1
|
Lan H, Wang L, He R, Huang S, Yu J, Guo J, Luo J, Li Y, Zhang J, Lin J, Zhang S, Zeng M, Fu L. 2D quasi-layered material with domino structure. Nat Commun 2023; 14:7225. [PMID: 37940641 PMCID: PMC10632391 DOI: 10.1038/s41467-023-42818-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Interlayer coupling strength dichotomizes two-dimensional (2D) materials into layered and non-layered types. Traditionally, they can be regarded as atomic layers intrinsically linked via van der Waals (vdW) forces or covalent bonds, oriented orthogonally to their growth plane. In our work, we report a material system that differentiates from layered and non-layered materials, termed quasi-layered domino-structured (QLDS) materials, effectively bridging the gap between these two typical categories. Considering the skewed structure, the force orthogonal to the 2D QLDS-GaTe growth plane constitutes a synergistic blend of vdW forces and covalent bonds, with neither of them being perpendicular to the 2D growth plane. This unique amalgamation results in a force that surpasses that in layered materials, yet is weaker than that in non-layered materials. Therefore, the lattice constant contraction along this unique orientation can be as much as 7.7%, tantalizingly close to the theoretical prediction of 10.8%. Meanwhile, this feature endows remarkable anisotropy, second harmonic generation enhancement with a staggering susceptibility of 394.3 pm V-1. These findings endow further applications arranged in nonlinear optics, sensors, and catalysis.
Collapse
Affiliation(s)
- Haihui Lan
- The Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Luyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Runze He
- The Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China
| | - Shuyi Huang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Jinqiu Yu
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Jinming Guo
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, 430062, Wuhan, China
| | - Jingrui Luo
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Yiling Li
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Jinyang Zhang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, 430062, Wuhan, China
| | - Jiaxin Lin
- School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Shunping Zhang
- School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China.
| | - Lei Fu
- The Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China.
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
2
|
Yang W, Nocera A, Tummuru T, Kee HY, Affleck I. Phase Diagram of the Spin-1/2 Kitaev-Gamma Chain and Emergent SU(2) Symmetry. PHYSICAL REVIEW LETTERS 2020; 124:147205. [PMID: 32338963 DOI: 10.1103/physrevlett.124.147205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
We study the phase diagram of a one-dimensional version of the Kitaev spin-1/2 model with an extra "Γ term," using analytical, density matrix renormalization group and exact diagonalization methods. Two intriguing phases are found. In the gapless phase, although the exact symmetry group of the system is discrete, the low energy theory is described by an emergent SU(2)_{1} Wess-Zumino-Witten (WZW) model. On the other hand, the spin-spin correlation functions exhibit SU(2) breaking prefactors, even though the exponents and the logarithmic corrections are consistent with the SU(2)_{1} predictions. A modified non-Abelian bosonization formula is proposed to capture such exotic emergent "partial" SU(2) symmetry. In the ordered phase, there is numerical evidence for an O_{h}→D_{4} spontaneous symmetry breaking.
Collapse
Affiliation(s)
- Wang Yang
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Alberto Nocera
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Tarun Tummuru
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hae-Young Kee
- Department of Physics, University of Toronto, Ontario M5S 1A7, Canada
| | - Ian Affleck
- Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Interfacial charge-transfer Mott state in iridate-nickelate superlattices. Proc Natl Acad Sci U S A 2019; 116:19863-19868. [PMID: 31527227 DOI: 10.1073/pnas.1907043116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigate [Formula: see text]/[Formula: see text] superlattices in which we observe a full electron transfer at the interface from Ir to Ni, triggering a massive structural and electronic reconstruction. Through experimental characterization and first-principles calculations, we determine that a large crystal field splitting from the distorted interfacial [Formula: see text] octahedra surprisingly dominates over the spin-orbit coupling and together with the Hund's coupling results in the high-spin (S = 1) configurations on both the Ir and Ni sites. This demonstrates the power of interfacial charge transfer in coupling lattice, charge, orbital, and spin degrees of freedom, opening fresh avenues of investigation of quantum states in oxide superlattices.
Collapse
|
4
|
Meyers D, Cao Y, Fabbris G, Robinson NJ, Hao L, Frederick C, Traynor N, Yang J, Lin J, Upton MH, Casa D, Kim JW, Gog T, Karapetrova E, Choi Y, Haskel D, Ryan PJ, Horak L, Liu X, Liu J, Dean MPM. Magnetism in iridate heterostructures leveraged by structural distortions. Sci Rep 2019; 9:4263. [PMID: 30862782 PMCID: PMC6414659 DOI: 10.1038/s41598-019-39422-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
Fundamental control of magnetic coupling through heterostructure morphology is a prerequisite for rational engineering of magnetic ground states. We report the tuning of magnetic interactions in superlattices composed of single and bilayers of SrIrO3 inter-spaced with SrTiO3 in analogy to the Ruddlesden-Popper series iridates. Magnetic scattering shows predominately c-axis antiferromagnetic orientation of the magnetic moments for the bilayer, as in Sr3Ir2O7. However, the magnetic excitation gap, measured by resonant inelastic x-ray scattering, is quite different between the two structures, evidencing a significant change in the stability of the competing magnetic phases. In contrast, the single layer iridate hosts a more bulk-like gap. We find these changes are driven by bending of the c-axis Ir-O-Ir bond, which is much weaker in the single layer, and subsequent local environment changes, evidenced through x-ray diffraction and magnetic excitation modeling. Our findings demonstrate how large changes in the magnetic interactions can be tailored and probed in spin-orbit coupled heterostructures by engineering subtle structural modulations.
Collapse
Affiliation(s)
- D Meyers
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA.
| | - Yue Cao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - G Fabbris
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Neil J Robinson
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Lin Hao
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - C Frederick
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - N Traynor
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - J Yang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Jiaqi Lin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - M H Upton
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - D Casa
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - Jong-Woo Kim
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - T Gog
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - E Karapetrova
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - D Haskel
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - P J Ryan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA.,School of Physical Sciences, Dublin City University, Dublin 9, Ireland
| | - Lukas Horak
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 3, Prague, 12116, Czech Republic
| | - X Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, 37996, USA.
| | - M P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA.
| |
Collapse
|
5
|
Liu X, Hersam MC. Interface Characterization and Control of 2D Materials and Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801586. [PMID: 30039558 DOI: 10.1002/adma.201801586] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/09/2018] [Indexed: 05/28/2023]
Abstract
2D materials and heterostructures have attracted significant attention for a variety of nanoelectronic and optoelectronic applications. At the atomically thin limit, the material characteristics and functionalities are dominated by surface chemistry and interface coupling. Therefore, methods for comprehensively characterizing and precisely controlling surfaces and interfaces are required to realize the full technological potential of 2D materials. Here, the surface and interface properties that govern the performance of 2D materials are introduced. Then the experimental approaches that resolve surface and interface phenomena down to the atomic scale, as well as strategies that allow tuning and optimization of interfacial interactions in van der Waals heterostructures, are systematically reviewed. Finally, a future outlook that delineates the remaining challenges and opportunities for 2D material interface characterization and control is presented.
Collapse
Affiliation(s)
- Xiaolong Liu
- Applied Physics Graduate Program, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208-3108, USA
| | - Mark C Hersam
- Applied Physics Graduate Program, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208-3108, USA
- Department of Materials Science and Engineering, Department of Chemistry, Department of Medicine, Department of Electrical Engineering and Computer Science, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208-3108, USA
| |
Collapse
|
6
|
Wang L, Kim R, Kim Y, Kim CH, Hwang S, Cho MR, Shin YJ, Das S, Kim JR, Kalinin SV, Kim M, Yang SM, Noh TW. Electronic-Reconstruction-Enhanced Tunneling Conductance at Terrace Edges of Ultrathin Oxide Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702001. [PMID: 29024168 DOI: 10.1002/adma.201702001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic-device applications. In the few-nanometers-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO3 films as a model system, an intrinsic tunneling-conductance enhancement is reported near the terrace edges. Scanning-probe-microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First-principles calculations suggest that the terrace-edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling-conductance enhancement can be discovered in other transition metal oxides and controlled by surface-termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases.
Collapse
Affiliation(s)
- Lingfei Wang
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rokyeon Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonkoo Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choong H Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwoon Hwang
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myung Rae Cho
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeong Jae Shin
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Saikat Das
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Rae Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sergei V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Miyoung Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Mo Yang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Physics, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|