1
|
Hu Y, Liu D, Lu YB, Wang H, Wu Z, Bao H, Zou R, Jiang X, Cong WY, Guan C. Unravelling the mechanism of temperature modulated exciton binding energy for MAPbBr 3 perovskites. Phys Chem Chem Phys 2024; 26:22982-22989. [PMID: 39171568 DOI: 10.1039/d4cp01681e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The excitonic effect significantly influences the optoelectronic characteristics of halide perovskites. However, consensus on the temperature modulated exciton binding energy remains elusive, even for extensively studied materials like MAPbBr3 perovskites. In this study, we utilized UV-vis absorption spectra and the Elliott model to extract the exciton binding energies of MAPbBr3 in the range of 170-290 K. Elliott model fitted results reveal a linear increasing trend in bandgap and exciton binding energy for both cubic and tetragonal phases with temperature, with the tetragonal phase exhibiting a higher increasing rate. Additionally, we found that regardless of the temperature, the strongest absorption peaks are always dominated by the exciton absorption, and our fitted exciton absorption peak blue-shifts with the increase of temperature, accounting for the observed blue-shift of the strongest absorption peak for our fabricated MAPbBr3 sample. However, with the increase of temperature, the weight of continuum state absorption increases significantly, which widens the absorption tails to the longer wavelength, leading to the red-shift of Tauc-plotted optical bandgaps. This is the first work considering the temperature-modulated excitonic properties of halide perovskites, which offers valuable insights into the behavior of MAPbBr3 under varying temperature conditions. After a series of theoretical simulations on the temperature modulated electronic properties, including band structures, carrier effective masses, optical dielectric properties and Born effective charges, we provide rational interpretations for the experimentally observed temperature induced variation of the optical properties. These works are helpful to deepen our understanding of the temperature modulated optical properties of MAPbBr3 perovskites.
Collapse
Affiliation(s)
- Yanzhuo Hu
- Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209, China.
- School of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Dong Liu
- Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209, China.
- School of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Ying-Bo Lu
- Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209, China.
- School of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Hao Wang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhongchen Wu
- Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209, China.
- School of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Hexin Bao
- School of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Ruijie Zou
- School of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Xianyuan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Yan Cong
- School of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Chengbo Guan
- School of Space Science and Physics, Shandong University, Weihai 264209, China
| |
Collapse
|
2
|
Xie H, Chen S, Yang X, Pan Q, Xue T, Zhang Z, Hu Y, Chi J, Cheng L, Chen B, Song Y, Su M. Printed On-Chip Perovskite Heterostructure Arrays for Optical Switchable Logic Gates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404740. [PMID: 38853487 DOI: 10.1002/adma.202404740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/26/2024] [Indexed: 06/11/2024]
Abstract
The use of optoelectronic devices for high-speed and low-power data transmission and computing is considered in the next-generation logic circuits. Heterostructures, which can generate and transmit photoresponse signals dealing with different input lights, are highly desirable for optoelectronic logic gates. Here, the printed on-chip perovskite heterostructures are demonstrated to achieve optical-controlled "AND" and "OR" optoelectronic logic gates. Perovskite heterostructures are printed with a high degree of control over composition, site, and crystallization. Different regions of the printed perovskite heterostructures exhibit distinguishable photoresponse to varied wavelengths of input lights, which can be utilized to achieve optical-controlled logic functions. Correspondingly, parallel operations of the two logic gates ("AND" and "OR") by way of choosing the output electrodes under the single perovskite heterostructure. Benefiting from the uniform crystallization and strict alignment of the printed perovskite heterostructures, the integrated 3 × 3 pixels all exhibit 100% logic operation accuracy. Finally, optical-controlled logic gates responding to multiwavelength light can be printed on the predesigned microelectrodes as the on-chip integrated circuits. This printing strategy allows for integrating heterostructure-based optical and electronic devices from a unit-scale device to a system-scale device.
Collapse
Affiliation(s)
- Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Sisi Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Qi Pan
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Tangyue Xue
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Yuming Hu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Jimei Chi
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Lijun Cheng
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Chen Q, Ding Z, Zhang L, Wang D, Geng C, Feng Y, Zhang J, Ren M, Li S, Qaid SMH, Jiang Y, Yuan M. Uniaxial-Oriented Chiral Perovskite for Flexible Full-Stokes Polarimeter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400493. [PMID: 38733358 DOI: 10.1002/adma.202400493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/24/2024] [Indexed: 05/13/2024]
Abstract
Full-Stokes polarization detection, with high integration and portability, offers an efficient path toward next-gen multi-information optoelectronic systems. Nevertheless, current techniques relying on optical filters create rigid and bulky configurations, limiting practicality. Here, a flexible, filter-less full-Stokes polarimeter featuring a uniaxial-oriented chiral perovskite film is first reported. It is found that, the strategic manipulation of the surfactant-mediated Marangoni effect during blade coating, is crucial for guiding an equilibrious mass transport to achieve oriented crystallization. Through this approach, the obtained uniaxial-oriented chiral perovskite films inherently possess anisotropy and chirality, and thereby with desired sensitivity to both linearly polarized light and circularly polarized light vectors. The uniaxial-oriented crystalline structure also improves photodetection, achieving a specific detectivity of 5.23 × 1013 Jones, surpassing non-oriented devices by 10×. The as-fabricated flexible polarimeters enable accurate capture of full-Stokes polarization without optical filters, exhibiting slight detection errors for the Stokes parameters: ΔS1 = 9.2%, ΔS2 = 8.6%, and ΔS3 = 6.5%, approaching the detection accuracy of optics-filter polarimeters. This proof of concept also demonstrates applications in matrix polarization imaging.
Collapse
Affiliation(s)
- Quanlin Chen
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zijin Ding
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Li Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Di Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Cong Geng
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yanxing Feng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jia Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Miao Ren
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Saisai Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Saif M H Qaid
- Department of Physics & Astronomy, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yuanzhi Jiang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Mingjian Yuan
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
4
|
Lu X, Li J, Zhang Y, Zhang L, Chen H, Zou Y, Zeng H. Template-Confined Oriented Perovskite Nanowire Arrays Enable Polarization Detection and Imaging. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38709639 DOI: 10.1021/acsami.4c04455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polarized light detection can effectively identify the difference between the polarization information on the target and the background, which is of great significance for detection in complex natural environments and/or extreme weather. Generally, polarized light detection inevitably relies on anisotropic structures of photodetector devices, while organic-inorganic hybrid perovskites are ideal for anisotropic patterning due to their simple and efficient preparation by solution method. Compared to patterned thin films, patterned arrays of aligned one-dimensional (1D) perovskite nanowires (PNWAs) have fewer grain boundaries and lower defect densities, making them well suited for high-performance polarization-sensitive photodetectors. Here, we fabricated PNWAs crystallographically aligned with variable line widths and alignment densities employing CD-ROM and DVD-ROM grating pattern template-confined growth (TCG) methods. The photodetectors constructed from MAPbI3 PNWAs achieved responsivity of 35.01 A/W, detectivity of 6.85 × 1013 Jones, and fast response with a rise time of 172 μs and fall time of 114 μs. They were successfully applied to high-performance polarization detection with a polarization ratio of 1.81, potentially applicable in polarized light detection systems.
Collapse
Affiliation(s)
- Xingyu Lu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junyu Li
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yichi Zhang
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Li Zhang
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huanyang Chen
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yousheng Zou
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haibo Zeng
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Zhang Y, Yang S, Wang W, Zhang S, Wang Z, Niu Z, Guo Y, Li G, Li R, Hu W. Molecularly Thin 2D Organic Single Crystals: A New Platform for High-Performance Polarization-Sensitive Phototransistors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38657128 DOI: 10.1021/acsami.3c17868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The inherent linear dichroism (LD), high absorption, and solution processability of organic semiconductors hold immense potential to revolutionize polarized light detection. However, the disordered molecular packing inherent to polycrystalline thin films obscures their intrinsic diattenuation, resulting in diminished polarization sensitivity. In this study, we develop filter-free organic polarization-sensitive phototransistors (PSPs) with both a high linear dichroic ratio (LDR) and exceptional photosensitivity utilizing molecularly thin dithieno[3,2-b:2',3'-d]thiophene derivatives (DTT-8) two-dimensional molecular crystals (2DMCs) as the active layer. The orderly molecular packing in 2DMCs amplifies the inherent LD, and their molecular-scale thickness enables complete channel depletion, significantly reducing the dark current. As a result, PSPs with an impressive LDR of 3.15 and a photosensitivity reaching 3.02 × 106 are obtained. These findings present a practical demonstration of using the polarization angle as an encryption key in optical communication, showcasing the potential of 2DMCs as a viable and promising category of semiconductors for filter-free, polarization-sensitive photodetectors.
Collapse
Affiliation(s)
- Yu Zhang
- Ji Hua Laboratory, Foshan, Guangdong 52800, China
| | - Shuyuan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wei Wang
- Ji Hua Laboratory, Foshan, Guangdong 52800, China
| | - Siyuan Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhaofeng Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhikai Niu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yangwu Guo
- Ji Hua Laboratory, Foshan, Guangdong 52800, China
| | - Geng Li
- China Rare Earth Group Research Institute, Ganzhou, Jiangxi 341000, China
- National Supercomputer Center in Tianjin, Tianjin 300457, China
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
6
|
Sun J, Ding L. A Polarization-Sensitive Photodetector with Patterned CH 3NH 3PbCl 3 Film. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308583. [PMID: 38032157 DOI: 10.1002/smll.202308583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Perovskite photodetectors with polarization-sensitive properties have gained significant attention due to their potential applications in fields such as imaging and remote sensing. Most perovskite photodetectors concentrate on iodine (I) or bromine (Br)-based materials, primarily due to their straightforward fabrication techniques. The utilization of chloride (Cl)-based perovskites with wider bandgaps, such as CH3NH3PbCl3, is relatively limited. In this work, polarized perovskite photodetectors are prepared by a patterned spatially confined method with polarization sensitivity and excellent optoelectronic properties. The patterned perovskite photodetectors (PP-PDs) not only exhibit outstanding photoelectric conversion performance but also demonstrate polarization sensitivity. PP-PDs showcase remarkable performance, including on/off ratios of 3.4 × 104, an extremely low dark current of 1.56 × 10-11 A, and a rapid response time of microseconds. The responsivity and detectivity of PP-PDs reach 10.6 A W-1 and 3 × 1012 Jones, respectively, positioning them as among the highest-performing MAPbCl3-based photodetectors reported to date. Furthermore, polarization layered imaging sensing is achieved using stepwise scanning of the device. This work provides innovative ideas for realizing high-performance polarized perovskite photodetectors.
Collapse
Affiliation(s)
- Jie Sun
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
7
|
Zhao J, Liu Q, Du Q, Zheng X, Wang W, Qin S. Sensitive organic/inorganic polarized photodetectors enhanced by charge transfer with image sensing capacity. OPTICS EXPRESS 2024; 32:12636-12644. [PMID: 38571081 DOI: 10.1364/oe.519556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Organic photodetectors (OPDs) have attracted increasing attention in the future wearable sensing and real-time health monitoring, due to their intrinsic features including the mechanical flexibility, low-cost processing and cooling-free operations; while their performances are lagging as the results of inferior carrier mobility and small exciton diffusion coefficient of organic molecules. Graphene exhibits the great photoresponse with wide spectral bandwidth and high response speed. However, weak light absorption and the absence of a gain mechanism have limited its photoresponsivity. Here, we report a sensitive organic/inorganic phototransistor with fast response speed by coupling PTCDA organic single crystal with the monolayer graphene. The long range exciton diffusion in highly ordered π-conjugated molecules, efficient exciton dissociation and charge transfer at the PTCDA/graphene heterointerfaces, and the high mobility of graphene enable a high responsivity (8 × 104A/W), short response time (220 µs) and excellent specific detectivity (>1011 Jones), which is higher than the level of commercial on-chip device. This interfacial photogating effect is verified by the high-resolution spatial photocurrent mapping experiment. In addition, the high sensitivity to polarization is clear and the ultrahigh photoconductive gain enables a near-infrared (NIR) response for 980 and 1550 nm. Finally, high-speed visible and NIR imaging applications are successfully demonstrated. This work suggests that high quality organic single crystal/graphene is a promising platform for future high performance optoelectronic systems and imaging applications.
Collapse
|
8
|
Zhang ZH, Yan SS, Chen YL, Lian ZD, Fu A, Kong YC, Li L, Su SC, Ng KW, Wei ZP, Liu HC, Wang SP. Air-Stable Self-Driven UV Photodetectors on Controllable Lead-Free CsCu 2I 3 Microwire Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10398-10406. [PMID: 38380978 PMCID: PMC10910456 DOI: 10.1021/acsami.3c17881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
The rapid evolution of the Internet of Things has engendered increased requirements for low-cost, self-powered UV photodetectors. Herein, high-performance self-driven UV photodetectors are fabricated by designing asymmetric metal-semiconductor-metal structures on the high-quality large-area CsCu2I3 microwire arrays. The asymmetrical depletion region doubles the photocurrent and response speed compared to the symmetric structure device, leading to a high responsivity of 233 mA/W to 355 nm radiation. Notably, at 0 V bias, the asymmetric device produces an open-circuit voltage of 356 mV and drives to a short-circuit current of 372 pA; meanwhile, the switch ratio (Iph/Idark) reaches up to 103, indicating its excellent potential for detecting weak light. Furthermore, the device maintains stable responses throughout 10000 UV-light switch cycles, with negligible degradation even after 90-day storage in air. Our work establishes that CsCu2I3 is a good candidate for self-powered UV detection and thoroughly demonstrates its potential as a passive device.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- State
Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Shan-Shan Yan
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Yu-Long Chen
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Zhen-Dong Lian
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Ai Fu
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - You-Chao Kong
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Lin Li
- Key
Laboratory for Photonic and Electronic Bandgap Materials, Ministry
of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Shi-Chen Su
- School
of Semiconductor Science and Technology, South China Normal University, Foshan 528000, China
| | - Kar-Wei Ng
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Zhi-Peng Wei
- State
Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China
| | - Hong-Chao Liu
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Shuang-Peng Wang
- Institute
of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| |
Collapse
|
9
|
Xin W, Zhong W, Shi Y, Shi Y, Jing J, Xu T, Guo J, Liu W, Li Y, Liang Z, Xin X, Cheng J, Hu W, Xu H, Liu Y. Low-Dimensional-Materials-Based Photodetectors for Next-Generation Polarized Detection and Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306772. [PMID: 37661841 DOI: 10.1002/adma.202306772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Indexed: 09/05/2023]
Abstract
The vector characteristics of light and the vectorial transformations during its transmission lay a foundation for polarized photodetection of objects, which broadens the applications of related detectors in complex environments. With the breakthrough of low-dimensional materials (LDMs) in optics and electronics over the past few years, the combination of these novel LDMs and traditional working modes is expected to bring new development opportunities in this field. Here, the state-of-the-art progress of LDMs, as polarization-sensitive components in polarized photodetection and even the imaging, is the main focus, with emphasis on the relationship between traditional working principle of polarized photodetectors (PPs) and photoresponse mechanisms of LDMs. Particularly, from the view of constitutive equations, the existing works are reorganized, reclassified, and reviewed. Perspectives on the opportunities and challenges are also discussed. It is hoped that this work can provide a more general overview in the use of LDMs in this field, sorting out the way of related devices for "more than Moore" or even the "beyond Moore" research.
Collapse
Affiliation(s)
- Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Weiheng Zhong
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yujie Shi
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yimeng Shi
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jiawei Jing
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Tengfei Xu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Jiaxiang Guo
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Weizhen Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yuanzheng Li
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhongzhu Liang
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Xing Xin
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jinluo Cheng
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
10
|
Feng J, Qiu Y, Gao H, Wu Y. Crystal Self-Assembly under Confinement: Bridging Nanomaterials to Integrated Devices. Acc Chem Res 2024; 57:222-233. [PMID: 38170611 DOI: 10.1021/acs.accounts.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
ConspectusSelf-assembly, a spontaneous process that organizes disordered constituents into ordered structures, has revolutionized our fundamental understanding of living matter, nanotechnology, and molecular science. From the perspective of nanomaterials, self-assembly serves as a bottom-up method for creating long-range-ordered materials. This is accomplished by tailoring the geometry, chemistry, and interactions of the components, thereby facilitating the efficient fabrication of high-quality materials and high-performance functional devices. Over the past few decades, we have seen controllable organization and diverse phases in self-assembled materials, such as organic crystals, biomolecular structures, and colloidal nanoparticle supercrystals. However, most self-assembled ordered materials and their assembly mechanisms are derived from constituents in a liquid bulk medium, where the effects of boundaries and interfaces are negligible. In the context of nanostructure patterning, self-assembly occurs in confined spaces, with feature sizes ranging from a few to hundreds of nanometers. In such settings, ubiquitous boundaries and interfaces can trap the system in a kinetically favored but metastable state, devoid of long-range order. This makes it extremely difficult to achieve ordered structures in micro/nano-patterning techniques that rely on sessile microdroplets, such as inkjet printing, dip-pen lithography, and contact printing.In stark contrast to sessile droplets, capillary bridges─formed by liquids confined between two solid surfaces─provide unique opportunities for understanding the long-range-ordered self-assembly of crystalline materials under spatial confinement. Because capillary bridges are stabilized by Laplace pressure, which is inversely proportional to the feature size, the confinement and manipulation of solutions or suspensions of functional materials at the nanoscale become accessible through the rational design of surface chemistry and geometry. Although global thermodynamic equilibrium is unattainable in evaporative systems, ordered nucleation and packing of constituent components can be locally realized at the contact line of capillary bridges. This enables the unprecedented fabrication of long-range-ordered micro/nanostructures with deterministic patterns.In this Account, we review the advancements in long-range-ordered self-assembly of crystalline micro/nanostructures under confinement. First, we briefly introduce crystalline materials characterized by strong intramolecular interactions and relatively weak intermolecular forces, analyzing both the opportunities and challenges inherent to self-assembled nanomaterials. Next, we delve into the construction and manipulation of confined liquids, focusing especially on capillary bridges controlled by engineered chemistry and geometry to regulate Laplace pressure. Through this approach, we have achieved capillary bridges with thicknesses on the order of a few nanometers and wafer-scale homogeneity, facilitating the self-assembly of ordered structures. Supported by factors such as local free-volume entropy, electrostatic interactions, curvilinear geometry, directional microfluidics, and nanoconfinement, we have achieved long-range-ordered, deterministic patterning of organic semiconductors, metal-halide perovskites, and colloidal nanocrystal superlattices using this capillary-bridge platform. These long-range microstructures serve as a bridge between nanomaterials and integrated devices, enabling emergent functionalities like intrinsic stretchability, giant photoconductivity, propagating and interacting exciton polaritons, and spin-valley-locked lasing, which are otherwise unattainable in disordered materials. Finally, we discuss potential directions for both the fundamental understanding and practical applications of confined self-assembly.
Collapse
Affiliation(s)
- Jiangang Feng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yuchen Qiu
- College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Hanfei Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
11
|
Gui P, Sun Y, Yang L, Xia Z, Wang S, Wang Z, Chen Z, Zeng W, Ren X, Wang S, Fang G. Surface Microstructure Engineering in MAPbBr 3 Microsheets for Performance-Enhanced Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59955-59963. [PMID: 38085577 DOI: 10.1021/acsami.3c15029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Metal halide-perovskite-based photodetectors have recently emerged as a class of promising optoelectronic devices in various fields. Meanwhile, nano/microstructuring perovskite-based photodetectors are a facile integration with complementary metal-oxide semiconductors for miniaturized imaging systems. However, there are still challenges to be overcome in reducing the losses caused by light reflection on the surface of microstructural perovskites. In this work, surface microstructure engineering is employed in MAPbBr3 microsheets for reducing light reflection and improving light absorption, resulting in high-performance perovskite photodetectors. MAPbBr3 microsheets, which possess different surface morphologies of flat, upright hemisphere arrays and inverted hemisphere arrays (IHAs), are fabricated by a simple microstructure template-assisted space confinement process. The light absorption capacity of IHA MAPbBr3 is significantly higher than that of the other two structures. Hence, IHA photodetectors with excellent figures of merit, including low dark current, decent responsivity, and fast speed, are achieved. Furthermore, the noise of the IHA photodetectors is only ∼10-13 A/H z , which results in the superior sensitivity for weak light detection with a specific detectivity up to 1011 Jones. Our results demonstrate that surface engineering is a simple, low-cost, yet effective approach to improve the performance of nano-/micro-optoelectronic devices.
Collapse
Affiliation(s)
- Pengbin Gui
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Yanming Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Liangpan Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Zhaosheng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Shuxin Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Zhouyin Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Zhiliang Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Wei Zeng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Xingang Ren
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Siliang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronic and Information Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Guojia Fang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
12
|
Huang Z, Tan W, Ma P, Yan L, Si J, Hou X. Visualization of Hot Carrier Dynamics in a Single CsPbBr 3 Perovskite Microplate Using Femtosecond Kerr-Gated Wide-Field Fluorescence Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2701. [PMID: 37836342 PMCID: PMC10574326 DOI: 10.3390/nano13192701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Lead halide perovskites (LHPs) have excellent semiconductor properties. They have been used in many applications such as solar cells. Recently, the hot carrier dynamics in this type of material have received much attention as they are useful for enhancing the performance of optoelectrical devices fabricated from it. Here, we study the ultrafast hot carrier dynamics of a single CsPbBr3 microplate using femtosecond Kerr-gated wide-field fluorescence spectroscopy. The transient photoluminescence spectra have been measured under a variety of excitation fluences. The temporal evolution of bandgap renormalization and the competition between hot carrier cooling and the recovery of the renormalized bandgap are clearly revealed.
Collapse
Affiliation(s)
| | - Wenjiang Tan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shannxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, 28 Xianning Road, Xi’an 710049, China
| | | | | | | | | |
Collapse
|
13
|
Zhang T, Bai Y, Feng S, Xue Q, Hu X, Xu X, Liu H, Luponosov YN, Niazi MBK, Li X. Mechanical milling processed highly luminescent Cs-Pb-Br perovskite emitters. Chem Commun (Camb) 2023; 59:11827-11830. [PMID: 37712301 DOI: 10.1039/d3cc01345f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
We report well-dispersed highly emitting perovskite emitters synthesized via the surfactant-assisted ball-milling method. Both the emitting peaks and the colour purity of the synthesized perovskite emitters can be effectively tuned through additive functionalization and precursor engineering.
Collapse
Affiliation(s)
- Teng Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| | - Youru Bai
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| | - Shaohuan Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| | - Qifan Xue
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Xiaotian Hu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xueqing Xu
- Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Heyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| | - Yuriy N Luponosov
- Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Moscow 117393, Russia
| | - Muhammad Bilal Khan Niazi
- School of Chemical & Materials Engineering, National University of Sciences & Technology, Islamabad, Pakistan
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China.
| |
Collapse
|
14
|
Meng Y, Zhong H, Xu Z, He T, Kim JS, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q, Bae SH. Functionalizing nanophotonic structures with 2D van der Waals materials. NANOSCALE HORIZONS 2023; 8:1345-1365. [PMID: 37608742 DOI: 10.1039/d3nh00246b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Hongkun Zhong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zhihao Xu
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tiantian He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Justin S Kim
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Sunok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Seoungwoong Park
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yijie Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Optoelectronics Research Centre, University of Southampton, Southampton, UK
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
15
|
Lu C, Dai Q, Tang C, Wang X, Xu S, Sun L, Peng Y, Lv W. Towards high photoresponse of perovskite nanowire/copper phthalocyanine heterostructured photodetector. NANOTECHNOLOGY 2023; 34:495201. [PMID: 37647872 DOI: 10.1088/1361-6528/acf502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
One-dimensional nanowire structures composed of perovskite are widely recognized for their exceptional optoelectronic performance and mechanical properties, making them a popular area of investigation in photodetection research. In this work, a perovskite nanowire/copper phthalocyanine heterojunction-based photodetector was fabricated, which exhibits high photoresponse in the visible-near-infrared region. The incorporation of a heterojunction significantly enhanced the photoelectric performance. Specifically, the photoresponsivity and external quantum efficiency of the nanowire-based device were elevated from 58.5 A W-1and 1.35 × 104% to 84.5 A W-1and 1.97 × 104% at 532 nm, respectively. The enhanced photoresponse of the heterojunction device can be attributed to the unique microstructure of nanowire arrays. The wrapping of the nanowires by copper phthalocyanine forms heterojunctions with a larger dissociation area, which facilitated exciton dissociation and enhanced device performance. This work provides a promising example for optimizing the performance of nanowire devices.
Collapse
Affiliation(s)
- Chengyu Lu
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Qinyong Dai
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, People's Republic of China
| | - Chenyu Tang
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Xinyu Wang
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Sunan Xu
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Lei Sun
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| | - Yingquan Peng
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
- Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou, People's Republic of China
| | - Wenli Lv
- Institute of Microelectronics, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, People's Republic of China
| |
Collapse
|
16
|
Du GW, Xiong YA, Pan Q, Feng ZJ, Cao XX, Yao J, Gu ZX, Lu J, You YM. Revealing the Polarizations of Molecular Ferroelectrics via SHG Polarimetry at the Nanoscale. NANO LETTERS 2023; 23:7419-7426. [PMID: 37539988 DOI: 10.1021/acs.nanolett.3c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Multifarious molecular ferroelectrics with multipolar axial characteristics have emerged in recent years, enriching the scenarios for energy harvesting, sensing, and information processing. The increased polar axes have enhanced the urgency of distinguishing different polarization states in material design, mechanism exploration, etc. However, conventional methods hardly meet the requirements of in situ, fast, microscale, contactless, and nondestructive features due to their inherent limitations. Herein, SHG polarimetry is introduced to probe the multioriented polarizations on a nanosized multiaxial molecular ferroelectric, i.e., TMCM-CdCl3 nanoplates, as an example. Combined with the analysis of the second-order susceptibility tensor, SHG polarimetry could serve as an effective method to detect the polarization orders and domain distributions of molecular ferroelectrics. Profiting from the full-optical feature, SHG polarimetry can even be performed on samples covered by transparent mediums, 2D materials, or thin metal electrodes. Our research might spark further fundamental studies and expand the application boundaries of next-generation ferroelectric materials.
Collapse
Affiliation(s)
- Guo-Wei Du
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiao-Xing Cao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Jie Yao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhu-Xiao Gu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Junpeng Lu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
17
|
Zhao Y, Yin X, Li P, Ren Z, Gu Z, Zhang Y, Song Y. Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation. NANO-MICRO LETTERS 2023; 15:187. [PMID: 37515723 PMCID: PMC10387041 DOI: 10.1007/s40820-023-01161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/02/2023] [Indexed: 07/31/2023]
Abstract
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
Collapse
Affiliation(s)
- Yingjie Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xing Yin
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Pengwei Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Ziqiu Ren
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhenkun Gu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Yiqiang Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yanlin Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, People's Republic of China.
| |
Collapse
|
18
|
Sun J, Ding L. Linearly Polarization-Sensitive Perovskite Photodetectors. NANO-MICRO LETTERS 2023; 15:90. [PMID: 37029229 PMCID: PMC10082144 DOI: 10.1007/s40820-023-01048-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 05/30/2023]
Abstract
Polarization is an exceptional physical property of light that carries and differentiates a significant amount of optical information. Perovskite materials are utilized in polarization-sensitive photodetectors owing to their crystal structure anisotropy and controllable orientation growth, in addition to their excellent photovoltaic performance. This paper presents an overview of the structural characteristics and photovoltaic performance of different optical structures and low-dimensional perovskite polarization photodetectors. This summary will contribute to the future development of perovskite-based photodetectors that are sensitive to polarization.
Collapse
Affiliation(s)
- Jie Sun
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China.
| |
Collapse
|
19
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
20
|
Liu H, Liu D, Yang J, Gao H, Wu Y. Flexible Electronics Based on Organic Semiconductors: from Patterned Assembly to Integrated Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206938. [PMID: 36642796 DOI: 10.1002/smll.202206938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Organic flexible electronic devices are at the forefront of the electronics as they possess the potential to bring about a major lifestyle revolution owing to outstanding properties of organic semiconductors, including solution processability, lightweight and flexibility. For the integration of organic flexible electronics, the precise patterning and ordered assembly of organic semiconductors have attracted wide attention and gained rapid developments, which not only reduces the charge crosstalk between adjacent devices, but also enhances device uniformity and reproducibility. This review focuses on recent advances in the design, patterned assembly of organic semiconductors, and flexible electronic devices, especially for flexible organic field-effect transistors (FOFETs) and their multifunctional applications. First, typical organic semiconductor materials and material design methods are introduced. Based on these organic materials with not only superior mechanical properties but also high carrier mobility, patterned assembly strategies on flexible substrates, including one-step and two-step approaches are discussed. Advanced applications of flexible electronic devices based on organic semiconductor patterns are then highlighted. Finally, future challenges and possible directions in the field to motivate the development of the next generation of flexible electronics are proposed.
Collapse
Affiliation(s)
- Haoran Liu
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
| | - Dong Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Junchuan Yang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hanfei Gao
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
| | - Yuchen Wu
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
21
|
Li SX, Xia H, Liu TY, Zhu H, Feng JC, An Y, Zhang XL, Sun HB. In Situ Encapsulated Moiré Perovskite for Stable Photodetectors with Ultrahigh Polarization Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207771. [PMID: 36341484 DOI: 10.1002/adma.202207771] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Nanostructures provide a simple, effective, and low-cost route to enhance the light-trapping capability of optoelectronic devices. In recent years, nano-optical structures have been widely used in perovskite optoelectronic devices to greatly enhance the device performance. However, the inherent instability of perovskite materials hinders the practical application of these nanostructured optoelectronic devices. Here, in situ encapsulated moiré lattice perovskite photodetectors (PDs) by two nanograting-structured soft templates with relative rotation angles is fabricated. The confinement growth of the two nanograting templates leads to crystal growth with moiré lattice structure, which improves the light-harvesting ability of the perovskite crystal, thereby improving the device performance. The PD exhibits responsivity to 1026.5 A W-1 . The Moiré lattice-perovskite-based PD maintained 95% of the initial performance after 223 days. After being continuously sprayed with water moist for 180 min, the performance is maintained at 95.7% of its initial level. The nanograting structure endows the device with high polarization sensitivity of Imax /Imin as high as 9.1.
Collapse
Affiliation(s)
- Shun-Xin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hong Xia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Tian-Yu Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - He Zhu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jia-Cheng Feng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yang An
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xu-Lin Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- State Key Laboratory of Precision Measurement Technology & Instruments, Department of Precision Instrument, Tsinghua University, Haidian district, Beijing, 100084, China
| |
Collapse
|
22
|
Anisotropic charge trapping in phototransistors unlocks ultrasensitive polarimetry for bionic navigation. Nat Commun 2022; 13:6629. [PMID: 36333339 PMCID: PMC9636252 DOI: 10.1038/s41467-022-34421-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Being able to probe the polarization states of light is crucial for applications from medical diagnostics and intelligent recognition to information encryption and bio-inspired navigation. Current state-of-the-art polarimeters based on anisotropic semiconductors enable direct linear dichroism photodetection without the need for bulky and complex external optics. However, their polarization sensitivity is restricted by the inherent optical anisotropy, leading to low dichroic ratios of typically smaller than ten. Here, we unveil an effective and general strategy to achieve more than 2,000-fold enhanced polarization sensitivity by exploiting an anisotropic charge trapping effect in organic phototransistors. The polarization-dependent trapping of photogenerated charge carriers provides an anisotropic photo-induced gate bias for current amplification, which has resulted in a record-high dichroic ratio of >104, reaching over the extinction ratios of commercial polarizers. These findings further enable the demonstration of an on-chip polarizer-free bionic celestial compass for skylight-based polarization navigation. Our results offer a fundamental design principle and an effective route for the development of next-generation highly polarization-sensitive optoelectronics.
Collapse
|
23
|
Lv Q, Zheng M, Wang XD, Liao LS. Low-Dimensional Organic Crystals: From Precise Synthesis to Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203961. [PMID: 36057992 DOI: 10.1002/smll.202203961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Low-dimensional organic crystals (LOCs) have attracted increasing attention recently for their potential applications in miniaturized optoelectronics and integrated photonics. Such applications are possible owing to their tunable physicochemical properties and excellent charge/photon transport features. As a result, the precise synthesis of LOCs has been examined in terms of morphology modulation, large-area pattern arrays, and complex architectures, and this has led to a series of appealing structure-dependent properties for future optoelectronic applications. This review summarizes the recent advances in the precise synthesis of LOCs in addition to discussing their structure-property relationships in the context of optoelectronic applications. It also presents the current challenges related to organic crystals with specific structures and desired performances, and the outlook regarding their use in next-generation integrated optoelectronic applications.
Collapse
Affiliation(s)
- Qiang Lv
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Min Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
24
|
Xie H, Pan Q, Wu D, Qin F, Chen S, Sun W, Yang X, Chen S, Wu T, Chi J, Huang Z, Wang H, Zhang Z, Chen B, Carmeliet J, Su M, Song Y. Lateral Heterostructured Vis-NIR Photodetectors with Multimodal Detection for Rapid and Precise Classification of Glioma. ACS NANO 2022; 16:16563-16573. [PMID: 36201316 DOI: 10.1021/acsnano.2c06004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Precise diagnosis of the boundary and grade of tumors is especially important for surgical dissection. Recently, visible and near-infrared (Vis-NIR) absorption differences of tumors are demonstrated for a precise tumor diagnosis. Here, a template-assisted sequential printing strategy is investigated to construct lateral heterostructured Vis-NIR photodetectors, relying on the up-conversion nanoparticles (UCNPs)/perovskite arrays. Under the sequential printing process, the synergistic effect and co-confinement are demonstrated to induce the UCNPs to cover both sides of the perovskite microwire. The side-wrapped lateral heterogeneous UCNPs/perovskite structure exhibits more satisfactory responsiveness to Vis-NIR light than the common fully wrapped structure, due to sufficient visible-light-harvesting ability. The Vis-NIR photodetectors with R reaching 150 mA W-1 at 980 nm and 1084 A W-1 at 450 nm are employed for the rapid classification of glioma. The detection accuracy rate of 99.3% is achieved through a multimodal analysis covering the Vis-NIR light, which provides a reliable basis for glioma grade diagnosis. This work provides a concrete example for the application of photodetectors in tumor detection and surgical diagnosis.
Collapse
Affiliation(s)
- Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
| | - Dongdong Wu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing100853, China
- Medical School of Chinese PLA Hospital, Beijing100853, China
| | - Feifei Qin
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zürich8092, Switzerland
| | - Shuoran Chen
- Research Center for Green Printing Nanophotonic Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wei Sun
- Institute of Software, Chinese Academy of Sciences, Beijing100049, China
| | - Xu Yang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Sisi Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Tingqing Wu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jimei Chi
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zengqi Huang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jan Carmeliet
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology in Zürich (ETH Zürich), Zürich8092, Switzerland
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
25
|
Zhang X, Yao Y, Liang L, Niu X, Wu J, Luo J. Self-Assembly of 2D Hybrid Double Perovskites on 3D Cs 2 AgBiBr 6 Crystals towards Ultrasensitive Detection of Weak Polarized Light. Angew Chem Int Ed Engl 2022; 61:e202205939. [PMID: 35654743 DOI: 10.1002/anie.202205939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 12/22/2022]
Abstract
We report the self-assembly of 2D double perovskite (BLA)2 CsAgBiBr7 (BLA=benzylammonium) on 3D Cs2 AgBiBr6 crystals, providing the first demonstration of polarization-sensitive photodetection using lead-free double perovskite heterocrystals (HCs). The (BLA)2 CsAgBiBr7 /Cs2 AgBiBr6 HC successfully combines the anisotropy of 2D double perovskites with the well-defined interface provided by heterogeneous integration. Driven by the built-in electric field in junction, photodetectors of HCs exhibit unique polarization dependence of zero-bias photocurrent with a large anisotropy ratio up to 9, which is 6 times amplified as compared to the pristine 2D (BLA)2 CsAgBiBr7 . More importantly, the present devices can remain polarization-sensitive with incident light intensity down to the nW cm-2 level. Our study on lead-free hybrid perovskite HCs marks a step toward establishing robust material foundations for fundamental scientific investigations and the development of optoelectronic devices.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunpeng Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Lishan Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xinyi Niu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jianbo Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Zhang X, Yao Y, Liang L, Niu X, Wu J, Luo J. Self‐Assembly of 2D Hybrid Double Perovskites on 3D Cs2AgBiBr6 Crystals towards Ultrasensitive Detection of Weak Polarized Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinyuan Zhang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Yunpeng Yao
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Lishan Liang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Xinyi Niu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Jianbo Wu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Junhua Luo
- Chinese Academy of Sciences Crystalline Materials Yangqiao West Rd #155 350002 Fuzhou CHINA
| |
Collapse
|
27
|
Luo X, Zhang X, Jiang L. 仿生超浸润界面材料与界面化学. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Zou C, Liu Q, Chen K, Chen F, Zhao Z, Cao Y, Deng C, Wang X, Li X, Zhan S, Gao F, Li S. A high-performance polarization-sensitive and stable self-powered UV photodetector based on a dendritic crystal lead-free metal-halide CsCu 2I 3/GaN heterostructure. MATERIALS HORIZONS 2022; 9:1479-1488. [PMID: 35262131 DOI: 10.1039/d1mh02073k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polarization-sensitive photodetectors are the core of optics applications and have been successfully demonstrated in photodetectors based on the newly-emerging metal-halide perovskites. However, achieving high polarization sensitivity is still extremely challenging. In addition, most of the previously reported photodetectors were concentrated on 1D lead-halide perovskites and 2D asymmetric intrinsic structure materials, but suffered from being external bias driven, lead-toxicity, poor stability and complex processes, severely limiting their practical applications. Here, we demonstrate a high-performance polarization-sensitive and stable polarization-sensitive UV photodetector based on a dendritic crystal lead-free metal-halide CsCu2I3/GaN heterostructure. By combining the anisotropic morphology and asymmetric intrinsic structure of CsCu2I3 dendrites with the isotropic material GaN film, a high specific surface area and built-in electric field are achieved, exhibiting an ultra-high polarization selectivity up to 28.7 and 102.8 under self-driving mode and -3 V bias, respectively. To our knowledge, such a high polarization selectivity has exceeded those of all of the reported perovskite-based devices, and is comparable to, or even superior to, those of the conventional 2D heterostructure materials. Interestingly, the unsealed device shows outstanding stability, and can be stored for over 2 months, and effectively maintained the performance even after repeated heating (373K)-cooling (300K) for different periods of time in ambient air, indicating a remarkable temperature tolerance and desired compatibility for applications under harsh conditions. Such excellent performance and simple method strongly show that the CsCu2I3/GaN heterojunction photodetector has great potential in practical applications with high polarization-sensitivity. This work provides a new insight into designing novel high-performance polarization-sensitive optoelectronic devices.
Collapse
Affiliation(s)
- Can Zou
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Qing Liu
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Kai Chen
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Fei Chen
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Zixuan Zhao
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Yunxuan Cao
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Congcong Deng
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Xingfu Wang
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Xiaohang Li
- King Abdullah University of Science and Technology (KAUST), Advanced Semiconductor Laboratory, Thuwal 23955, Saudi Arabia
| | - Shaobin Zhan
- Shenzhen Institute of Information Technology, Innovation and Entrepreneurship School, Shenzhen, 518172, P. R. China.
| | - Fangliang Gao
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Shuti Li
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
- 21C Innovation Laboratory, Contemporary Amperex Technology Ltd, Ningde, Fujian, 352100, P. R. China.
| |
Collapse
|
29
|
Feng J, Qiu Y, Jiang L, Wu Y. Long-Range-Ordered Assembly of Micro-/Nanostructures at Superwetting Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106857. [PMID: 34908188 DOI: 10.1002/adma.202106857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
On-chip integration of solution-processable materials imposes stringent and simultaneous requirements of controlled nucleation and growth, tunable geometry and dimensions, and long-range-ordered assembly, which is challenging in solution process far from thermodynamic equilibrium. Superwetting interfaces, underpinned by programmable surface chemistry and topography, are promising for steering transport, dewetting, and microfluid dynamics of liquids, thus opening a new paradigm for micro-/nanostructure assembly in solution process. Herein, assembly methods on the basis of superwetting interfaces are reviewed for constructing long-range-ordered micro-/nanostructures. Confined capillary liquids, including capillary bridges and capillary corner menisci realized by controlling local wettability and surface topography, are highlighted for simultaneously attained deterministic patterning and long-range order. The versatility and robustness of confined capillary liquids are discussed with assembly of single-crystalline micro-/nanostructures of organic semiconductors, metal-halide perovskites, and colloidal-nanoparticle superlattices, which lead to enhanced device performances and exotic functionalities. Finally, a perspective for promising directions in this realm is provided.
Collapse
Affiliation(s)
- Jiangang Feng
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Department of Chemical and Biomolecular Sciences, National University of Singapore, Singapore, 117585, Singapore
| | - Yuchen Qiu
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
30
|
Li CY, Chen C, Liu Y, Su J, Qi DX, He J, Fan RH, Cai Q, Li Q, Peng R, Huang XR, Wang M. Multiple-polarization-sensitive photodetector based on a perovskite metasurface. OPTICS LETTERS 2022; 47:565-568. [PMID: 35103672 DOI: 10.1364/ol.441505] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Most polarization-sensitive photodetectors detect either linearly polarized (LP) or circularly polarized (CP) light. Here, we experimentally demonstrate a multiple-polarization photodetector based on a hybrid organic-inorganic perovskite (HOIP) metasurface, which is sensitive to both LP and CP light simultaneously. The perovskite metasurface is composed of a HOIP antenna array on a single-crystal HOIP film. Owing to the antenna anisotropy, the absorption of linearly polarized light at the metasurface depends on the polarization angle; also, due to the mirror asymmetry of the antenna elements, the metasurface is also sensitive to different circular polarizations. Polarization-dependent photocurrent responses to both LP and CP light are detected. Our results highlight the potential of perovskite metasurfaces for integrated photoelectric applications.
Collapse
|
31
|
M A G, Rahman A. Phase evolution of all-inorganic perovskite nanowires during its growth from quantum dots. NANOTECHNOLOGY 2021; 33:085706. [PMID: 34753118 DOI: 10.1088/1361-6528/ac37e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
All-inorganic lead-halide perovskites have emerged as an exciting material owing to their excellent optoelectronic properties and high stability over hybrid organometallic perovskites. Nanowires of these materials, in particular, have shown great promise for optoelectronic applications due to their high optical absorption coefficient and low defect state density. However, the synthesis of the most promising alpha-Cesium lead iodide (α-CsPbI3) nanowires is challenging as it is metastable and spontaneously converts to a non-perovskiteδ-phase. The hot-injection method is one of the most facile, well-controlled, and commonly used approaches for synthesizing CsPbX3nanostructures. But the exact mechanism of growing these nanowires in this technique is not clear. Here, we show that the hot-injection method produces photoactive phases of quantum dots (QDs) and nanowires of CsPbBr3,and QDs of CsPbI3, but CsPbI3nanowires are grown in their non-perovskiteδ-phase. Monitoring the nanowire growth during the hot-injection technique and through detailed characterization, we establish that CsPbI3nanowires are formed in the non-perovskite phase from the beginning rather than transforming after its growth from perovskite to a non-perovskite phase. We have discussed a possible mechanism of how non-perovskite nanowires of CsPbI3grow at the expense of photoactive perovskite QDs. Our findings will help to synthesize nanostructures of all-inorganic perovskites with desired phases, which is essential for successful technological applications.
Collapse
Affiliation(s)
- Gokul M A
- Department of Physics, Indian Institute for Science Education and Research (IISER)-Pune, Dr Homi Bhabha Road, Pune-411008, India
| | - Atikur Rahman
- Department of Physics, Indian Institute for Science Education and Research (IISER)-Pune, Dr Homi Bhabha Road, Pune-411008, India
| |
Collapse
|
32
|
Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient. Nat Commun 2021; 12:7038. [PMID: 34857751 PMCID: PMC8640044 DOI: 10.1038/s41467-021-27370-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 11/05/2021] [Indexed: 11/09/2022] Open
Abstract
Organic semiconducting polymers have opened a new paradigm for soft electronics due to their intrinsic flexibility and solution processibility. However, the contradiction between the mechanical stretchability and electronic performances restricts the implementation of high-mobility polymers with rigid molecular backbone in deformable devices. Here, we report the realization of high mobility and stretchability on curvilinear polymer microstructures fabricated by capillary-gradient assembly method. Curvilinear polymer microstructure arrays are fabricated with highly ordered molecular packing, controllable pattern, and wafer-scale homogeneity, leading to hole mobilities of 4.3 and 2.6 cm2 V-1 s-1 under zero and 100% strain, respectively. Fully stretchable field-effect transistors and logic circuits can be integrated in solution process. Long-range homogeneity is demonstrated with the narrow distribution of height, width, mobility, on-off ratio and threshold voltage across a four-inch wafer. This solution-assembly method provides a platform for wafer-scale and reproducible integration of high-performance soft electronic devices and circuits based on organic semiconductors.
Collapse
|
33
|
Wang Z, Jiang X, Huang K, Ning L, Zhang J, Zhang F, Yang J, Wu Y, Chen X, Yi Y, Shi X, Chen Y, Wang S. A Bioinspired Adhesive-Integrated-Agent Strategy for Constructing Robust Gas-Sensing Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106067. [PMID: 34633120 DOI: 10.1002/adma.202106067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Gas sensors based on organic molecules are attractive for their tailored molecular structures and controllable functions, but weak interfacial adhesion between sensing materials and supporting substrates has severely hampered their practical applications, particularly in harsh environments. Here, inspired by the combined anchoring-recognizing feature of natural olfactory systems, an adhesive-integrated-agent strategy to integrate the adhesive unit (poly(dimethylsiloxane)) with the sensing unit (organoplatinum(II)) into one chemistry entity, creating robust and sensitive nanobelt array gas sensors is demonstrated. Systematic theoretical and experimental studies reveal that incorporating adhesive units significantly enhances the interfacial adhesion of the array sensors and gas-bridged super-exchange electronic couplings of sensing units ensure their efficient gas-sensing performance. The high shear strength of ≈7.05 × 106 N m-2 allows these arrays to resist aggressive ultrasonication, tape peeling, or repeated bending without compromising their sensing performance. This molecular engineering strategy opens a new guideline to develop robust gas sensors.
Collapse
Affiliation(s)
- Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangyu Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Ji Hua Laboratory, Foshan, 528000, P. R. China
| | - Kang Huang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Laboratory of Theoretical and Computational Nanoscience, Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lu Ning
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqi Zhang
- Laboratory of Theoretical and Computational Nanoscience, Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feilong Zhang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiangong Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuchen Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuanping Yi
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xinghua Shi
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Laboratory of Theoretical and Computational Nanoscience, Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yong Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Feng J, Wang J, Fieramosca A, Bao R, Zhao J, Su R, Peng Y, Liew TCH, Sanvitto D, Xiong Q. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. SCIENCE ADVANCES 2021; 7:eabj6627. [PMID: 34757800 PMCID: PMC8580323 DOI: 10.1126/sciadv.abj6627] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ultrafast all-optical switches and integrated circuits call for giant optical nonlinearity to minimize energy consumption and footprint. Exciton polaritons underpin intrinsic strong nonlinear interactions and high-speed propagation in solids, thus affording an intriguing platform for all-optical devices. However, semiconductors sustaining stable exciton polaritons at room temperature usually exhibit restricted nonlinearity and/or propagation properties. Delocalized and strongly interacting Wannier-Mott excitons in metal halide perovskites highlight their advantages in integrated nonlinear optical devices. Here, we report all-optical switching by using propagating and strongly interacting exciton-polariton fluids in self-assembled CsPbBr3 microwires. Strong polariton-polariton interactions and extended polariton fluids with a propagation length of around 25 μm have been reached. All-optical switching on/off of polariton propagation can be realized in picosecond time scale by locally blue-shifting the dispersion with interacting polaritons. The all-optical switching, together with the scalable self-assembly method, highlights promising applications of solution-processed perovskites toward integrated photonics operating in strong coupling regime.
Collapse
Affiliation(s)
- Jiangang Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Corresponding author. (Q.X.); (J.F.)
| | - Jun Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Antonio Fieramosca
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Ruiqi Bao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jiaxin Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yutian Peng
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Timothy C. H. Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Daniele Sanvitto
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China
- Corresponding author. (Q.X.); (J.F.)
| |
Collapse
|
35
|
Ran W, Ren Z, Wang P, Yan Y, Zhao K, Li L, Li Z, Wang L, Yang J, Wei Z, Lou Z, Shen G. Integrated polarization-sensitive amplification system for digital information transmission. Nat Commun 2021; 12:6476. [PMID: 34753933 PMCID: PMC8578569 DOI: 10.1038/s41467-021-26919-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/22/2021] [Indexed: 12/03/2022] Open
Abstract
Polarized light can provide significant information about objects, and can be used as information carrier in communication systems through artificial modulation. However, traditional polarized light detection systems integrate polarizers and various functional circuits in addition to detectors, and are supplemented by complex encoding and decoding algorithms. Although the in-plane anisotropy of low-dimensional materials can be utilized to manufacture polarization-sensitive photodetectors without polarizers, the low anisotropic photocurrent ratio makes it impossible to realize digital output of polarized information. In this study, we propose an integrated polarization-sensitive amplification system by introducing a nanowire polarized photodetector and organic semiconductor transistors, which can boost the polarization sensitivity from 1.24 to 375. Especially, integrated systems are universal in that the systems can increase the anisotropic photocurrent ratio of any low-dimensional material corresponding to the polarized light. Consequently, a simple digital polarized light communication system can be realized based on this integrated system, which achieves certain information disguising and confidentiality effects.
Collapse
Affiliation(s)
- Wenhao Ran
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Ren
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongxu Yan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linlin Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhexin Li
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zheng Lou
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guozhen Shen
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Liu Z, Zhang C, Liu X, Ren A, Zhou Z, Qiao C, Guan Y, Fan Y, Hu F, Zhao YS. Chiral Hybrid Perovskite Single-Crystal Nanowire Arrays for High-Performance Circularly Polarized Light Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102065. [PMID: 34561964 PMCID: PMC8564458 DOI: 10.1002/advs.202102065] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/20/2021] [Indexed: 06/09/2023]
Abstract
Circularly polarized light (CPL) detection has emerged as a key technology for various optoelectronics. Chiral hybrid perovskites (CHPs) that combine CPL-sensitive absorption induced by chiral organic ligands and superior photoelectric properties of perovskites are promising candidates for direct CPL detection. To date, most of the CHP detectors are made up of polycrystalline thin-film, which results in a rather limited discrimination of CPL due to the existence of redundant impurities and intrinsic defect states originating from rapid crystallization process. Here, it is developed a direct CPL detector with high photocurrent and polarization selectivity based on low-defect CHP single-crystal nanowire arrays. Large-scale CHP nanowires are obtained through a micropillar template-assisted capillary-bridge rise approach. Thanks to the high crystallinity and ordered crystallographic alignment of these arrays, a CPL photodetector with high light on/off ratio of 1.8 × 104 , excellent responsivity of 1.4 A W-1 , and an outstanding anisotropy factor of 0.24 for photocurrent has been achieved. These results would provide useful enlightenment for direct CPL detection in high-performance chiral optoelectronics.
Collapse
Affiliation(s)
- Zhen Liu
- College of ChemistryBeijing Normal UniversityBeijing100875China
| | - Chunhuan Zhang
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Xiaolong Liu
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ang Ren
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhonghao Zhou
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Chan Qiao
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuwei Guan
- College of ChemistryBeijing Normal UniversityBeijing100875China
| | - Yuqing Fan
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Fengqin Hu
- College of ChemistryBeijing Normal UniversityBeijing100875China
| | - Yong Sheng Zhao
- Key Laboratory of PhotochemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
37
|
Zhang W, Hong M, Luo J. Centimeter-Sized Single Crystal of a One-Dimensional Lead-Free Mixed-Cation Perovskite Ferroelectric for Highly Polarization Sensitive Photodetection. J Am Chem Soc 2021; 143:16758-16767. [PMID: 34606262 DOI: 10.1021/jacs.1c08281] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Linear dichroic anisotropic photonic materials are highly attractive due to their great potentials in many applications, which in combination with the ferroelectric properties could broaden their research and applications. However, to date, the linear dichroism conversion phenomenon has not been observed in one-dimensional (1D) large-size single-crystal materials: in particular, lead-free perovskite ferroelectric crystals. Here, we propose a new ferroelectric design strategy: namely, partial organic cation substitution for precisely designing 1D polarization-sensitive perovskite ferroelectrics. As an example, the 1D mixed-cation perovskite ferroelectric (n-propylammonium)(methylammonium)SbBr5 was synthesized, which exhibits a fascinating ferroelectricity with a notable reversible polarization of 2.9 μC/cm2 and a large ferroelectricity-driven polarization ratio of 6.9. Importantly, the single-crystalline photodetectors also exhibit superior optoelectronic anisotropic performances at the paraelectric phase, having a large photoelectric anisotropy ratio (∼35), an excellent polarization-sensitive dichroism ratio (∼1.31), highly sensitive detectivity up to ∼109 Jones, and a fast response rate (∼45/68 μs). This finding provides a significant and effective pathway for the targeted design of new functional lead-free linear dichroic anisotropic photonic ferroelectrics.
Collapse
Affiliation(s)
- Weichuan Zhang
- CAS Key Laboratory of Nanosystem and Hierachical Fabrication CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.,State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
38
|
Mandal A, Ghosh A, Ghosh D, Bhattacharyya S. Photodetectors with High Responsivity by Thickness Tunable Mixed Halide Perovskite Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43104-43114. [PMID: 34482693 DOI: 10.1021/acsami.1c13452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical transformation of typically "nonlayered" phases into two-dimensional structures remains a formidable task. Among the thickness tunable CsPbX3 (X = Br, Br/I, I) nanosheets (NSs), CsPbBr1.5I1.5 NSs with a thickness of ∼4.9 nm have structural stability superior to ∼6.8 nm CsPbI3 NSs and better hole mobility than ∼3.7 nm CsPbBr3 NSs. Moving beyond the much-explored CsPbBr3 photodetectors, we demonstrate a sharp improvement of the photodetection of CsPbBr1.5I1.5 NS devices by thickening the NSs to ∼6.1 nm through combining 8-carbon and 18-carbon ligand surfactants. Thereby, the responsivity increases up to one of the highest values of 3313 A W-1 at 1.5 V (and 3946 A W-1 at 2 V) with detectivity of 1.6 × 1011 Jones at 1.5 V, due to the increase in carrier mobility up to 7.9 × 10-4 cm2 V-1 s-1. The better device performance of the NSs than 8.6-13.9 nm nanocubes (NCs) is due to their planarity which facilitates in-plane mobilization of the charge carriers.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur-741246, India
| | - Anima Ghosh
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur-741246, India
| | - Dibyendu Ghosh
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur-741246, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur-741246, India
| |
Collapse
|
39
|
Chen Y, Zhu Z, Jiang X, Jiang L. Superhydrophobic-Substrate-Assisted Construction of Free-Standing Microcavity-Patterned Conducting Polymer Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100949. [PMID: 34245121 PMCID: PMC8425917 DOI: 10.1002/advs.202100949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/05/2021] [Indexed: 06/13/2023]
Abstract
Patterned conducting polymer films with unique structures have promising prospects for application in various fields, such as actuation, water purification, sensing, and bioelectronics. However, their practical application is hindered because of the limitations of existing construction methods. Herein, a strategy is proposed for the superhydrophobic-substrate-assisted construction of free-standing 3D microcavity-patterned conducting polymer films (McPCPFs) at micrometer resolution. Easy-peeling and nondestructive transfer properties are achieved through electrochemical polymerization along the solid/liquid/gas triphase interface on micropillar-structured substrates. The effects of the wettability and geometrical parameters of the substrates on the construction of McPCPFs are systematically investigated in addition to the evolution of the epitaxial growth along the triphase interface at different polymerization times. The McPCPFs can be easily peeled from superhydrophobic surfaces using ethanol because of weak adhesion and nondestructively transferred to various substrates taking advantage of the capillarity. Furthermore, sensitive light-driven McPCPF locomotion on organic liquid surfaces is demonstrated. Ultimately, a facile strategy for the construction of free-standing 3D microstructure-patterned conducting polymer films is proposed, which can improve productivity and applicability of the films in different fields and expand the application scope of superwettable interfaces.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Xiangyu Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing101407China
| |
Collapse
|
40
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 398] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
41
|
Chen J, Zhou Y, Fu Y, Pan J, Mohammed OF, Bakr OM. Oriented Halide Perovskite Nanostructures and Thin Films for Optoelectronics. Chem Rev 2021; 121:12112-12180. [PMID: 34251192 DOI: 10.1021/acs.chemrev.1c00181] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oriented semiconductor nanostructures and thin films exhibit many advantageous properties, such as directional exciton transport, efficient charge transfer and separation, and optical anisotropy, and hence these nanostructures are highly promising for use in optoelectronics and photonics. The controlled growth of these structures can facilitate device integration to improve optoelectronic performance and benefit in-depth fundamental studies of the physical properties of these materials. Halide perovskites have emerged as a new family of promising and cost-effective semiconductor materials for next-generation high-power conversion efficiency photovoltaics and for versatile high-performance optoelectronics, such as light-emitting diodes, lasers, photodetectors, and high-energy radiation imaging and detectors. In this Review, we summarize the advances in the fabrication of halide perovskite nanostructures and thin films with controlled dimensionality and crystallographic orientation, along with their applications and performance characteristics in optoelectronics. We examine the growth methods, mechanisms, and fabrication strategies for several technologically relevant structures, including nanowires, nanoplates, nanostructure arrays, single-crystal thin films, and highly oriented thin films. We highlight and discuss the advantageous photophysical properties and remarkable performance characteristics of oriented nanostructures and thin films for optoelectronics. Finally, we survey the remaining challenges and provide a perspective regarding the opportunities for further progress in this field.
Collapse
Affiliation(s)
- Jie Chen
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Zhou
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yongping Fu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Omar F Mohammed
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
42
|
Chen X, Wang K, Shi B, Liu T, Chen R, Zhang M, Wen W, Xing G, Wu J. All-Inorganic Perovskite Nanorod Arrays with Spatially Randomly Distributed Lasing Modes for All-Photonic Cryptographic Primitives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30891-30901. [PMID: 34156815 DOI: 10.1021/acsami.1c08864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The level of hardware or information security can be increased by applying physical unclonable functions (PUFs), which have a high complexity and unique nonreplicability and are based on random physical patterns generated by nature, to anticounterfeiting and encryption technologies. The preparation of PUFs should be as simple and convenient as possible, while maintaining the high complexity and stability of PUFs to ensure high reliability in use. In this study, an all-inorganic perovskite single-crystal array with a controllable morphology and a random size was prepared by a one-step recrystallization method in a solvent atmosphere to generate all-photonic cryptographic primitives. The nondeterministic size of the perovskite nanorods mainly arises from crystal growth in an indeterminate direction, producing a high entropy for the system. The cavity-size-dependent lasing emission behavior of perovskite single crystals was investigated as a preliminary exploration of the generation of all-photonic cryptographic primitives. The lasing-mode number was positively correlated with the length of the perovskite nanorods. Therefore, the prepared perovskite nanorod array with random sizes can be transformed into a quaternary cryptographic key array following encoding rules based on the lasing-mode number. Superior lasing stability was observed for the all-inorganic perovskite under continuous excitation, demonstrating the high reliability of this system.
Collapse
Affiliation(s)
- Xinlian Chen
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Kaiyang Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Bori Shi
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Tanghao Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Riming Chen
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Mengying Zhang
- Department of Physics, Shanghai University, Shanghai 200444, China
| | - Weijia Wen
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jinbo Wu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
43
|
Jeong J, Seo SG, Yu SM, Kang Y, Song J, Jin SH. Flexible Light-to-Frequency Conversion Circuits Built with Si-Based Frequency-to-Digital Converters via Complementary Photosensitive Ring Oscillators with p-Type SWNT and n-Type a-IGZO Thin Film Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008131. [PMID: 33969631 DOI: 10.1002/smll.202008131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/25/2021] [Indexed: 06/12/2023]
Abstract
In this study, as system-level photodetectors, light-to-frequency conversion circuits (LFCs) are realized by i) photosensitive ring oscillators (ROs) composed of amorphous indium-gallium-zinc-oxide/single-walled carbon nanotube (a-IGZO/SWNT) thin film transistors (TFTs) and ii) phase-locked-loop Si circuits built with frequency-to-digital converters (PFDC). The 3-stage ROs and logic gates based on a-IGZO/SWNT TFTs successfully demonstrate its performance on flexible substrates. Herein, along with the advantage of scalability, a-IGZO films are used as photosensitive n-type TFTs and SWNTs are employed as photo-insensitive p-type TFTs for better photosensitivity in circuit level. Through the controlling a post-annealing condition of a-IGZO film, responsivities and detectivities of a-IGZO TFTs are obtained as 36 AW-1 and 0.3 × 1012 Jones for red, 93 AW-1 and 3.1 × 1012 Jones for green, and 194 AW-1 and 11.7 × 1012 Jones for blue. Furthermore, as an advanced demonstration for practical application of LFCs, a unique circuit (i.e., PFDC) is designed to analyze the generated oscillation frequency (fosc ) from the LFC device and convert it to a digital code. As a result, the designed PFDC can exactly count the generated fosc from the flexible a-IGZO/SWNT ROs under light illumination with an outstanding sensitivity and assign input frequencies to respective digital code.
Collapse
Affiliation(s)
- Jinheon Jeong
- Department of Electronic Engineering, Incheon National University, Academy-ro 119, Yeongsu-gu, Incheon, 22012, Republic of Korea
| | - Seung Gi Seo
- Department of Electronic Engineering, Incheon National University, Academy-ro 119, Yeongsu-gu, Incheon, 22012, Republic of Korea
| | - Seung-Myeong Yu
- Department of Electronic Engineering, Incheon National University, Academy-ro 119, Yeongsu-gu, Incheon, 22012, Republic of Korea
| | - Yunha Kang
- Department of Electronic Engineering, Incheon National University, Academy-ro 119, Yeongsu-gu, Incheon, 22012, Republic of Korea
| | - Junyoung Song
- Department of Electronic Engineering, Incheon National University, Academy-ro 119, Yeongsu-gu, Incheon, 22012, Republic of Korea
| | - Sung Hun Jin
- Department of Electronic Engineering, Incheon National University, Academy-ro 119, Yeongsu-gu, Incheon, 22012, Republic of Korea
| |
Collapse
|
44
|
Zhang Z, Suchan K, Li J, Hetherington C, Kiligaridis A, Unger E, Scheblykin IG, Wallentin J. Vertically Aligned CsPbBr 3 Nanowire Arrays with Template-Induced Crystal Phase Transition and Stability. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:4860-4868. [PMID: 33763163 PMCID: PMC7976601 DOI: 10.1021/acs.jpcc.0c11217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Indexed: 05/06/2023]
Abstract
Metal halide perovskites show great promise for a wide range of optoelectronic applications but are plagued by instability when exposed to air and light. This work presents low-temperature solution growth of vertically aligned CsPbBr3 nanowire arrays in AAO (anodized aluminum oxide) templates with excellent stability, with samples exposed to air for 4 months still exhibiting comparable photoluminescence and UV stability to fresh samples. The single-crystal nanowire length is adjusted from ∼100 nm to 5 μm by adjusting the precursor solution amount and concentration, and we observe length-to-diameter ratios as high as 100. Structural characterization results indicate that large-diameter CsPbBr3 nanowires have an orthorhombic structure, while the 10 nm- and 20 nm-diameter nanowires adopt a cubic structure. Photoluminescence shows a gradual blue-shift in emission with decreasing nanowire diameter and marginal changes under varying illumination power intensity. The CsPbBr3-nanowires/AAO composite exhibits excellent resistance to X-ray radiation and long-term air storage, which makes it promising for future optoelectronic applications such as X-ray scintillators. These results show how physical confinement in AAO can be used to realize CsPbBr3 nanowire arrays and control their morphology and crystal structure.
Collapse
Affiliation(s)
- Zhaojun Zhang
- Synchrotron
Radiation Research and NanoLund, Department of Physics, Lund University, Box 124, Lund 22100, Sweden
| | - Klara Suchan
- Chemical
Physics and NanoLund, Department of Chemistry, Lund University, Box 124, Lund 22100, Sweden
| | - Jun Li
- Chemical
Physics and NanoLund, Department of Chemistry, Lund University, Box 124, Lund 22100, Sweden
| | - Crispin Hetherington
- Centre
for Analysis and Synthesis and NanoLund, Department of Chemistry, Lund University, Box 124, Lund 22100, Sweden
| | - Alexander Kiligaridis
- Chemical
Physics and NanoLund, Department of Chemistry, Lund University, Box 124, Lund 22100, Sweden
| | - Eva Unger
- Chemical
Physics and NanoLund, Department of Chemistry, Lund University, Box 124, Lund 22100, Sweden
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund, Department of Chemistry, Lund University, Box 124, Lund 22100, Sweden
| | - Jesper Wallentin
- Synchrotron
Radiation Research and NanoLund, Department of Physics, Lund University, Box 124, Lund 22100, Sweden
| |
Collapse
|
45
|
Wang X, Wang Y, Gao W, Song L, Ran C, Chen Y, Huang W. Polarization-Sensitive Halide Perovskites for Polarized Luminescence and Detection: Recent Advances and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003615. [PMID: 33586290 DOI: 10.1002/adma.202003615] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Indexed: 05/21/2023]
Abstract
While halide perovskites (HPs) have achieved enormous success in the field of optoelectronic applications, much attention has been recently drawn to the unique polarization sensitivity of HPs, either intrinsic or extrinsic, which makes HPs a potential candidate for innovative applications in directly polarized luminescence and detection. Herein, the research status in the field of polarization-sensitive HPs, including linear polarization and circular polarization, is comprehensively summarized. To evaluate the effectiveness of HPs in generating and detecting linearly or circularly polarized light, the principles and characterization methods of polarized luminescence and detection are introduced. Sequentially, the state-of-the-art development of the strategies that induce the linear or circular polarization characteristics of HPs is systematically reviewed, based on which the application of polarization-sensitive HPs in the field of polarization luminescence and detection are summarized. Moreover, the current challenges and opportunities are discussed, and prospects of the future development in this promising field are outlined.
Collapse
Affiliation(s)
- Xiaobo Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Yue Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Weiyin Gao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Lin Song
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Chenxin Ran
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Yonghua Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
46
|
Wang HP, Li S, Liu X, Shi Z, Fang X, He JH. Low-Dimensional Metal Halide Perovskite Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003309. [PMID: 33346383 DOI: 10.1002/adma.202003309] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Indexed: 05/24/2023]
Abstract
Metal halide perovskites (MHPs) have been a hot research topic due to their facile synthesis, excellent optical and optoelectronic properties, and record-breaking efficiency of corresponding optoelectronic devices. Nowadays, the development of miniaturized high-performance photodetectors (PDs) has been fueling the demand for novel photoactive materials, among which low-dimensional MHPs have attracted burgeoning research interest. In this report, the synthesis, properties, photodetection performance, and stability of low-dimensional MHPs, including 0D, 1D, 2D layered and nonlayered nanostructures, as well as their heterostructures are reviewed. Recent advances in the synthesis approaches of low-dimensional MHPs are summarized and the key concepts for understanding the optical and optoelectronic properties related to the PD applications of low-dimensional MHPs are introduced. More importantly, recent progress in novel PDs based on low-dimensional MHPs is presented, and strategies for improving the performance and stability of perovskite PDs are highlighted. By discussing recent advances, strategies, and existing challenges, this progress report provides perspectives on low-dimensional MHP-based PDs in the future.
Collapse
Affiliation(s)
- Hsin-Ping Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siyuan Li
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xinya Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
47
|
Granada-Ramirez DA, Arias-Cerón JS, Pérez-González M, Luna-Arias JP, Cruz-Orea A, Rodríguez-Fragoso P, Herrera-Pérez JL, Gómez-Herrera ML, Tomás SA, Vázquez-Hernández F, Durán-Ledezma AA, Mendoza-Alvarez JG. Chemical synthesis and optical, structural, and surface characterization of InP-In 2O 3 quantum dots. APPLIED SURFACE SCIENCE 2020; 530:147294. [PMID: 32834267 DOI: 10.1016/j.apsusc.2020.147224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/11/2020] [Accepted: 07/15/2020] [Indexed: 05/24/2023]
Abstract
InP-In2O3 colloidal quantum dots (QDs) synthesized by a single-step chemical method without injection of hot precursors (one-pot) were investigated. Specifically, the effect of the tris(trimethylsilyl)phosphine, P(TMS)3, precursor concentration on the QDs properties was studied to effectively control the size and shape of the samples with a minimum size dispersion. The effect of the P(TMS)3 precursor concentration on the optical, structural, chemical surface, and electronic properties of InP-In2O3 QDs is discussed. The absorption spectra of InP-In2O3 colloids, obtained by both UV-Vis spectrophotometry and photoacoustic spectroscopy, showed a red-shift in the high-energy regime as the concentration of the P(TMS)3 increased. In addition, these results were used to determine the band-gap energy of the InP-In2O3 nanoparticles, which changed between 2.0 and 2.9 eV. This was confirmed by Photoluminescence spectroscopy, where a broad-band emission displayed from 2.0 to 2.9 eV is associated with the excitonic transition of the InP and In2O3 QDs. In2O3 and InP QDs with diameters ranging approximately from 8 to 10 nm and 6 to 9 nm were respectively found by HR-TEM. The formation of the InP and In2O3 phases was confirmed by X-ray Photoelectron Spectroscopy.
Collapse
Affiliation(s)
- D A Granada-Ramirez
- Departamento de Física, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| | - J S Arias-Cerón
- Cátedra CONACYT-Departamento de Ingeniería Eléctrica, Sección de Electrónica del Estado Sólido, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| | - M Pérez-González
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Col. Carboneras, C.P. 42184, Mineral de la Reforma, Hidalgo, Mexico
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del I.P.N., Av. Instituto Politécnico Nacional, Col. San Pedro Zacatenco, C.P. 07340 Ciudad de México, Mexico
| | - J P Luna-Arias
- Departamento de Biología Celular, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
- Programa de Doctorado de Nanociencias y Nanotecnología, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| | - A Cruz-Orea
- Departamento de Física, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| | - P Rodríguez-Fragoso
- Departamento de Física, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| | - J L Herrera-Pérez
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del I.P.N., Av. Instituto Politécnico Nacional, Col. San Pedro Zacatenco, C.P. 07340 Ciudad de México, Mexico
| | - M L Gómez-Herrera
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N, C.P. 76010 Santiago de Querétaro, Querétaro, Mexico
| | - S A Tomás
- Departamento de Física, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| | - F Vázquez-Hernández
- Universidad del Ejército y Fuerza Aérea, Escuela Militar de Ingenieros, Av. Industria Militar 261, Campo Militar No. 1-K, Lomas de San Isidro, Naucalpan, Edo. de México, Mexico
- Universidad Autónoma de la Ciudad de México, Av. La Corona 320, Col. Loma de la Palma, C.P. 07160 Ciudad de México, Mexico
| | - A A Durán-Ledezma
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz, esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México, Mexico
| | - J G Mendoza-Alvarez
- Departamento de Física, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 Ciudad de México, Mexico
| |
Collapse
|
48
|
Zhao Z, Li Y, Du Y, Zhang L, Wei J, Lin F. Preparation and Testing of Anisotropic MAPbI3 Perovskite Photoelectric Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44248-44255. [PMID: 32881484 DOI: 10.1021/acsami.0c10062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Perovskite structures of organic and inorganic halides are peculiar structures with many interesting properties. Using their photoelectric effect, the structures have been used in photocells, photoelectric sensors, and light-emitting diodes. In conventional perovskite film crystallization, which is a one-step method, the MAPbI3 crystals form disordered needlelike crystals at room temperature. Such needlelike crystal films have rough surfaces and low coverage to the substrate, resulting in insignificant photoelectric effects. With the assistance of an electric field and three-dimensional (3D) printing, the direction of the perovskite needlelike crystal can be arranged to make it orderly. In this way, the photoelectric sensor of the ordered MAPbI3 perovskite needlelike crystal film can be prepared. This sensor has high sensitivity, high stability, and high response speed. Moreover, it has anisotropy and higher photoelectric sensitivity in the direction perpendicular to the needle crystal. Most interestingly, the sensors respond differently to polarized light in different directions, and this effect can be used to detect the direction and degree of polarization of polarized light.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Key Laboratory of Advanced Material Process Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yahui Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials Processing Technology of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yunjie Du
- Key Laboratory of Advanced Material Process Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Zhang
- Key Laboratory of Advanced Material Process Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jinquan Wei
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials Processing Technology of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Feng Lin
- Key Laboratory of Advanced Material Process Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
49
|
Pan S, Zou H, Wang AC, Wang Z, Yu J, Lan C, Liu Q, Wang ZL, Lian T, Peng J, Lin Z. Rapid Capillary‐Assisted Solution Printing of Perovskite Nanowire Arrays Enables Scalable Production of Photodetectors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuang Pan
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Haiyang Zou
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Aurelia C. Wang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Zewei Wang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Jiwoo Yu
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Chuntao Lan
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Qiliang Liu
- Department of Chemistry Emory University 1515 Dickey drive, NE Atlanta GA 30322 USA
| | - Zhong Lin Wang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Tianquan Lian
- Department of Chemistry Emory University 1515 Dickey drive, NE Atlanta GA 30322 USA
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Zhiqun Lin
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
50
|
Jeong B, Han H, Park C. Micro- and Nanopatterning of Halide Perovskites Where Crystal Engineering for Emerging Photoelectronics Meets Integrated Device Array Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000597. [PMID: 32530144 DOI: 10.1002/adma.202000597] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 05/25/2023]
Abstract
Tremendous efforts have been devoted to developing thin film halide perovskites (HPs) for use in high-performance photoelectronic devices, including solar cells, displays, and photodetectors. Furthermore, structured HPs with periodic micro- or nanopatterns have recently attracted significant interest due to their potential to not only improve the efficiency of an individual device via the controlled arrangement of HP crystals into a confined geometry, but also to technologically pixelate the device into arrays suitable for future commercialization. However, micro- or nanopatterning of HPs is not usually compatible with conventional photolithography, which is detrimental to ionic HPs and requires special techniques. Herein, a comprehensive overview of the state-of-the-art technologies used to develop micro- and nanometer-scale HP patterns, with an emphasis on their controlled microstructures based on top-down and bottom-up approaches, and their potential for future applications, is provided. Top-down approaches include modified conventional lithographic techniques and soft-lithographic methods, while bottom-up approaches include template-assisted patterning of HPs based on lithographically defined prepatterns and self-assembly. HP patterning is shown here to not only improve device performance, but also to reveal the unprecedented functionality of HPs, leading to new research areas that utilize their novel photophysical properties.
Collapse
Affiliation(s)
- Beomjin Jeong
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyowon Han
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|