1
|
Song B, Wang W, Jia C, Han Z, Yang J, Yang J, Wu Z, Xu H, Qiao M. Identification and Characterization of a Predominant Hydrophobin in the Edible Mushroom Grifola frondosa. J Fungi (Basel) 2023; 10:25. [PMID: 38248935 PMCID: PMC10820438 DOI: 10.3390/jof10010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrophobins (HFBs) are a group of small, secreted amphipathic proteins of fungi with multiple physiological functions and potential commercial applications. In this study, HFB genes of the edible mushroom, Grifola frondosa, were systematically identified and characterized, and their transcriptional profiles during fungal development were determined. In total, 19 typical class I HFB genes were discovered and bioinformatically analyzed. Gene expression profile examination showed that Gf.hyd9954 was particularly highly upregulated during primordia formation, suggesting its major role as the predominant HFB in the lifecycle of G. frondosa. The wettability alteration profile and the surface modification ability of recombinant rGf.hyd9954 were greater than for the Grifola HFB HGFII-his. rGf.hyd9954 was also demonstrated to form the typical class I HFB characteristic-rodlet bundles. In addition, rGf.hyd9954 was shown to possess nanoparticle characteristics and emulsification activities. This research sheds light on the regulation of fungal development and its association with the expression of HFB genes.
Collapse
Affiliation(s)
- Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Wenjun Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Chunhui Jia
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Zhiqiang Han
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Jiuxia Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300110, China; (B.S.)
- School of Life Science, Shanxi University, Taiyuan 030000, China
| |
Collapse
|
2
|
Nolle F, Starke LJ, Griffo A, Lienemann M, Jacobs K, Seemann R, Fleury JB, Hub JS, Hähl H. Hydrophobin Bilayer as Water Impermeable Protein Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13790-13800. [PMID: 37726241 PMCID: PMC10552762 DOI: 10.1021/acs.langmuir.3c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/24/2023] [Indexed: 09/21/2023]
Abstract
One of the most important properties of membranes is their permeability to water and other small molecules. A targeted change in permeability allows the passage of molecules to be controlled. Vesicles made of membranes with low water permeability are preferable for drug delivery, for example, because they are more stable and maintain the drug concentration inside. This study reports on the very low water permeability of pure protein membranes composed of a bilayer of the amphiphilic protein hydrophobin HFBI. Using a droplet interface bilayer setup, we demonstrate that HFBI bilayers are essentially impermeable to water. HFBI bilayers withstand far larger osmotic pressures than lipid membranes. Only by disturbing the packing of the proteins in the HFBI bilayer is a measurable water permeability induced. To investigate possible molecular mechanisms causing the near-zero permeability, we used all-atom molecular dynamics simulations of various HFBI bilayer models. The simulations suggest that the experimental HFBI bilayer permeability is compatible neither with a lateral honeycomb structure, as found for HFBI monolayers, nor with a residual oil layer within the bilayer or with a disordered lateral packing similar to the packing in lipid bilayers. These results suggest that the low permeabilities of HFBI and lipid bilayers rely on different mechanisms. With their extremely low but adaptable permeability and high stability, HFBI membranes could be used as an osmotic pressure-insensitive barrier in situations where lipid membranes fail such as desalination membranes.
Collapse
Affiliation(s)
- Friederike Nolle
- Department
of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Leonhard J. Starke
- Department
of Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Alessandra Griffo
- Department
of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
- Max
Planck School, Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
- Max
Planck Institute for Medical Research Heidelberg, 69120 Heidelberg, Germany
| | | | - Karin Jacobs
- Department
of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
- Max
Planck School, Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Ralf Seemann
- Department
of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Jean-Baptiste Fleury
- Department
of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Jochen S. Hub
- Department
of Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Hendrik Hähl
- Department
of Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
3
|
Cell-sized asymmetric phospholipid-amphiphilic protein vesicles with growth, fission, and molecule transportation. iScience 2023; 26:106086. [PMID: 36843838 PMCID: PMC9950948 DOI: 10.1016/j.isci.2023.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
Lipid vesicles, which mimic cell membranes in structure and components, have been used to study the origin of life and artificial cell construction. A different approach to developing cell-mimicking systems focuses on the formation of protein- or polypeptide-based vesicles. However, micro-sized protein vesicles that are similar in membrane dynamics to the cell and that reconstitute membrane proteins are difficult to form. In this study, we generated cell-sized asymmetric phospholipid-amphiphilic protein (oleosin) vesicles that allow the reconstitution of membrane proteins and the growth and fission of vesicles. These vesicles are composed of a lipid membrane on the outer leaflet and an oleosin membrane on the inner leaflet. Further, we elucidated a mechanism for the growth and fission of cell-sized asymmetric phospholipid-oleosin vesicles by feeding phospholipid micelles. Our asymmetric phospholipid-oleosin vesicles with the advantages of the lipid leaflet and the protein leaflet will potentially promote understanding of biochemistry and synthetic biology.
Collapse
|
4
|
Lolicato F, Saleppico R, Griffo A, Meyer A, Scollo F, Pokrandt B, Müller HM, Ewers H, Hähl H, Fleury JB, Seemann R, Hof M, Brügger B, Jacobs K, Vattulainen I, Nickel W. Cholesterol promotes clustering of PI(4,5)P2 driving unconventional secretion of FGF2. J Biophys Biochem Cytol 2022; 221:213511. [PMID: 36173379 PMCID: PMC9526255 DOI: 10.1083/jcb.202106123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
FGF2 is a cell survival factor involved in tumor-induced angiogenesis that is secreted through an unconventional secretory pathway based upon direct protein translocation across the plasma membrane. Here, we demonstrate that both PI(4,5)P2-dependent FGF2 recruitment at the inner plasma membrane leaflet and FGF2 membrane translocation into the extracellular space are positively modulated by cholesterol in living cells. We further revealed cholesterol to enhance FGF2 binding to PI(4,5)P2-containing lipid bilayers. Based on extensive atomistic molecular dynamics (MD) simulations and membrane tension experiments, we proposed cholesterol to modulate FGF2 binding to PI(4,5)P2 by (i) increasing head group visibility of PI(4,5)P2 on the membrane surface, (ii) increasing avidity by cholesterol-induced clustering of PI(4,5)P2 molecules triggering FGF2 oligomerization, and (iii) increasing membrane tension facilitating the formation of lipidic membrane pores. Our findings have general implications for phosphoinositide-dependent protein recruitment to membranes and explain the highly selective targeting of FGF2 toward the plasma membrane, the subcellular site of FGF2 membrane translocation during unconventional secretion of FGF2.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany.,Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Alessandra Griffo
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Annalena Meyer
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Federica Scollo
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Bianca Pokrandt
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | | | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Hendrik Hähl
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | | | - Ralf Seemann
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Martin Hof
- Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Karin Jacobs
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Max Planck School Matter to Life, Heidelberg, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| |
Collapse
|
5
|
Cai F, Zhao Z, Gao R, Chen P, Ding M, Jiang S, Fu Z, Xu P, Chenthamara K, Shen Q, Bayram Akcapinar G, Druzhinina IS. The pleiotropic functions of intracellular hydrophobins in aerial hyphae and fungal spores. PLoS Genet 2021; 17:e1009924. [PMID: 34788288 PMCID: PMC8635391 DOI: 10.1371/journal.pgen.1009924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/01/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins-hydrophobins (HFBs)-that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.
Collapse
Affiliation(s)
- Feng Cai
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Zheng Zhao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Renwei Gao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Peijie Chen
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Mingyue Ding
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Siqi Jiang
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Zhifei Fu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- * E-mail: (QS); (ISD)
| | - Günseli Bayram Akcapinar
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irina S. Druzhinina
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- * E-mail: (QS); (ISD)
| |
Collapse
|
6
|
Effective adsorption of nisin on the surface of polystyrene using hydrophobin HGFI. Int J Biol Macromol 2021; 173:399-408. [PMID: 33454334 DOI: 10.1016/j.ijbiomac.2021.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022]
Abstract
Herein, a new method was demonstrated for effective immobilization of the antibacterial peptide nisin on Grifola frondosa hydrophobin (HGFI), without the need of any additional complex reaction. Hydrophobin can self-assemble as a monolayer to form continuous negative-charged surfaces with enhanced wettability and biocompatibility. Adding nisin solution to such hydrophobin surface created antibacterial surfaces. The quantification analysis revealed that more nisin could be adsorbed on the HGFI-coated than to control polystyrene surfaces at different pH values. This suggested that electronic attraction and wettability may play important roles in this process. The transmission electron microscopy, atomic force microscopy and fourier transform infrared (FTIR) analysis indicated the adsorption mode of nisin on the HGFI film, i.e., hydrophobins served as an adhesive layer for binding charged peptides to interfaces. The antibacterial activity of the treated surface was investigated via counting, a nucleic acid release test, scanning electron microscopy, and biofilm detection. These results indicated the excellent antibacterial activity of nisin adsorbed on the HGFI-coated surfaces. The activity retention of adsorbed nisin was demonstrated by immersing the modified substrates in a flowed liquid condition.
Collapse
|
7
|
Sharma B, Ma Y, Ferguson AL, Liu AP. In search of a novel chassis material for synthetic cells: emergence of synthetic peptide compartment. SOFT MATTER 2020; 16:10769-10780. [PMID: 33179713 DOI: 10.1039/d0sm01644f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Giant lipid vesicles have been used extensively as a synthetic cell model to recapitulate various life-like processes, including in vitro protein synthesis, DNA replication, and cytoskeleton organization. Cell-sized lipid vesicles are mechanically fragile in nature and prone to rupture due to osmotic stress, which limits their usability. Recently, peptide vesicles have been introduced as a synthetic cell model that would potentially overcome the aforementioned limitations. Peptide vesicles are robust, reasonably more stable than lipid vesicles and can withstand harsh conditions including pH, thermal, and osmotic variations. This mini-review summarizes the current state-of-the-art in the design, engineering, and realization of peptide-based chassis materials, including both experimental and computational work. We present an outlook for simulation-aided and data-driven design and experimental realization of engineered and multifunctional synthetic cells.
Collapse
Affiliation(s)
- Bineet Sharma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
8
|
Tawfik H, Puza S, Seemann R, Fleury JB. Transport Properties of Gramicidin A Ion Channel in a Free-Standing Lipid Bilayer Filled With Oil Inclusions. Front Cell Dev Biol 2020; 8:531229. [PMID: 33015051 PMCID: PMC7498540 DOI: 10.3389/fcell.2020.531229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
Ion channels are key proteins in mammalian cell membranes. They have a central role in the physiology of excitable cells such as neurons, muscle, and heart cells. They also play a crucial role in kidney physiology. The gramicidin ion channel is one of the most studied ion channels, in particular it was intensively employed to investigate the lipid–protein interactions in model cell membranes. For example, even though the sequence of gramicidin is extremely hydrophobic, its motion is impaired in membrane bilayer, i.e., it does not rapidly flip to the other membrane leaflet, and low channel activity were observed when gramicidin is added asymmetrically to only one leaflet of a model cell membrane. In this article, we study the transport properties of gramicidin channel in a heterogeneous model membrane. Using microfluidics, we are forming freestanding bilayers as model cell membranes including heterogeneous domains that are created by oil inclusions. The presence of oil inclusions is then demonstrated by measuring the bilayer capacity via a patch-clamp amplifier and fluorescent confocal inspection. Based on electrophysiological and optical measurements Gramicidin A (gA) ion channels are dispersed into the buffer phases on both side of the formed lipid bilayer and insert spontaneously into the bilayer upon formation. The presence of functional Gramicidin A is then demonstrated by measuring conductivity signals. Based on electrophysiological and optical measurements, we explore the consequence of the presence of these oil inclusions on the functionality of incorporated gA ion channels. For low oil concentration, we measure a decrease of gA transport properties due to the reduction of the bilayer tension. For large oil concentration, we measure a saturation of gA transport properties due to an increase of the bilayer thickness.
Collapse
Affiliation(s)
- Harvey Tawfik
- Experimental Physics and Center for Biophysics, Universität des Saarlandes, Saarbrücken, Germany
| | - Sevde Puza
- Experimental Physics and Center for Biophysics, Universität des Saarlandes, Saarbrücken, Germany
| | - Ralf Seemann
- Experimental Physics and Center for Biophysics, Universität des Saarlandes, Saarbrücken, Germany
| | - Jean-Baptiste Fleury
- Experimental Physics and Center for Biophysics, Universität des Saarlandes, Saarbrücken, Germany
| |
Collapse
|
9
|
Zhang H, Yang L, Zhu X, Wang Y, Yang H, Wang Z. A Rapid and Ultrasensitive Thrombin Biosensor Based on a Rationally Designed Trifunctional Protein. Adv Healthc Mater 2020; 9:e2000364. [PMID: 32406199 DOI: 10.1002/adhm.202000364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Rapid and sensitive detection of thrombin is imperative for the early diagnosis, prevention, and treatment of thrombin-related diseases. Here, an ultrasensitive and rapid thrombin biosensor is developed based on rationally designed trifunctional protein HTs, comprising three functional units, including a far-red fluorescent protein smURFP, hydrophobin HGFI, and a thrombin cleavage site (TCS). smURFP is used as a detection signal to eliminate any interference from the autofluorescence of sample matrix to increase detection sensitivity. HGFI serve as an adhesive unit to allow rapid immobilization of HTs on a multiwall plate. The TCS linking HGFI and smURFP function as a sensing element to recognize and detect thrombin. HTs immobilization is symmetrically optimized and characterized. Thrombin assay reveals the specific recognition of active thrombin in samples and the hydrolysis of the immobilized HTs, resulting in a decrease in the fluorescence intensity of the sample in a thrombin concentration-dependent manner. The limit of detection (LOD) is as low as 0.2 am in the serum. To the authors' knowledge, this is the lowest LOD ever reported for any thrombin biosensor. This study sheds light on the engineering of multifunctional proteins for biosensing.
Collapse
Affiliation(s)
- Huayue Zhang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Lu Yang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Xiaqing Zhu
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Yanyan Wang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
| | - Haitao Yang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
- Center for Anti‐Infective Research & DevelopmentTianjin International Joint Academy of Biotechnology and Medicine Tianjin 300457 China
| | - Zefang Wang
- School of Life SciencesTianjin Key Laboratory of Function and Application of Biological Macromolecular StructuresCollege of Precision Instrument and Opto‐Electronics EngineeringTianjin University Tianjin 300072 China
- Center for Anti‐Infective Research & DevelopmentTianjin International Joint Academy of Biotechnology and Medicine Tianjin 300457 China
| |
Collapse
|
10
|
Wang X, Liu X, Huang X. Bioinspired Protein-Based Assembling: Toward Advanced Life-Like Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001436. [PMID: 32374501 DOI: 10.1002/adma.202001436] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The ability of living organisms to perform structure, energy, and information-related processes for molecular self-assembly through compartmentalization and chemical transformation can possibly be mimicked via artificial cell models. Recent progress in the development of various types of functional microcompartmentalized ensembles that can imitate rudimentary aspects of living cells has refocused attention on the important question of how inanimate systems can transition into living matter. Hence, herein, the most recent advances in the construction of protein-bounded microcompartments (proteinosomes), which have been exploited as a versatile synthetic chassis for integrating a wide range of functional components and biochemical machineries, are critically summarized. The techniques developed for fabricating various types of proteinosomes are discussed, focusing on the significance of how chemical information, substance transportation, enzymatic-reaction-based metabolism, and self-organization can be integrated and recursively exploited in constructed ensembles. Therefore, proteinosomes capable of exhibiting gene-directed protein synthesis, modulated membrane permeability, spatially confined membrane-gated catalytic reaction, internalized cytoskeletal-like matrix assembly, on-demand compartmentalization, and predatory-like chemical communication in artificial cell communities are specially highlighted. These developments are expected to bridge the gap between materials science and life science, and offer a theoretical foundation for developing life-inspired assembled materials toward various applications.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
11
|
Hähl H, Griffo A, Safaridehkohneh N, Heppe J, Backes S, Lienemann M, Linder MB, Santen L, Laaksonen P, Jacobs K. Dynamic Assembly of Class II Hydrophobins from T. reesei at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9202-9212. [PMID: 31268722 DOI: 10.1021/acs.langmuir.9b01078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Class II hydrophobins are amphiphilic proteins produced by filamentous fungi. One of their typical features is the tendency to accumulate at the interface between an aqueous phase and a hydrophobic phase, such as the air-water interface. The kinetics of the interfacial self-assembly of wild-type hydrophobins HFBI and HFBII and some of their engineered variants at the air-water interface were measured by monitoring the accumulated mass at the interface via nondestructive ellipsometry measurements. The resulting mass vs time curves revealed unusual kinetics for a monolayer formation that did not follow a typical Langmuir-type of behavior but had a rather coverage-independent rate instead. Typically, the full surface coverage was obtained at masses corresponding to a monolayer. The formation of multilayers was not observed. Atomic force microscopy revealed formation and growth of non-fusing protein clusters at the interface. The mechanism of the adsorption was studied by varying the structure or charges of the protein or the ionic strength of the subphase, revealing that the lateral interactions between the hydrophobins play a role in their interfacial assembly. Additionally, a theoretical model was introduced to identify the underlying mechanism of the unconventional adsorption kinetics.
Collapse
Affiliation(s)
| | - Alessandra Griffo
- Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
| | | | | | - Sebastian Backes
- Federal Institute for Material Research and Testing (BAM) , Unter den Eichen 87 , 12205 Berlin , Germany
| | - Michael Lienemann
- VTT Technical Research Centre of Finland Ltd. , Espoo 02150 , Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
| | | | - Päivi Laaksonen
- Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
- HAMK Tech, Häme University of Applied Sciences , P.O. Box 230, Hämeenlinna 13101 , Finland
| | | |
Collapse
|
12
|
Hille‐Rehfeld A. Die Hydrophobine der Pilze – Vielzweckproteine mit Anwendungspotential. CHEM UNSERER ZEIT 2019. [DOI: 10.1002/ciuz.201800881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Patel BB, Sharifi F, Stroud DP, Montazami R, Hashemi NN, Sakaguchi DS. 3D Microfibrous Scaffolds Selectively Promotes Proliferation and Glial Differentiation of Adult Neural Stem Cells: A Platform to Tune Cellular Behavior in Neural Tissue Engineering. Macromol Biosci 2018; 19:e1800236. [DOI: 10.1002/mabi.201800236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/28/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Bhavika B. Patel
- Department of Genetics Development, and Cell Biology and Neuroscience Program Iowa State University Ames IA 50011 USA
| | - Farrokh Sharifi
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Daniel P. Stroud
- Department of Genetics Development, and Cell Biology, Biology Program Iowa State University Ames IA 50011 USA
| | - Reza Montazami
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Nicole N. Hashemi
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Department of Genetics Development, and Cell Biology and Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development, and Cell Biology, Biology Program Iowa State University Ames IA 50011 USA
| |
Collapse
|
14
|
Hähl H, Vargas JN, Jung M, Griffo A, Laaksonen P, Lienemann M, Jacobs K, Seemann R, Fleury JB. Adhesion Properties of Freestanding Hydrophobin Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8542-8549. [PMID: 29886739 DOI: 10.1021/acs.langmuir.8b00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrophobins are a family of small-sized proteins featuring a distinct hydrophobic patch on the protein's surface, rendering them amphiphilic. This particularity allows hydrophobins to self-assemble into monolayers at any hydrophilic/hydrophobic interface. Moreover, stable pure protein bilayers can be created from two interfacial hydrophobin monolayers by contacting either their hydrophobic or their hydrophilic sides. In this study, this is achieved via a microfluidic approach, in which also the bilayers' adhesion energy can be determined. This enables us to study the origin of the adhesion of hydrophobic and hydrophilic core bilayers made from the class II hydrophobins HFBI and HFBII. Using different fluid media in this setup and introducing genetically modified variants of the HFBI molecule, the different force contributions to the adhesion of the bilayer sheets are studied. It was found that in the hydrophilic contact situation, the adhesive interaction was higher than that in the hydrophobic contact situation and could be even enhanced by reducing the contributions of electrostatic interactions. This effect indicates that the van der Waals interaction is the dominant contribution that explains the stability of the observed bilayers.
Collapse
Affiliation(s)
- Hendrik Hähl
- Department of Experimental Physics and Center for Biophysics , Saarland University , D-66123 Saarbrücken , Germany
| | - Jose Nabor Vargas
- Department of Experimental Physics and Center for Biophysics , Saarland University , D-66123 Saarbrücken , Germany
| | - Michael Jung
- Department of Experimental Physics and Center for Biophysics , Saarland University , D-66123 Saarbrücken , Germany
| | - Alessandra Griffo
- Department of Bioproducts and Biosystems BIO2 , Aalto University , P.O. Box 16100, 00076 Aalto , Finland
| | - Päivi Laaksonen
- Department of Bioproducts and Biosystems BIO2 , Aalto University , P.O. Box 16100, 00076 Aalto , Finland
| | - Michael Lienemann
- VTT Technical Research Centre of Finland Ltd. , Tietotie 2 , 02150 Espoo , Finland
| | - Karin Jacobs
- Department of Experimental Physics and Center for Biophysics , Saarland University , D-66123 Saarbrücken , Germany
| | - Ralf Seemann
- Department of Experimental Physics and Center for Biophysics , Saarland University , D-66123 Saarbrücken , Germany
| | - Jean-Baptiste Fleury
- Department of Experimental Physics and Center for Biophysics , Saarland University , D-66123 Saarbrücken , Germany
| |
Collapse
|
15
|
Abraham T, Mao M, Tan C. Engineering approaches of smart, bio-inspired vesicles for biomedical applications. Phys Biol 2018; 15:061001. [DOI: 10.1088/1478-3975/aac7a2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Xiao Y, Zhang Q, Wang Y, Wang B, Sun F, Han Z, Feng Y, Yang H, Meng S, Wang Z. Dual-functional protein for one-step production of a soluble and targeted fluorescent dye. Theranostics 2018; 8:3111-3125. [PMID: 29896306 PMCID: PMC5996361 DOI: 10.7150/thno.24613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/17/2018] [Indexed: 01/17/2023] Open
Abstract
Low water solubility and poor selectivity are two fundamental limitations that compromise applications of near-infrared (NIR) fluorescent probes. Methods: Here, a simple strategy that can resolve these problems simultaneously was developed by using a novel hybrid protein named RGD-HFBI that is produced by fusion of hydrophobin HFBI and arginine-glycine-aspartic acid (RGD) peptide. This unique hybrid protein inherits self-assembly and targeting functions from HFBI and RGD peptide respectively. Results: Boron-dipyrromethene (BODIPY) used as a model NIR dye can be efficiently dispersed in the RGD-HFBI solution by simple mixing and sonication for 30 min. The data shows that self-assembled RGD-HFBI forms a protein nanocage by using the BODIPY as the assembly template. Cell uptake assay proves that RGD-HFBI/BODIPY can efficiently stain αvβ3 integrin-positive cancer cells. Finally, in vivo affinity tests fully demonstrate that the soluble RGD-HFBI/BODIPY complex selectively targets and labels tumor sites of tumor-bearing mice due to the high selectivity of the RGD peptide. Conclusion: Our one-step strategy using dual-functional RGD-HFBI opens a novel route to generate soluble and targeted NIR fluorescent dyes in a very simple and efficient way and may be developed as a general strategy to broaden their applications.
Collapse
Affiliation(s)
- Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Qian Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Bin Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Fengnan Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ziyu Han
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yaqing Feng
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Shuxian Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
17
|
Dao T, Fauquignon M, Fernandes F, Ibarboure E, Vax A, Prieto M, Le Meins J. Membrane properties of giant polymer and lipid vesicles obtained by electroformation and pva gel-assisted hydration methods. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Griffo A, Hähl H, Grandthyll S, Müller F, Paananen A, Ilmén M, Szilvay GR, Landowski CP, Penttilä M, Jacobs K, Laaksonen P. Single-Molecule Force Spectroscopy Study on Modular Resilin Fusion Protein. ACS OMEGA 2017; 2:6906-6915. [PMID: 31457277 PMCID: PMC6644949 DOI: 10.1021/acsomega.7b01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/26/2017] [Indexed: 05/05/2023]
Abstract
The adhesive and mechanical properties of a modular fusion protein consisting of two different types of binding units linked together via a flexible resilin-like-polypeptide domain are quantified. The adhesive domains have been constructed from fungal cellulose-binding modules (CBMs) and an amphiphilic hydrophobin HFBI. This study is carried out by single-molecule force spectroscopy, which enables stretching of single molecules. The fusion proteins are designed to self-assemble on the cellulose surface, leading into the submonolayer of proteins having the HFBI pointing away from the surface. A hydrophobic atomic force microscopy (AFM) tip can be employed for contacting and lifting the single fusion protein from the HFBI-functionalized terminus by the hydrophobic interaction between the tip surface and the hydrophobic patch of the HFBI. The work of rupture, contour length at rupture and the adhesion forces of the amphiphilic end domains are evaluated under aqueous environment at different pHs.
Collapse
Affiliation(s)
- Alessandra Griffo
- Department
of Bioproducts and Biosystems BIO, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Hendrik Hähl
- Department
of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Samuel Grandthyll
- Department
of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Frank Müller
- Department
of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Arja Paananen
- VTT
Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Marja Ilmén
- VTT
Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Géza R. Szilvay
- VTT
Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 Espoo, Finland
| | | | - Merja Penttilä
- Department
of Bioproducts and Biosystems BIO, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- VTT
Technical Research Centre of Finland, Tietotie 2, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Karin Jacobs
- Department
of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Päivi Laaksonen
- Department
of Bioproducts and Biosystems BIO, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
19
|
Kamiya K, Takeuchi S. Giant liposome formation toward the synthesis of well-defined artificial cells. J Mater Chem B 2017; 5:5911-5923. [DOI: 10.1039/c7tb01322a] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on microfluidic technologies for giant liposome formations which emulate environments of biological cells.
Collapse
Affiliation(s)
- Koki Kamiya
- Artificial Cell Membrane Systems Group
- Kanagawa Institute of Industrial Science and Technology
- Kawasaki
- Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group
- Kanagawa Institute of Industrial Science and Technology
- Kawasaki
- Japan
- Institute of Industrial Science
| |
Collapse
|