/asia.202200659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Natural polysaccharide hydrogels have been extensively explored for many years due to their outstanding biocompatibility and biodegradability, which are very promising candidates as artificial soft materials for biomedical applications. However, their inferior mechanical performances greatly limited their applications. Introduction of double-network (DN) structure has been well documented to be an efficient strategy for significant improvement of the mechanical property of hydrogels. Here, recent progress of natural polysaccharide-based DN hydrogels is reviewed from the perspective of fundamental concepts on both design rationale and preparation strategies to biomedical application in tissue repair. Retrospect of the DN-strengthened polysaccharide hydrogels can give a deep insight into the fundamental relationship of such bio-based hydrogels among structural design, mechanical properties and practical demands, thereby prompting their translation to clinical application prospects.
Collapse
Affiliation(s)
- Hufei Wang
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, CHINA
| | - Xing Wang
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, CHINA
| | - Decheng Wu
- Southern University of Science and Technology, Department of Biomedical Engineering, No. 1088 Xueyuan Avenue, 518055, Shenzhen, CHINA
| |
Collapse
|
31
|
Preobrazhenskii II, Putlyaev VI. 3D Printing of Hydrogel-Based Biocompatible Materials. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222060027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Li G, Zhang H. Editorial: Functional and Smart Biomaterials: Development and Application in Regenerative Medicine. Front Bioeng Biotechnol 2022; 10:920730. [PMID: 35656200 PMCID: PMC9152673 DOI: 10.3389/fbioe.2022.920730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Lab for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
- *Correspondence: Guicai Li, ; Hongbo Zhang,
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, Finland
- Turku Bioscience Center, University of Turku and Åbo Akademi University, Turku, Finland
- *Correspondence: Guicai Li, ; Hongbo Zhang,
| |
Collapse
|
33
|
Rezaei M, Davani F, Alishahi M, Masjedi F. Updates in immunocompatibility of biomaterials: applications for regenerative medicine. Expert Rev Med Devices 2022; 19:353-367. [PMID: 35531761 DOI: 10.1080/17434440.2022.2075730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Biomaterials, either metallic, ceramic, or polymeric, can be used in medicine as a part of the implants, dialysis membranes, bone scaffolds, or components of artificial organs. Polymeric biomaterials cover a vast range of biomedical applications. The biocompatibility and immunocompatibility of polymeric materials are of fundamental importance for their possible therapeutic uses, as the immune system can intervene in the materials' performance. Therefore, based on application, different routes can be utilized for immunoregulation. AREAS COVERED As different biomaterials can be modulated by different strategies, this study aims to summarize and evaluate the available methods for the immunocompatibility enhancement of more common polymeric biomaterials based on their nature. Different strategies such as surface modification, physical characterization, and drug incorporation are investigated for the immunomodulation of nanoparticles, hydrogels, sponges, and nanofibers. EXPERT OPINION Recently, strategies for triggering appropriate immune responses by functional biomaterials have been highlighted. As most strategies correspond to the physical and surface properties of biomaterials, specific modulation can be conducted for each biomaterial system. Besides, different applications require different modulations of the immune system. In the future, the selection of novel materials and immune regulators can play a role in tuning the immune system for regenerative medicine.
Collapse
Affiliation(s)
- Mahdi Rezaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farideh Davani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Alishahi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Lee SY, Jeon S, Kwon YW, Kwon M, Kang MS, Seong KY, Park TE, Yang SY, Han DW, Hong SW, Kim KS. Combinatorial wound healing therapy using adhesive nanofibrous membrane equipped with wearable LED patches for photobiomodulation. SCIENCE ADVANCES 2022; 8:eabn1646. [PMID: 35427152 PMCID: PMC9012471 DOI: 10.1126/sciadv.abn1646] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/25/2022] [Indexed: 06/02/2023]
Abstract
Wound healing is the dynamic tissue regeneration process replacing devitalized and missing tissue layers. With the development of photomedicine techniques in wound healing, safe and noninvasive photobiomodulation therapy is receiving attention. Effective wound management in photobiomodulation is challenged, however, by limited control of the geometrical mismatches on the injured skin surface. Here, adhesive hyaluronic acid-based gelatin nanofibrous membranes integrated with multiple light-emitting diode (LED) arrays are developed as a skin-attachable patch. The nanofibrous wound dressing is expected to mimic the three-dimensional structure of the extracellular matrix, and its adhesiveness allows tight coupling between the wound sites and the flexible LED patch. Experimental results demonstrate that our medical device accelerates the initial wound healing process by the synergetic effects of the wound dressing and LED irradiation. Our proposed technology promises progress for wound healing management and other biomedical applications.
Collapse
Affiliation(s)
- So Yun Lee
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangheon Jeon
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Young Woo Kwon
- Department of Nano-fusion Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Mina Kwon
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Tae-Eon Park
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Su Kim
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
35
|
Xu Y, Gaillez MP, Zheng K, Voigt D, Cui M, Kurth T, Xiao L, Rothe R, Hauser S, Lee PW, Wieduwild R, Lin W, Bornhäuser M, Pietzsch J, Boccaccini AR, Zhang Y. A Self-Assembled Matrix System for Cell-Bioengineering Applications in Different Dimensions, Scales, and Geometries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104758. [PMID: 35132776 DOI: 10.1002/smll.202104758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Stem cell bioengineering and therapy require different model systems and materials in different stages of development. If a chemically defined biomatrix system can fulfill most tasks, it can minimize the discrepancy among various setups. By screening biomaterials synthesized through a coacervation-mediated self-assembling mechanism, a biomatrix system optimal for 2D human mesenchymal stromal cell (hMSC) culture and osteogenesis is identified. Its utility for hMSC bioengineering is further demonstrated in coating porous bioactive glass scaffolds and nanoparticle synthesis for esiRNA delivery to knock down the SOX-9 gene with high delivery efficiency. The self-assembled injectable system is further utilized for 3D cell culture, segregated co-culture of hMSC with human umbilical vein endothelial cells (HUVEC) as an angiogenesis model, and 3D bioprinting. Most interestingly, the coating of bioactive glass with the self-assembled biomatrix not only supports the proliferation and osteogenesis of hMSC in the 3D scaffold but also induces the amorphous bioactive glass (BG) scaffold surface to form new apatite crystals resembling bone-shaped plate structures. Thus, the self-assembled biomatrix system can be utilized in various dimensions, scales, and geometries for many different bioengineering applications.
Collapse
Affiliation(s)
- Yong Xu
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Michelle Patino Gaillez
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Kai Zheng
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Dagmar Voigt
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Meiying Cui
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Thomas Kurth
- Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, EM Facilty, 01307, Dresden, Germany
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research Department of Radiopharmaceutical and Chemical Biology, 01328, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01062, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research Department of Radiopharmaceutical and Chemical Biology, 01328, Dresden, Germany
| | - Pao-Wan Lee
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Robert Wieduwild
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Weilin Lin
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Martin Bornhäuser
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
- University Hospital Carl Gustav Carus der Technischen Universität Dresden, Medizinische Klinik und Poliklinik I, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research Department of Radiopharmaceutical and Chemical Biology, 01328, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, 01062, Dresden, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
36
|
Liang N, Ren N, Feng Z, Sun Z, Dong M, Wang W, Liu F, Sun C, Zhou W, Xing Z, Wang J, Liu C, Liu H. Biomimetic Metal-Organic Frameworks as Targeted Vehicles to Enhance Osteogenesis. Adv Healthc Mater 2022; 11:e2102821. [PMID: 35182414 DOI: 10.1002/adhm.202102821] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 12/22/2022]
Abstract
Although engineered nanoparticles loaded with specific growth factors are used to regulate differentiation of stem cells, the low loading efficiency and biocompatibility are still great challenges in tissue repair. A nature-inspired biomimetic delivery system with targeted functions is attractive for enhancing cell activity and controlling cell fate. Herein, a stem cell membrane (SCM)-wrapped dexamethasone (DEX)-loaded zeolitic imidazolate framework-8 (ZIF-8) is constructed, which integrates the synthetic nanomaterials with native plasma membrane, to achieve efficient DEX delivery and DEX-mediated bone repair. The DEX@ZIF-8-SCM enables high DEX loading capacity, modulates the sustained release, and facilitates the specific uptake of mesenchymal stem cells (MSCs), owing to the porous property of ZIF-8 and the innate targeting capability of SCM. The endocytosed DEX@ZIF-8-SCM shows high cytocompatibility and greatly enhances the osteogenic differentiation of MSCs. Furthermore, RNA-sequencing data reveal that the phosphoinositide 3-kinase (PI3K)-Akt signaling pathways are activated and dominantly involved in the accelerated osteogenesis. In the bone defect model, the administrated DEX@ZIF-8-SCM exerts excellent biocompatibility and effectively promotes bone regeneration. Overall, the SCM-derived biomimetic nanoplatform achieves targeted delivery, excellent biosafety, and enhanced osteogenic differentiation and bone repair, which provides a new and valid strategy for treating various tissue injuries.
Collapse
Affiliation(s)
- Na Liang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhichao Feng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoyang Sun
- Department of Oral and Maxillofacial Surgery Qilu Hospital of Shandong University Institute of Stomatology Shandong University Jinan 250012 P. R. China
| | - Mengwei Dong
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Wenhan Wang
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhiqing Xing
- Ji'nan Pantheum Biological Technology Limited Company Jinan 250100 P. R. China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery Qilu Hospital of Shandong University Institute of Stomatology Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
37
|
Michalak AL, Trieger GW, Trieger KA, Godula K. Stem Cell Microarrays for Assessing Growth Factor Signaling in Engineered Glycan Microenvironments. Adv Healthc Mater 2022; 11:e2101232. [PMID: 34541824 PMCID: PMC8854331 DOI: 10.1002/adhm.202101232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Indexed: 02/03/2023]
Abstract
Extracellular glycans, such as glycosaminoglycans (GAGs), provide an essential regulatory component during the development and maintenance of tissues. GAGs, which harbor binding sites for a range of growth factors (GFs) and other morphogens, help establish gradients of these molecules in the extracellular matrix (ECM) and promote the formation of active signaling complexes when presented at the cell surface. As such, GAGs have been pursued as biologically active components for the development of biomaterials for cell-based regenerative therapies. However, their structural complexity and compositional heterogeneity make establishing structure-function relationships for this class of glycans difficult. Here, a stem cell array platform is described, in which chemically modified heparan sulfate (HS) GAG polysaccharides are conjugated to a gelatin matrix and introduced into a polyacrylamide hydrogel network. This array allowed for direct analysis of HS contributions to the signaling via the FGF2-dependent mitogen activated protein kinase (MAPK) pathway in mouse embryonic stem cells. With the recent emergence of powerful synthetic and recombinant technologies to produce well-defined GAG structures, a platform for analyzing both growth factor binding and signaling in response to the presence of these biomolecules will provide a powerful tool for integrating glycans into biomaterials to advance their biological properties and applications.
Collapse
Affiliation(s)
- Austen L. Michalak
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Greg W. Trieger
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Kelsey A. Trieger
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Kamil Godula
- Deparment of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA,Glycobiology Research and Training Center, University of California San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| |
Collapse
|
38
|
Shafiq M, Ali O, Han SB, Kim DH. Mechanobiological Strategies to Enhance Stem Cell Functionality for Regenerative Medicine and Tissue Engineering. Front Cell Dev Biol 2021; 9:747398. [PMID: 34926444 PMCID: PMC8678455 DOI: 10.3389/fcell.2021.747398] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
Stem cells have been extensively used in regenerative medicine and tissue engineering; however, they often lose their functionality because of the inflammatory microenvironment. This leads to their poor survival, retention, and engraftment at transplantation sites. Considering the rapid loss of transplanted cells due to poor cell-cell and cell-extracellular matrix (ECM) interactions during transplantation, it has been reasoned that stem cells mainly mediate reparative responses via paracrine mechanisms, including the secretion of extracellular vesicles (EVs). Ameliorating poor cell-cell and cell-ECM interactions may obviate the limitations associated with the poor retention and engraftment of transplanted cells and enable them to mediate tissue repair through the sustained and localized presentation of secreted bioactive cues. Biomaterial-mediated strategies may be leveraged to confer stem cells enhanced immunomodulatory properties, as well as better engraftment and retention at the target site. In these approaches, biomaterials have been exploited to spatiotemporally present bioactive cues to stem cell-laden platforms (e.g., aggregates, microtissues, and tissue-engineered constructs). An array of biomaterials, such as nanoparticles, hydrogels, and scaffolds, has been exploited to facilitate stem cells function at the target site. Additionally, biomaterials can be harnessed to suppress the inflammatory microenvironment to induce enhanced tissue repair. In this review, we summarize biomaterial-based platforms that impact stem cell function for better tissue repair that may have broader implications for the treatment of various diseases as well as tissue regeneration.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Onaza Ali
- School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, China
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
39
|
Riedl P, Schricker M, Pompe T. Stiffness Variation of 3D Collagen Networks by Surface Functionalization of Network Fibrils with Sulfonated Polymers. Gels 2021; 7:266. [PMID: 34940326 PMCID: PMC8702206 DOI: 10.3390/gels7040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Fibrillar collagen is the most prominent protein in the mammalian extracellular matrix. Therefore, it is also widely used for cell culture research and clinical therapy as a biomimetic 3D scaffold. Charged biopolymers, such as sulfated glycosaminoglycans, occur in vivo in close contact with collagen fibrils, affecting many functional properties such as mechanics and binding of growth factors. For in vitro application, the functions of sulfated biopolymer decorations of fibrillar collagen materials are hardly understood. Herein, we report new results on the stiffness dependence of 3D collagen I networks by surface functionalization of the network fibrils with synthetic sulfonated polymers, namely, poly(styrene sulfonate) (PSS) and poly(vinyl sulfonate) (PVS). A non-monotonic stiffness dependence on the amount of adsorbed polymer was found for both polymers. The stiffness dependence correlated to a transition from mono- to multilayer adsorption of sulfonated polymers on the fibrils, which was most prominent for PVS. PVS mono- and multilayers caused a network stiffness change by a factor of 0.3 and 2, respectively. A charge-dependent weakening of intrafibrillar salt bridges by the adsorbed sulfonated polymers leading to fibrillar softening is discussed as the mechanism for the stiffness decrease in the monolayer regime. In contrast, multilayer adsorption can be assumed to induce interfibrillar bridging and an increase in network stiffness. Our in vitro results have a strong implication on in vivo characteristics of fibrillar collagen I, as sulfated glycosaminoglycans frequently attach to collagen fibrils in various tissues, calling for an up to now overlooked impact on matrix and tendon mechanics.
Collapse
Affiliation(s)
| | | | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, 04103 Leipzig, Germany; (P.R.); (M.S.)
| |
Collapse
|
40
|
Hahn D, Sonntag JM, Lück S, Maitz MF, Freudenberg U, Jordan R, Werner C. Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels-Expanding the Physicochemical Parameter Space of Biohybrid Materials. Adv Healthc Mater 2021; 10:e2101327. [PMID: 34541827 PMCID: PMC11481032 DOI: 10.1002/adhm.202101327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Poly(ethylene glycol) (PEG)-glycosaminoglycan (GAG) hydrogel networks are established as very versatile biomaterials. Herein, the synthetic gel component of the biohybrid materials is systematically varied by combining different poly(2-alkyl-2-oxazolines) (POx) with heparin applying a Michael-type addition crosslinking scheme: POx of gradated hydrophilicity and temperature-responsiveness provides polymer networks of distinctly different stiffness and swelling. Adjusting the mechanical properties and the GAG concentration of the gels to similar values allows for modulating the release of GAG-binding growth factors (VEGF165 and PDGF-BB) by the choice of the POx and its temperature-dependent conformation. Adsorption of fibronectin, growth of fibroblasts, and bacterial adhesion scale with the hydrophobicity of the gel-incorporated POx. In vitro hemocompatibility tests with freshly drawn human whole blood show advantages of POx-based gels compared to the PEG-based reference materials. Biohybrid POx hydrogels can therefore enable biomedical technologies requiring GAG-based materials with customized and switchable physicochemical characteristics.
Collapse
Affiliation(s)
- Dominik Hahn
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Jannick M. Sonntag
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Steffen Lück
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Manfred F. Maitz
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
| | - Rainer Jordan
- Dresden Initiative for Bioactive Interfaces & MaterialsTechnische Universität DresdenMommsenstr. 401069DresdenGermany
- Professur für Makromolekulare ChemieFaculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenMax‐Bergmann Center of Biomaterials DresdenHohe Str. 601069DresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Fetscherstr. 10501307DresdenGermany
| |
Collapse
|
41
|
Sievers J, Zimmermann R, Friedrichs J, Pette D, Limasale YDP, Werner C, Welzel PB. Customizing biohybrid cryogels to serve as ready-to-use delivery systems of signaling proteins. Biomaterials 2021; 278:121170. [PMID: 34628192 DOI: 10.1016/j.biomaterials.2021.121170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
Macroporous cryogels have recently gained increasing interest for the controlled administration of signaling proteins in tissue engineering due to an advantageous combination of material properties. However, most of the previously reported cryogel systems did not allow for tunable, sustained protein release. We therefore designed a set of ready-to-use multi-armed polyethylene glycol (starPEG)-heparin cryogel systems containing different amounts of the protein-affine glycosaminoglycan component heparin to enable systematically tunable long-term delivery of different signaling proteins without affecting other cell-instructive properties. Experimental data and mathematical modeling indicate that the macroporous structure causes local differences in the concentration of proteins released into the pores and in the surrounding of the cryogels. As a proof-of-concept for their ready-to-use potential, cryogels pre-functionalized with signaling proteins and cell adhesion-peptides were demonstrated to induce the neuronal differentiation of colonizing pheochromocytoma cells. The elaborated approach opens up new perspectives for cryogels as easily storable and applicable systems for the precision delivery of signaling proteins.
Collapse
Affiliation(s)
- Jana Sievers
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Ralf Zimmermann
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Jens Friedrichs
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Dagmar Pette
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Yanuar Dwi Putra Limasale
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden and Cluster of Excellence Physics of Life, 01062, Dresden, Germany.
| | - Petra Birgit Welzel
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany.
| |
Collapse
|
42
|
Ammassam Veettil R, Marcano DC, Yuan X, Zaheer M, Adumbumkulath A, Lee R, Isenhart LC, Soriano N, Mhatre K, Joseph R, Mani SA, Shin CS, Acharya G. Dextran Sulfate Polymer Wafer Promotes Corneal Wound Healing. Pharmaceutics 2021; 13:pharmaceutics13101628. [PMID: 34683921 PMCID: PMC8539456 DOI: 10.3390/pharmaceutics13101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Eye injuries due to corneal abrasions, chemical spills, penetrating wounds, and microbial infections cause corneal scarring and opacification that result in impaired vision or blindness. However, presently available eye drop formulations of anti-inflammatory and antibiotic drugs are not effective due to their rapid clearance from the ocular surface or due to drug-related side effects such as cataract formation or increased intraocular pressure. In this article, we presented the development of a dextran sulfate-based polymer wafer (DS-wafer) for the effective modulation of inflammation and fibrosis and demonstrated its efficacy in two corneal injury models: corneal abrasion mouse model and alkali induced ocular burn mouse model. The DS-wafers were fabricated by the electrospinning method. We assessed the efficacy of the DS-wafer by light microscopy, qPCR, confocal fluorescence imaging, and histopathological analysis. These studies demonstrated that the DS-wafer treatment is significantly effective in modulating corneal inflammation and fibrosis and inhibited corneal scarring and opacification compared to the unsulfated dextran-wafer treated and untreated corneas. Furthermore, these studies have demonstrated the efficacy of dextran sulfate as an anti-inflammatory and antifibrotic polymer therapeutic.
Collapse
Affiliation(s)
- Remya Ammassam Veettil
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Daniela C. Marcano
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
| | - Xiaoyong Yuan
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
| | - Mahira Zaheer
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Aparna Adumbumkulath
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Richard Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Lucas C. Isenhart
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
| | - Nicole Soriano
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Kirti Mhatre
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Robiya Joseph
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.A.M.)
| | - Sendurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.A.M.)
| | - Crystal S. Shin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
- Correspondence: (C.S.S.); (G.A.)
| | - Ghanashyam Acharya
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
- Correspondence: (C.S.S.); (G.A.)
| |
Collapse
|
43
|
Wartenberg A, Weisser J, Schnabelrauch M. Glycosaminoglycan-Based Cryogels as Scaffolds for Cell Cultivation and Tissue Regeneration. Molecules 2021; 26:5597. [PMID: 34577067 PMCID: PMC8466427 DOI: 10.3390/molecules26185597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cryogels are a class of macroporous, interconnective hydrogels polymerized at sub-zero temperatures forming mechanically robust, elastic networks. In this review, latest advances of cryogels containing mainly glycosaminoglycans (GAGs) or composites of GAGs and other natural or synthetic polymers are presented. Cryogels produced in this way correspond to the native extracellular matrix (ECM) in terms of both composition and molecular structure. Due to their specific structural feature and in addition to an excellent biocompatibility, GAG-based cryogels have several advantages over traditional GAG-hydrogels. This includes macroporous, interconnective pore structure, robust, elastic, and shape-memory-like mechanical behavior, as well as injectability for many GAG-based cryogels. After addressing the cryogelation process, the fabrication of GAG-based cryogels and known principles of GAG monomer crosslinking are discussed. Finally, an overview of specific GAG-based cryogels in biomedicine, mainly as polymeric scaffold material in tissue regeneration and tissue engineering-related controlled release of bioactive molecules and cells, is provided.
Collapse
Affiliation(s)
- Annika Wartenberg
- Biomaterials Department, INNOVENT e.V., Pruessingstrasse 27B, 07745 Jena, Germany;
| | | | | |
Collapse
|
44
|
Fabrication of Soft Tissue Scaffold-Mimicked Microelectrode Arrays Using Enzyme-Mediated Transfer Printing. MICROMACHINES 2021; 12:mi12091057. [PMID: 34577700 PMCID: PMC8472004 DOI: 10.3390/mi12091057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
Hydrogels are the ideal materials in the development of implanted bioactive neural interfaces because of the nerve tissue-mimicked physical and biological properties that can enhance neural interfacing compatibility. However, the integration of hydrogels and rigid/dehydrated electronic microstructure is challenging due to the non-reliable interfacial bonding, whereas hydrogels are not compatible with most conditions required for the micromachined fabrication process. Herein, we propose a new enzyme-mediated transfer printing process to design an adhesive biological hydrogel neural interface. The donor substrate was fabricated via photo-crosslinking of gelatin methacryloyl (GelMA) containing various conductive nanoparticles (NPs), including Ag nanowires (NWs), Pt NWs, and PEDOT:PSS, to form a stretchable conductive bioelectrode, called NP-doped GelMA. On the other hand, a receiver substrate composed of microbial transglutaminase-incorporated gelatin (mTG-Gln) enabled simultaneous temporally controlled gelation and covalent bond-enhanced adhesion to achieve one-step transfer printing of the prefabricated NP-doped GelMA features. The integrated hydrogel microelectrode arrays (MEA) were adhesive, and mechanically/structurally bio-compliant with stable conductivity. The devices were structurally stable in moisture to support the growth of neuronal cells. Despite that the introduction of AgNW and PEDOT:PSS NPs in the hydrogels needed further study to avoid cell toxicity, the PtNW-doped GelMA exhibited a comparable live cell density. This Gln-based MEA is expected to be the next-generation bioactive neural interface.
Collapse
|
45
|
Ullm F, Pompe T. Fibrillar biopolymer-based scaffolds to study macrophage-fibroblast crosstalk in wound repair. Biol Chem 2021; 402:1309-1324. [PMID: 34392640 DOI: 10.1515/hsz-2021-0164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023]
Abstract
Controlled wound healing requires a temporal and spatial coordination of cellular activities within the surrounding extracellular matrix (ECM). Disruption of cell-cell and cell-matrix communication results in defective repair, like chronic or fibrotic wounds. Activities of macrophages and fibroblasts crucially contribute to the fate of closing wounds. To investigate the influence of the ECM as an active part controlling cellular behavior, coculture models based on fibrillar 3D biopolymers such as collagen have already been successfully used. With well-defined biochemical and biophysical properties such 3D scaffolds enable in vitro studies on cellular processes including infiltration and differentiation in an in vivo like microenvironment. Further, paracrine and autocrine signaling as well as modulation of soluble mediator transport inside the ECM can be modeled using fibrillar 3D scaffolds. Herein, we review the usage of these scaffolds in in vitro coculture models allowing in-depth studies on the crosstalk between macrophages and fibroblasts during different stages of cutaneous wound healing. A more accurate mimicry of the various processes of cellular crosstalk at the different stages of wound healing will contribute to a better understanding of the impact of biochemical and biophysical environmental parameters and help to develop further strategies against diseases such as fibrosis.
Collapse
Affiliation(s)
- Franziska Ullm
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, D-04103Leipzig, Germany
| | - Tilo Pompe
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, D-04103Leipzig, Germany
| |
Collapse
|
46
|
Torregrossa M, Kakpenova A, Simon JC, Franz S. Modulation of macrophage functions by ECM-inspired wound dressings - a promising therapeutic approach for chronic wounds. Biol Chem 2021; 402:1289-1307. [PMID: 34390641 DOI: 10.1515/hsz-2021-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
Nonhealing chronic wounds are among the most common skin disorders with increasing incidence worldwide. However, their treatment is still dissatisfying, that is why novel therapeutic concepts targeting the sustained inflammatory process have emerged. Increasing understanding of chronic wound pathologies has put macrophages in the spotlight of such approaches. Herein, we review current concepts and perspectives of therapeutic macrophage control by ECM-inspired wound dressing materials. We provide an overview of the current understanding of macrophage diversity with particular view on their roles in skin and in physiological and disturbed wound healing processes. Based on this we discuss strategies for their modulation in chronic wounds and how such strategies can be tailored in ECM-inspired wound dressing. The latter utilize and mimic general principles of ECM-mediated cell control, such as binding and delivery of signaling molecules and direct signaling to cells specifically adapted for macrophage regulation in wounds. In this review, we present examples of most recent approaches and discuss ideas for their further development.
Collapse
Affiliation(s)
- Marta Torregrossa
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ainur Kakpenova
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
47
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
48
|
Kühn S, Freyse J, Atallah P, Rademann J, Freudenberg U, Werner C. Tuning the network charge of biohybrid hydrogel matrices to modulate the release of SDF-1. Biol Chem 2021; 402:1453-1464. [PMID: 34218538 DOI: 10.1515/hsz-2021-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/10/2021] [Indexed: 11/15/2022]
Abstract
The delivery of chemotactic signaling molecules via customized biomaterials can effectively guide the migration of cells to improve the regeneration of damaged or diseased tissues. Here, we present a novel biohybrid hydrogel system containing two different sulfated glycosaminoglycans (sGAG)/sGAG derivatives, namely either a mixture of short heparin polymers (Hep-Mal) or structurally defined nona-sulfated tetrahyaluronans (9s-HA4-SH), to precisely control the release of charged signaling molecules. The polymer networks are described in terms of their negative charge, i.e. the anionic sulfate groups on the saccharides, using two parameters, the integral density of negative charge and the local charge distribution (clustering) within the network. The modulation of both parameters was shown to govern the release characteristics of the chemotactic signaling molecule SDF-1 and allows for seamless transitions between burst and sustained release conditions as well as the precise control over the total amount of delivered protein. The obtained hydrogels with well-adjusted release profiles effectively promote MSC migration in vitro and emerge as promising candidates for new treatment modalities in the context of bone repair and wound healing.
Collapse
Affiliation(s)
- Sebastian Kühn
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, D-01069Dresden, Germany
| | - Joanna Freyse
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, D-14195Berlin, Germany
| | - Passant Atallah
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, D-01069Dresden, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, D-14195Berlin, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, D-01069Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, D-01069Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, D-01307Dresden, Germany
| |
Collapse
|
49
|
A multi-in-one strategy with glucose-triggered long-term antithrombogenicity and sequentially enhanced endothelialization for biological valve leaflets. Biomaterials 2021; 275:120981. [PMID: 34171754 DOI: 10.1016/j.biomaterials.2021.120981] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Bioprosthetic heart valves are commonly applied in heart valve replacement, while the effectiveness is limited by inflammation, calcification and especially thrombosis. Surface modification is expected to endow the biological valves with versatility. Herein, a multi-in-one strategy was established to modify biological valves with long-term antithrombogenicity and sequentially enhanced endothelialization triggered by glucose, in which the direct thrombin inhibitor rivaroxaban (RIVA)-loaded nanogels were embedded and the detachable polyethylene glycol (PEG) was grafted. These two anticoagulant strategies were connected by glucose oxidase (GOx), which catalyzed the oxidation of glucose to produce hydrogen peroxide (H2O2) and local acidic environment. The generated H2O2 stimulated H2O2-responsive nanogels release RIVA to obtain continuous antithrombogenicity. Meanwhile, PEG was attached to the surface via pH-sensitive bonds, which prevented thrombus formation by resisting the serum proteins and platelets adhesion at the initial stage of material/blood contact. Sequentially, PEG gradually peeled off under the local weak acidic environment, which ultimately resulted in the endothelialization enhancement. Within such multi-in-one strategy, the biological valve leaflets induced long-term anticoagulant performance, gradually enhanced endothelialization and improved tissue affinity, including anti-calcification and anti-inflammation, indicating the potential of the response sequence matching between materials and tissues after implantation, which might improve performance of biological heart valves.
Collapse
|
50
|
Wang T, Ran R, Ma Y, Zhang M. Polymeric hydrogel as a vitreous substitute: current research, challenges, and future directions. Biomed Mater 2021; 16. [PMID: 34038870 DOI: 10.1088/1748-605x/ac058e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023]
Abstract
Vitreoretinal surgery is an essential approach to treat proliferative diabetic vitreopathy, retinal detachment, retinal tear, ocular trauma, and macular holes. The removal of the natural vitreous and the replacement with substitutes are critical steps for retina reattachment. Vitreous substitutes including silicone oil (SiO), air, sulfur hexafluoride (SF6), and perfluoropropane (C3F8), have been widely applied in clinical practice. However, these substitutes are reported to cause complications such as emulsification, high intraocular pressure, and lens opacification. Polymeric hydrogels are a kind of material with favorable physical, mechanical properties, and adaptable biocompatibility, thus being highly expected to be ideal vitreous substitutes. Despite years of research, very few polymeric hydrogels can be applied practically in the vitreous cavity. In this review, we focus on the development of polymeric natural-based hydrogels and synthetic hydrogels. Particularly, we pay attention to recent advances in the novel stimuli-response and self-assembly supramolecular hydrogels. Characterized by easy injectability and long residence time, this kind of hydrogel becomes the potentially promising candidates for ideal vitreous substitutes. Finally, we evaluate the current challenges and provide the future directions of vitreous substitutes.
Collapse
Affiliation(s)
- Ting Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ruijin Ran
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,Minda Hospital of Hubei Minzu University, Enshi, People's Republic of China
| | - Yan Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|