1
|
Bai X, Xiao Y, Wu K, Liu T, Li Z. As(III) removal from drinking water using FMCTO@Fe 3O 4 in the adsorption-magnetic separation-sand filtration equipment: Trade-off between As removal efficiency and adsorbent utilization rate. WATER RESEARCH 2025; 277:123308. [PMID: 39978159 DOI: 10.1016/j.watres.2025.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/23/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Due to the carcinogenicity and high environmental mobility of arsenic (As), its contamination in the groundwater environment is widespread, continuously threatening human health through the food chain. The adsorption technologies for As removal, which demonstrate simplicity and cost-effectiveness, have received much attention. Despite these merits, the difficult separation between adsorbent and As-contaminated water in traditional adsorption limited the development of large-scale applications. An adsorbent of Fe-Mn-Cu ternary oxide modified with magnetite (FMCTO@Fe3O4) was synthesized to develop a highly efficient As removal device based on an Adsorption-magnetic separation integrated safety device. Its safety and applicability were evaluated by optimizing the reactor design parameters using dynamic experiments. X-ray photoelectron spectroscopy, X-ray diffraction, and zeta potential results show that FMCTO@Fe3O4 has high adsorption and oxidation performance, in which 77 % of As(III) in the section was oxidized to As(V). As particle (As-p) electrostatically adsorbed to the surface of the material, with a removal efficiency of 84 % in the magnetic separation section and manganese sand filtration section. In this process, FMCTO@Fe3O4 isolated from magnetic separation section showed far stronger adsorption capacity. Specifically, FMCTO@Fe3O4, after being used 2 or 3 times, achieved an 80 % As(tot) removal efficiency. The section B functional area recycled Fe (99.24 %), Cu (98.2 %), and Mn (98.6 %), which demonstrated the equipment with higher stability and economic recovery. This device is promising in groundwater As removal, providing theoretical support and application innovation for drinking water safety and security.
Collapse
Affiliation(s)
- Xue Bai
- School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, Xian, Shaanxi, 710055, China
| | - Yuyang Xiao
- School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, Xian, Shaanxi, 710055, China; Project Service Centre, Zhen'an County, Shangluo City, Shaanxi Province, 711500, China
| | - Kun Wu
- School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, Xian, Shaanxi, 710055, China.
| | - Ting Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, Xian, Shaanxi, 710055, China
| |
Collapse
|
2
|
Moonnee I, Ahmad MS, Inomata Y, Kiatkittipong W, Kida T. Graphene oxide-based materials as proton-conducting membranes for electrochemical applications. NANOSCALE 2024; 16:20791-20810. [PMID: 39397397 DOI: 10.1039/d4nr02992e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The rapid advancements of graphene oxide (GO)-based membranes necessitate the understanding of their properties and application potential. Generally, proton (H+)-conducting membranes, including GO-based ones, are crucial components in various energy-relevant devices, significantly determining the transport process, selectivity, and overall efficiency of these devices. Particularly, GO-based membranes exhibit great potential in electrochemical applications owing to their remarkable conductivity and ease of undergoing further modifications. This review is aimed at highlighting recent functionalization strategies for GO with diverse substrates. It is also aimed at emphasizing how these modifications can enhance the electrochemical performances of GO-based membranes. Notably, key aspects, such as the enhanced H+-transfer kinetics, improved conductivity, functionalities, and optimization, of these membranes for specific applications are discussed. Additionally, the existing challenges and future directions for the field of functionalized GO are addressed to achieve precise control of the functionalities of these membranes as well as advance next-generation electrochemical devices.
Collapse
Affiliation(s)
- Itthipon Moonnee
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand.
- Graduate School of Science and Technology, Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan
| | - Muhammad Sohail Ahmad
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, Kumamoto 860-8655, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan.
| | - Yusuke Inomata
- Graduate School of Science and Technology, Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand.
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan.
| | - Tetsuya Kida
- Graduate School of Science and Technology, Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, Kumamoto 860-8655, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8655, Japan.
| |
Collapse
|
3
|
Zhou C, Zhao C, Nie Z, Zhou T, Kong S, Sun Y, Qian C, Zhao T, Liu M. Large-Area Layered Membranes with Precisely Controlled Nano-Confined Channels. Angew Chem Int Ed Engl 2024; 63:e202410441. [PMID: 38949087 DOI: 10.1002/anie.202410441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Two-dimensional (2D) nanosheets-based membranes, which have controlled 2D nano-confined channels, are highly desirable for molecular/ionic sieving and confined reactions. However, it is still difficult to develop an efficient method to prepare large-area membranes with high stability, high orientation, and accurately adjustable interlayer spacing. Here, we present a strategy to produce metal ion cross-linked membranes with precisely controlled 2D nano-confined channels and high stability in different solutions using superspreading shear-flow-induced assembly strategy. For example, membranes based on graphene oxide (GO) exhibit interlayer spacing ranging from 8.0±0.1 Å to 10.3±0.2 Å, with a precision of down to 1 Å. At the same time, the value of the orientation order parameter (f) of GO membranes is up to 0.95 and GO membranes exhibit superb stability in different solutions. The strategy we present, which can be generalized to the preparation of 2D nano-confined channels based on a variety of 2D materials, will expand the application scope and provide better performances of membranes.
Collapse
Affiliation(s)
- Can Zhou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Chuangqi Zhao
- University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhidong Nie
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianxu Zhou
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Shengwen Kong
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yingzhi Sun
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Cheng Qian
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Tianyi Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
4
|
Kang Y, Wang Y, Zhang H, Wang Z, Zhang X, Wang H. Functionalized 2D membranes for separations at the 1-nm scale. Chem Soc Rev 2024; 53:7939-7959. [PMID: 38984392 DOI: 10.1039/d4cs00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The ongoing evolution of two-dimensional (2D) material-based membranes has prompted the realization of mass separations at the 1-nm scale due to their well-defined selective nano- and subnanochannels. Strategic membrane functionalization is further found to be key to augmenting channel accuracy and efficiency in distinguishing ions, gases and molecules within this range and is thus trending as a research focus in energy-, resource-, environment- and pharmaceutical-related applications. In this review, we present the fundamentals underpinning functionalized 2D membranes in various separations, elucidating the critical "method-interaction-property" relationship. Starting with an introduction to various functionalization strategies, we focus our discussion on functionalization-induced channel-species interactions and reveal how they shape the transport- and operation-related features of the membrane in different scenarios. We also highlight the limitations and challenges of current functionalized 2D membranes and outline the necessary breakthroughs needed to apply them as reliable and high-performance separation units across industries in the future.
Collapse
Affiliation(s)
- Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Yuqi Wang
- School of Materials Science and Engineering, Zhejiang University, 310058, China
| | - Hao Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Zhouyou Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| |
Collapse
|
5
|
Reddy PR, Anki Reddy K, Kumar A. Comparative Retention Analysis of Intercalated Cations Inside the Interlayer Gallery of Lamellar and Nonlamellar Graphene Oxide Membranes in Reverse Osmosis Process: A Molecular Dynamics Study. J Phys Chem B 2024; 128:5218-5227. [PMID: 38756068 DOI: 10.1021/acs.jpcb.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Over the past decade, multilayered graphene oxide (GO) membranes have emerged as promising candidates for desalination applications. Despite their potential, a comprehensive understanding of separation mechanisms remains elusive due to the intricate morphology and structural arrangement of interlayer galleries. Moreover, a critical concern of multilayered GO membranes is their susceptibility to swelling within aqueous environments, which hinders their practical implementation. Therefore, this study introduces cation intercalation within GO laminates to elucidate the underlying factors governing swelling behavior and subsequently mitigate it. Moreover, this study performed nonequilibrium molecular dynamics simulations on the cation (Mg2+ or K+)-intercalated lamellar and nonlamellar GO membranes to understand the effect of the arrangement of GO sheets on the retention time of intercalated cations within GO layers, water permeance, and salt rejection mechanism in the reverse osmosis process using cation-intercalated GO membranes. Our results highlight that lamellar GO membranes exhibit higher water permeance, attributed to their well-defined interlayer gallery structure. On the other hand, nonlamellar GO membranes display superior salt rejection due to their complex interlayer gallery structure that impedes salt permeation. Moreover, the structural complexity of nonlamellar GO membranes contributes to greater stability by retention of the more intercalated cations for a longer time within the layers. Furthermore, it is observed that a higher percentage of Mg2+ cations remained inside the GO laminates as compared to K+ cations, hence resulting in the greater stability of the Mg2+-intercalated GO membrane in the aqueous environment.
Collapse
Affiliation(s)
- P Rajasekhar Reddy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, 517619 Andhra Pradesh, India
| | - Amit Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
| |
Collapse
|
6
|
Tian L, Graham N, Tian X, Liu T, Yu W. Fenton induced microdefects enable fast water transfer of graphene oxide membrane for efficient water purification. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
7
|
Wang J, Zhou H, Li S, Wang L. Selective Ion Transport in Two-Dimensional Lamellar Nanochannel Membranes. Angew Chem Int Ed Engl 2023; 62:e202218321. [PMID: 36718075 DOI: 10.1002/anie.202218321] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Precise and ultrafast ion sieving is highly desirable for many applications in environment-, energy-, and resource-related fields. The development of a permselective lamellar membrane constructed from parallel stacked two-dimensional (2D) nanosheets opened a new avenue for the development of next-generation separation technology because of the unprecedented diversity of the designable interior nanochannels. In this Review, we first discuss the construction of homo- and heterolaminar nanoarchitectures from the starting materials to the emerging preparation strategies. We then explore the property-performance relationships, with a particular emphasis on the effects of physical structural features, chemical properties, and external environment stimuli on ion transport behavior under nanoconfinement. We also present existing and potential applications of 2D membranes in desalination, ion recovery, and energy conversion. Finally, we discuss the challenges and outline research directions in this promising field.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Huijiao Zhou
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Shangzhen Li
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province,Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710000, China
| |
Collapse
|
8
|
Tuning interlayer spacing of graphene oxide membrane to enhance its separation performance of hydrogen isotopic water in membrane distillation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Zhao G, Zhou K, Hu R, Zhu H. Graphene oxide nanofiltration membranes with confined Na+ in two-dimensional nanochannels. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Zhang Y, Wang X, Ayman E, Zhao Q, Wang Y, Gao Z, Gong G. Mussel-inspired graphene oxide-based mixed matrix membranes for improving permeability and antifouling property. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Graphene Oxide Supramolecular Hybrid Hydrogels Based on Host−guest Assembled Electrostatic Cross-linker. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Robertson EJ, Stehle YY, Hu X, Kilby L, Olsson K, Nguyen M, Cortez R. Al 3+ Modification of Graphene Oxide Membranes: Effect of Al Source. MEMBRANES 2022; 12:1237. [PMID: 36557144 PMCID: PMC9788489 DOI: 10.3390/membranes12121237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Graphene oxide (GO) membranes are promising materials for water filtration applications due to abundant nanochannels in the membrane structure. Because GO membranes are unstable in water, metal cations such as Al3+ are often introduced to the membrane structure to promote cross-linking between individual GO sheets. Here, we describe a simple yet versatile method to incorporate Al3+ into GO membranes formed via a slow self-assembly process. Specifically, we directly added aluminum to acidic GO sheet solutions from a variety of sources: Al2O3, AlCl3 and Al foil. Each species reacts differently with water, which can affect the GO solution pH and thus the density of carboxylate groups on the sheet edges available for cross-linking to the Al3+ cations. We demonstrate through characterization of the GO sheet solutions as well as the as-formed membranes' morphologies, hydrophobicities, and structures that the extent to which the Al3+ cross-links to the GO sheet edges vs. the GO sheet basal planes is dependent on the Al source. Our results indicate that greatest enhancements in the membrane stability occur when electrostatic and coordination interactions between Al3+ and the carboxylate groups on the GO sheet edges are more extensive than Al3+-π interactions between basal planes.
Collapse
Affiliation(s)
| | - Yijing Y. Stehle
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Xiaoyu Hu
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Luke Kilby
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Katelyn Olsson
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Minh Nguyen
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Rebecca Cortez
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| |
Collapse
|
13
|
Liu J, Luo Y, Jiang X, Sun G, Song S, Yang M, Shen J. Enhanced and sustained pesticidal activity of a graphene-based pesticide delivery system against the diamondback moth Plutella xylostella. PEST MANAGEMENT SCIENCE 2022; 78:5358-5365. [PMID: 36050828 PMCID: PMC9826268 DOI: 10.1002/ps.7158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Traditional abamectin (Abm) formulations have several shortcomings, such as low water solubility, burst release behavior, poor photostability, and short persistence periods, which decrease their pesticidal activity and the risks they pose to the environment. Nanomaterial-based pesticide delivery systems (PDSs) provide new strategies for the efficient and safe application of pesticides. Here, we developed Abm-loaded graphene oxide (Abm/GO) as a PDS for the sustained release of Abm, which shows enhanced control efficacy against Plutella xylostella. RESULTS The hydrophobic Abm molecule was effectively loaded on GO nanocarrier by a physisorption method, which formed a uniform and stable Abm/GO nanoformulation. GO possesses high adsorption capacity and can effectively load Abm. The Abm/GO nanoformulation shows enhanced water dispersion stability and can remain stable during a 2-year storage period in contrast to the water-insoluble Abm. In addition, the Abm/GO nanoformulation exhibits sustained pesticide release behavior and possesses significantly improved anti-ultraviolet properties. Thus, the Abm/GO nanoformulation shows superior pesticidal activity compared with Abm. Abm/GO showed negligible toxicity to maize seedlings, and its GO nanocarrier can reduce the cytotoxicity of Abm to A549 cells. CONCLUSION GO-based PDSs can effectively overcome the disadvantages of traditional pesticides, such as their insolubility, burst release behavior, instability, and short persistence period. GO shows much future promise in agriculture in light of its industrialization potential. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianfeng Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of EducationGuizhou UniversityGuiyangChina
| | - Yi Luo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjingChina
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjingChina
| | - Guangjun Sun
- Guizhou Tobacco CompanyChina National Tobacco CorporationGuiyangChina
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjingChina
| | - Maofa Yang
- Institute of EntomologyGuizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Guizhou UniversityGuiyangChina
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjingChina
- Jiangsu Engineering Research Center of Interfacial ChemistryNanjing UniversityNanjingChina
| |
Collapse
|
14
|
Understanding water transport through graphene-based nanochannels via experimental control of slip length. Nat Commun 2022; 13:5690. [PMID: 36171227 PMCID: PMC9519754 DOI: 10.1038/s41467-022-33456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022] Open
Abstract
The water transport along graphene-based nanochannels has gained significant interest. However, experimental access to the influence of defects and impurities on transport poses a critical knowledge gap. Here, we investigate the water transport of cation intercalated graphene oxide membranes. The cations act as water-attracting impurities on the channel walls. Via water transport experiments, we show that the slip length of the nanochannels decay exponentially with the hydrated diameter of the intercalated cations, confirming that water transport is governed by the interaction between water molecules and the impurities on the channel wall. The exponential decay of slip length approximates non-slip conditions. This offers experimental support for the use of the Hagen-Poiseuille equation in graphene-based nanochannels, which was previously only confirmed by simulations. Our study gives valuable feedback to theoretical predictions of the water transport along graphene-based channels with water-attracting impurities.
Collapse
|
15
|
Stehle YY, Robertson EJ, Cortez R, Vlassiouk IV, Bucinell RB, Olsson K, Kilby L. Using Al 3+ to Tailor Graphene Oxide Nanochannels: Impact on Membrane Stability and Permeability. MEMBRANES 2022; 12:871. [PMID: 36135890 PMCID: PMC9502523 DOI: 10.3390/membranes12090871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 05/27/2023]
Abstract
Graphene oxide (GO) membranes, which form from the lamination of GO sheets, attract much attention due to their unique nanochannels. There is much interest in controlling the nanochannel structures and improving the aqueous stability of GO membranes so they can be effectively used in separation and filtration applications. This study employed a simple yet effective method of introducing trivalent aluminum cations to a GO sheet solution through the oxidation of aluminum foil, which modifies the nanochannels in the self-assembled GO membrane by increasing the inter-sheet distance while decreasing intra-sheet spacing. The Al3+ modification resulted in an increase in membrane stability in water, methanol, ethanol, and propanol, yet decreased membrane permeability to water and propanol. These changes were attributed to strong interactions between Al3+ and the membrane oxygenated functional groups, which resulted in an increase in membrane hydrophobicity and a decrease in the intra-sheet spacing as supported by surface tension, contact angle, atomic force microscopy, and X-ray photoelectron spectroscopy measurements. Our approach for forming Al3+ modified GO membranes provides a method for improving the aqueous stability and tailoring the permeation selectivity of GO membranes, which have the potential to be implemented in vapor separation and fuel purification applications.
Collapse
Affiliation(s)
- Yijing Y. Stehle
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | | | - Rebecca Cortez
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Ivan V. Vlassiouk
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ronald B. Bucinell
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Katelyn Olsson
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| | - Luke Kilby
- Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA
| |
Collapse
|
16
|
Chen C, Wu X, Zhang J, Chen J, Cui X, Li W, Wu W, Wang J. Molecule transfer mechanism in
2D
heterostructured lamellar membranes: The effects of dissolution and diffusion. AIChE J 2022. [DOI: 10.1002/aic.17795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chongchong Chen
- School of Chemical Engineering Zhengzhou University Zhengzhou P. R. China
| | - Xiaoli Wu
- School of Chemical Engineering Zhengzhou University Zhengzhou P. R. China
- Henan Institute of Advanced Technology Zhengzhou University Zhengzhou P. R. China
| | - Jie Zhang
- School of Chemical Engineering Zhengzhou University Zhengzhou P. R. China
| | - Jingjing Chen
- School of Chemical Engineering Zhengzhou University Zhengzhou P. R. China
| | - Xulin Cui
- School of Chemical Engineering Zhengzhou University Zhengzhou P. R. China
| | - Wenpeng Li
- School of Chemical Engineering Zhengzhou University Zhengzhou P. R. China
| | - Wenjia Wu
- School of Chemical Engineering Zhengzhou University Zhengzhou P. R. China
| | - Jingtao Wang
- School of Chemical Engineering Zhengzhou University Zhengzhou P. R. China
- Henan Institute of Advanced Technology Zhengzhou University Zhengzhou P. R. China
| |
Collapse
|
17
|
Methanol/dimethyl carbonate separation using graphene oxide membrane via cationic control of molecular transport channels. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Rehman F, Memon FH, Ali A, Khan SM, Soomro F, Iqbal M, Thebo KH. Recent progress on fabrication methods of graphene-based membranes for water purification, gas separation, and energy sustainability. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Graphene-based layered materials have got significant interest in membrane technology for water desalination, gas separation, organic nanofiltration, pervaporation, proton exchange applications, etc. and show remarkable results. Up to date, various methods have been developed for fabrication of high performance membrane. Most of them are only suitable for research purposes, but not appropriate for mass transport barrier and membrane applications that require large-area synthesis. In this comprehensive review, we summarized the current synthesis and fabrication methods of graphene-based membranes. Emphasis will be given on fabrication of both graphene-based nanoporous and lamellar membranes. Finally, we discuss the current engineering hurdles and future research directions yet to be explored for fabrication of such membranes.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics Engineering , College of EME, National University of Sciences and Technology (NUST) , Peshawar Road , Rawalpindi , Pakistan
| | - Fida Hussain Memon
- Department of Electrical Engineering , Sukkur IBA University , Sukkur , Sindh , Pakistan
| | - Akbar Ali
- Department of Molecular Engineering , Faculty of Process and Environmental Engineering, Lodz University of Technology , Lodz , Poland
| | - Shah Masaud Khan
- Department of Horticulture , Faculty of Basic Science and Applied Sciences, The University of Haripur KPK , Haripur , KPK , 22620 , Pakistan
| | - Faheeda Soomro
- Department of Human & Rehabilitation Sciences , Begum Nusrat Bhutto Women University , Sukkur , Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry , Faculty of Natural Science, The University of Haripur KPK , Haripur , KPK , 22620 , Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (CAS) , Shenyang , China
| |
Collapse
|
19
|
Non-covalent interactions of graphene surface: Mechanisms and applications. Chem 2022. [DOI: 10.1016/j.chempr.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Liu X, Zhang L, Cui X, Zhang Q, Hu W, Du J, Zeng H, Xu Q. 2D Material Nanofiltration Membranes: From Fundamental Understandings to Rational Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102493. [PMID: 34668340 PMCID: PMC8655186 DOI: 10.1002/advs.202102493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/07/2021] [Indexed: 05/05/2023]
Abstract
Since the discovery of 2D materials, 2D material nanofiltration (NF) membranes have attracted great attention and are being developed with a tremendously fast pace, due to their energy efficiency and cost effectiveness for water purification. The most attractive aspect for 2D material NF membranes is that, anomalous water and ion permeation phenomena have been constantly observed because of the presence of the severely confined nanocapillaries (<2 nm) in the membrane, leading to its great potential in achieving superior overall performance, e.g., high water flux, high rejection rates of ions, and high resistance to swelling. Hence, fundamental understandings of such water and ion transport behaviors are of great significance for the continuous development of 2D material NF membranes. In this work, the microscopic understandings developed up to date on 2D material NF membranes regarding the abnormal transport phenomena are reviewed, including ultrafast water and ion permeation rates with the magnitude several orders higher than that predicted by conventional diffusion behavior, ion dehydration, ionic Coulomb blockade, ion-ion correlations, etc. The state-of-the-art structural designs for 2D material NF membranes are also reviewed. Discussion and future perspectives are provided highlighting the rational design of 2D material membrane structures in the future.
Collapse
Affiliation(s)
- Xiaopeng Liu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Ling Zhang
- School of Chemical EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Xinwei Cui
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Qian Zhang
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Wenjihao Hu
- School of Metallurgy & EnvironmentCentral South UniversityChangshaHunan410083China
| | - Jiang Du
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Hongbo Zeng
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Qun Xu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
- Institutes of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| |
Collapse
|
21
|
Liao Z, Zhu J, Li X, Van der Bruggen B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118567] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Zeng M, Chen M, Huang D, Lei S, Zhang X, Wang L, Cheng Z. Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. MATERIALS HORIZONS 2021; 8:758-802. [PMID: 34821315 DOI: 10.1039/d0mh01358g] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity has become an increasingly complex challenge with the growth of the global population, economic expansion, and climate change, highlighting the demand for advanced water treatment technologies that can provide clean water in a scalable, reliable, affordable, and sustainable manner. Recent advancements on 2D nanomaterials (2DM) open a new pathway for addressing the grand challenge of water treatment owing to their unique structures and superior properties. Emerging 2D nanostructures such as graphene, MoS2, MXene, h-BN, g-C3N4, and black phosphorus have demonstrated an unprecedented surface-to-volume ratio, which promises ultralow material use, ultrafast processing time, and ultrahigh treatment efficiency for water cleaning/monitoring. In this review, we provide a state-of-the-art account on engineered 2D nanomaterials and their applications in emerging water technologies, involving separation, adsorption, photocatalysis, and pollutant detection. The fundamental design strategies of 2DM are discussed with emphasis on their physicochemical properties, underlying mechanism and targeted applications in different scenarios. This review concludes with a perspective on the pressing challenges and emerging opportunities in 2DM-enabled wastewater treatment and water-quality monitoring. This review can help to elaborate the structure-processing-property relationship of 2DM, and aims to guide the design of next-generation 2DM systems for the development of selective, multifunctional, programmable, and even intelligent water technologies. The global significance of clean water for future generations sheds new light and much inspiration in this rising field to enhance the efficiency and affordability of water treatment and secure a global water supply in a growing portion of the world.
Collapse
Affiliation(s)
- Minxiang Zeng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2016-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Lv XB, Xie R, Ji JY, Liu Z, Wen XY, Liu LY, Hu JQ, Ju XJ, Wang W, Chu LY. A Novel Strategy to Fabricate Cation-Cross-linked Graphene Oxide Membrane with High Aqueous Stability and High Separation Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56269-56280. [PMID: 33264002 DOI: 10.1021/acsami.0c15178] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Graphene oxide (GO) membranes have shown enormous promise in desalination and molecular/ionic sieving. However, the instability of GO membranes in aqueous solutions seriously hinders their practical applications. Herein, we report a novel and simple strategy to fabricate stable GO membranes in water-based environments through the insertion of various metal cations from metal foils (e.g., copper (Cu), iron (Fe), nickel (Ni), and zinc (Zn) foils) and natural deposition. Based on the cation-π, coordination, and electrostatic interaction between metal cations and GO nanosheets, the aqueous stability and mechanical strength of the membranes are significantly improved. The permeation rates for acetone, toluene, and p-xylene molecules across the GO membrane cross-linked by copper ions with a deposition time of 24 h are 0.966, 0.074, and 0.100 mol m-2 h-1, respectively. Moreover, this membrane displays excellent separation performance, and the separation factor of K+/Mg2+ is up to 68.8 in mono-/multivalent metal cation sieving, which indicate the effective molecular/ionic sieving performance. Meanwhile, the ionic sieving of the GO membrane cross-linked by copper ions has excellent repeatability and long-term stability. The versatility of this natural deposition strategy to fabricate GO membranes cross-linked by metal cations is investigated by using Fe foil, Zn foil, and Ni foil as well as other porous substrates such as polyvinylidene fluoride (PVDF), polyethersulfone (PES), and nylon membranes and filter paper. This fabrication strategy also enables low-cost preparation of large-area GO membranes. Therefore, GO membranes cross-linked by metal cations and prepared by this simple metal cation incorporation strategy have large potential application for molecular/ionic sieving in various solution systems.
Collapse
Affiliation(s)
- Xing-Bin Lv
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Jun-Yi Ji
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xiao-Yu Wen
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Lu-Yue Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Jia-Qi Hu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
26
|
Zhu J, Wang L, Wang J, Wang F, Tian M, Zheng S, Shao N, Wang L, He M. Precisely Tunable Ion Sieving with an Al 13-Ti 3C 2T x Lamellar Membrane by Controlling Interlayer Spacing. ACS NANO 2020; 14:15306-15316. [PMID: 33185086 DOI: 10.1021/acsnano.0c05649] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) membranes exhibit exceptional properties in molecular separation and transport, which reveals their potential use in various applications. However, ion sieving with 2D membranes is severely restrained due to intercalation-induced swelling. Here, we describe how to efficiently stabilize the lamellar architecture using Keggin Al13 polycations as pillars in a Ti3C2Tx membrane. More importantly, interlayer spacing can be easily adjusted with angstrom precision over a wide range (2.7-11.2 Å) to achieve selective and tunable ion sieving. A membrane with narrow d-spacing demonstrated enhanced selectivity for monovalent ions. When applied in a forward osmosis desalination process, this membrane exhibited high NaCl exclusion (99%) with a fast water flux (0.30 L m-2 h-1 bar-1). A membrane with wide d-spacing showed notable selectivity, which was dependent on the cation valence. When it was applied to acid recovery from iron-based industrial wastewater, the membrane showed good H+/Fe2+ selectivity, which makes it a promising substitute for traditional polymeric membranes. Thus, we introduce a possible route to construct 2D membranes with appropriate structures to satisfy different ion-sieving requirements in diverse environment-, resource-, and energy-related applications.
Collapse
Affiliation(s)
- Jiani Zhu
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Jin Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Fudi Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Mengtao Tian
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Shuchang Zheng
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Ning Shao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Lele Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Miaolu He
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| |
Collapse
|
27
|
Hao W, Tong Z, Liu X, Zhang B. Optimizing nanostrands-inserted graphene oxide membrane with polyelectrolyte protective layer for enhanced ethanol pervaporation dehydration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Gu Y, Zhang B, Li J, Yu M, Li L, Li J. Engineering stable laminated graphene oxide hybrid membranes via imidazolium cations complexation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Tong Z, Liu X, Zhang B. Sulfonated graphene oxide based membranes with enhanced water transport capacity for isopropanol pervaporation dehydration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Tong Z, Guo H, Liu X, Zhang B. Organic Solvent Forward Osmosis of Graphene Oxide-Based Membranes for Enrichment of Target Products. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ziqiang Tong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Hongyu Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiufeng Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Baoquan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
31
|
Constructing high-efficiency facilitated transport pathways via embedding heterostructured Ag+@MOF/GO laminates into membranes for pervaporative desulfurization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
|
33
|
Zhao G, Zhu H. Cation-π Interactions in Graphene-Containing Systems for Water Treatment and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905756. [PMID: 32253804 DOI: 10.1002/adma.201905756] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/30/2020] [Indexed: 06/11/2023]
Abstract
Cation-π interactions are common in nature, especially in organisms. Their profound influences in chemistry, physics, and biology have been continuously investigated since they were discovered in 1981. However, the importance of cation-π interactions in materials science, regarding carbonaceous nanomaterials, has just been realized. The interplay between cations and delocalized polarizable π electrons of graphene would bring about significant changes to the intrinsic characteristics of graphene and greatly affect the device performance based on graphene and its derivatives. Here, the cation-π interactions in graphene containing systems for water treatment applications (e.g., separation membranes, adsorbents) are highlighted. The cross-linking effects caused by cation-π interactions contribute to membrane stability and selectivity and enhanced adsorption. Their roles in dominating the performance of graphene-based structures for other specific applications are also discussed. Relevant theoretical modeling and calculations are summarized to offer an in-depth understanding of the underlying mechanisms which can help in designing more functional materials and structures. Perspectives on the potential directions that deserve effort are also presented.
Collapse
Affiliation(s)
- Guoke Zhao
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
34
|
Pan L, Liu YT, Zhong M, Xie XM. Coordination-Driven Hierarchical Assembly of Hybrid Nanostructures Based on 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902779. [PMID: 31496034 DOI: 10.1002/smll.201902779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Indexed: 06/10/2023]
Abstract
2D materials have received tremendous scientific and engineering interests due to their remarkable properties and broad-ranging applications such as energy storage and conversion, catalysis, biomedicine, electronics, and so forth. To further enhance their performance and endow them with new functions, 2D materials are proposed to hybridize with other nanostructured building blocks, resulting in hybrid nanostructures with various morphologies and structures. The properties and functions of these hybrid nanostructures depend strongly on the interfacial interactions between 2D materials and other building blocks. Covalent and coordination bonds are two strong interactions that hold high potential in constructing these robust hybrid nanostructures based on 2D materials. However, most 2D materials are chemically inert, posing problems for the covalent assembly with other building blocks. There are usually coordination atoms in most of 2D materials and their derivatives, thus coordination interaction as a strong interfacial interaction has attracted much attention. In this review, recent progress on the coordination-driven hierarchical assembly based on 2D materials is summarized, focusing on the synthesis approaches, various architectures, and structure-property relationship. Furthermore, insights into the present challenges and future research directions are also presented.
Collapse
Affiliation(s)
- Long Pan
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yi-Tao Liu
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ming Zhong
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xu-Ming Xie
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
35
|
Du Y, Zhang X, Yang J, Lv Y, Zhang C, Xu ZK. Ultra-thin graphene oxide films via contra-diffusion method: Fast fabrication for ion rejection. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Ning P, Chen H, Pan J, Liang J, Qin L, Chen D, Huang Y. Surface defect-rich g-C3N4/TiO2 Z-scheme heterojunction for efficient photocatalytic antibiotic removal: rational regulation of free radicals and photocatalytic mechanism. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01564d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Surface defect engineering was employed to introduce two different surface defect structures (i.e., nitrogen vacancies on g-C3N4 and oxygen vacancies on TiO2) on the surface of g-C3N4/TiO2 for efficient photocatalytic antibiotic removal.
Collapse
Affiliation(s)
- Pei Ning
- College of Materials and Chemistry
- China Jiliang University
- Hangzhou 310018
- China
| | - Huayu Chen
- College of Materials and Chemistry
- China Jiliang University
- Hangzhou 310018
- China
| | - Jianhui Pan
- College of Materials and Chemistry
- China Jiliang University
- Hangzhou 310018
- China
| | - Junhui Liang
- College of Materials and Chemistry
- China Jiliang University
- Hangzhou 310018
- China
| | - Laishun Qin
- College of Materials and Chemistry
- China Jiliang University
- Hangzhou 310018
- China
| | - Da Chen
- College of Materials and Chemistry
- China Jiliang University
- Hangzhou 310018
- China
| | - Yuexiang Huang
- College of Materials and Chemistry
- China Jiliang University
- Hangzhou 310018
- China
| |
Collapse
|
37
|
Liu J, Shi W, Wang X. Cluster–Nuclei Coassembled into Two-Dimensional Hybrid CuO-PMA Sub-1 nm Nanosheets. J Am Chem Soc 2019; 141:18754-18758. [DOI: 10.1021/jacs.9b08818] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Junli Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wenxiong Shi
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, People’s Republic of China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Liu T, Tian L, Graham N, Yang B, Yu W, Sun K. Regulating the Interlayer Spacing of Graphene Oxide Membranes and Enhancing their Stability by Use of PACl. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11949-11959. [PMID: 31538767 DOI: 10.1021/acs.est.9b04418] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) is an ideal membrane material for water treatment due to its outstanding physicochemical properties and unique lamellar structure. However, the separation performance and practical application of GO membranes are mainly affected by the interlayer spacing and stability in aqueous solutions. Here, we report a novel and facile approach to fabricating GO membranes with adjustable interlayer spacing and high stability in aqueous solutions through cross-linking with polyaluminum chloride (PACl). With this approach, the lamellar spacing can be adjusted by changing the OH/Al ratios (B values) of the PACl, and the GO nanosheets can be tightly bonded by the strong electrostatic effect that PACl provides between them. The average interlayer spacing of the GO layer could be varied approximately in the range of 0.80-1.09 nm. The PACl-GO membranes demonstrated excellent stability in water and inorganic/organic solutions when the concentration of PACl was 0.1, 1, and 10 mM, remaining unchanged for at least 2 weeks. Moreover, the PACl-GO membranes featured exceptional sieving capabilities for model and natural organic substrates, while it was also observed that increasing the interlayer spacing of the PACl-GO membranes increased both the membrane flux and the separation performance of organic matter.
Collapse
Affiliation(s)
- Ting Liu
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
- Department of Civil and Environmental Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , U.K
| | - Long Tian
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Nigel Graham
- Department of Civil and Environmental Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , U.K
| | - Bing Yang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Wenzheng Yu
- Department of Civil and Environmental Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , U.K
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Kening Sun
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
39
|
Lu Z, Wei Y, Deng J, Ding L, Li ZK, Wang H. Self-Crosslinked MXene (Ti 3C 2T x) Membranes with Good Antiswelling Property for Monovalent Metal Ion Exclusion. ACS NANO 2019; 13:10535-10544. [PMID: 31480834 DOI: 10.1021/acsnano.9b04612] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A 2D membrane-based separation technique has been increasingly applied to solve the problem of fresh water shortage via ion rejection. However, these 2D membranes often suffer from a notorious swelling problem when immersed in solution, resulting in poor rejection for the monovalent metal ion. The design of the antiswelling 2D lamellar membranes has been proved to be a big challenge for highly efficient desalination. Here a kind of self-crosslinked MXene membrane is proposed for ion rejection with an obviously suppressed swelling property, which takes advantage of the hydroxyl terminal groups on the MXene nanosheets by forming Ti-O-Ti bonds between the neighboring nanosheets via the self-crosslinking reaction (-OH + -OH = -O- + H2O) through a facile thermal treatment. The permeation rates of the monovalent metal ions through the self-crosslinked MXene membrane are about two orders of magnitude lower than those through the pristine MXene membrane, which indicates the obviously improved performance of the ion exclusion by self-crosslinking between the MXene lamellae. Moreover, the excellent stability of the self-crosslinked MXene membrane during the 70 h long-term ion separation also demonstrates its promising antiswelling property. Such a facile and efficient self-crosslinking strategy gives the MXene membrane a good antiswelling property for metal ion rejection, which is also suitable for many other 2D materials with tunable surface functional groups during membrane assembly.
Collapse
Affiliation(s)
- Zong Lu
- School of Chemistry and Chemical Engineering , South China University of Technology , 510640 Guangzhou , China
| | - Yanying Wei
- School of Chemistry and Chemical Engineering , South China University of Technology , 510640 Guangzhou , China
| | - Junjie Deng
- School of Chemistry and Chemical Engineering , South China University of Technology , 510640 Guangzhou , China
| | - Li Ding
- School of Chemistry and Chemical Engineering , South China University of Technology , 510640 Guangzhou , China
| | - Zhong-Kun Li
- School of Chemistry and Chemical Engineering , South China University of Technology , 510640 Guangzhou , China
| | - Haihui Wang
- School of Chemistry and Chemical Engineering , South China University of Technology , 510640 Guangzhou , China
| |
Collapse
|
40
|
Song S, Wang Y, Xie J, Sun B, Zhou N, Shen H, Shen J. Carboxymethyl Chitosan Modified Carbon Nanoparticle for Controlled Emamectin Benzoate Delivery: Improved Solubility, pH-Responsive Release, and Sustainable Pest Control. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34258-34267. [PMID: 31461267 DOI: 10.1021/acsami.9b12564] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmentally friendly pesticide delivery systems have drawn extensive attention in recent years, and they show great promise in sustainable development of agriculture. We herein report a multifunctional nanoplatform, carboxymethyl chitosan modified carbon nanoparticles (CMC@CNP), as the carrier for emamectin benzoate (EB, a widely used insecticide), and investigate its sustainable antipest activity. EB was loaded on CMC@CNP nanocarrier via simple physisorption process, with a high loading ratio of 55.56%. The EB@CMC@CNP nanoformulation showed improved solubility and dispersion stability in aqueous solution, which is of vital importance to its practical application. Different from free EB, EB@CMC@CNP exhibited pH-responsive controlled release performance, leading to sustained and steady EB release and prolonged persistence time. In addition, the significantly enhanced anti-UV property of EB@CMC@CNP further ensured its antipest activity. Therefore, EB@CMC@CNP exhibited superior pest control performance than free EB. In consideration of its low cost, easy preparation, free of organic solution, and enhanced bioactivity, we expect, CMC@CNP will have a brilliant future in pest control and green agriculture.
Collapse
Affiliation(s)
- Saijie Song
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , China
- CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou , 215123 , China
| | - Yuli Wang
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , China
| | - Jing Xie
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , China
- Honors College , Nanjing Normal University , Nanjing , 210023 , China
| | - Baohong Sun
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , China
| | - Ninglin Zhou
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , China
- Institute of Agricultural Development , Nanjing Normal University , Nanjing , 210023 , China
| | - He Shen
- CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou , 215123 , China
| | - Jian Shen
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , China
| |
Collapse
|
41
|
Xin Y, Wan B. A label-free quantification method for measuring graphene oxide in biological samples. Anal Chim Acta 2019; 1079:103-110. [PMID: 31387700 DOI: 10.1016/j.aca.2019.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/12/2023]
Abstract
Characterization of carbonaceous nanomaterials (CNMs) exposure is a key step and of great importance towards a better understanding of their toxicity and underlying mechanisms. However, it has been bottlenecked for lack of valid methods capable of quantifying cell-associated CNMs. Here, we developed a new economical and convenient method based on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) that could accumulate graphene oxide (GO) at the interface between the loading well and the gel. The sharp black band formed there can be digitalized and the intensity quantified, which was proportional to the amount of GO loaded onto the gel. The method has a detection limit of 84.1 ng. We showed that the amount of GO in three different cell models, mouse macrophage cells (Raw264.7), human epithelial cells (A549) and mouse mesenchymal stem cells (MSC), could be accurately quantified by this assay, with the uptake rates decreasing in the order of MSC > Raw264.7 > A549. The results were consistent with the fluorescent imaging on cells exposed to fluorescence-labeled GO and TEM examination on ultrathin cell sections. The surprisingly highest uptake rate of MSC might be due to their abundant intracellular vesicles, which deserves further investigation. The novel method provides a complementary quantitative tool to the use of radioactive markers and fluorescent labeling of carbon nanomaterials and may facilitate the toxicological studies on carbon nanomaterials.
Collapse
Affiliation(s)
- Yan Xin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
42
|
Zhu Z, Wang D, Tian Y, Jiang L. Ion/Molecule Transportation in Nanopores and Nanochannels: From Critical Principles to Diverse Functions. J Am Chem Soc 2019; 141:8658-8669. [DOI: 10.1021/jacs.9b00086] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhongpeng Zhu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Dianyu Wang
- College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Ye Tian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
43
|
Luo Z, Fang Q, Xu X, Raj DV, Zhou X, Liu Z. Attapulgite nanofibers and graphene oxide composite membrane for high-performance molecular separation. J Colloid Interface Sci 2019; 545:276-281. [PMID: 30897423 DOI: 10.1016/j.jcis.2019.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 11/19/2022]
Abstract
Graphene oxide (GO) based membranes are widely adopted in molecular separation based on size exclusion effect by stacked GO sheets. Both high flux and efficient rejection of GO-based membranes for long-term operation are highly expected for practical applications. Here, an attapulgite (ATP) nanofibers/ GO composite (ATP/GO) membrane is assembled by filtration of mixed aqueous colloidal suspensions of ATP and GO. Due to the modification of interlayer distance and surface property of GO membrane by ATP, the ATP/GO membrane demonstrates excellent separation performance, with a high water flux of 221.16 Lm-2 h-1bar-1, 7.7 times higher than that of pure GO membrane. Meanwhile, the rejection of ATP/GO is also slightly improved comparing with that of GO membrane. It is also found that increasing the thickness of the membrane is effective to enhance rejection percentage. The ATP/GO membranes reported here show high efficiency for molecular separation, which demonstrates potential applications in water purification and environmental protection.
Collapse
Affiliation(s)
- Zhongqing Luo
- School of Materials Science and Engineering, Shanghai University, Shanghai 200072,China; Key Laboratory of Graphene Technologies & Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201,China
| | - Qile Fang
- Key Laboratory of Graphene Technologies & Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201,China
| | - Xueyan Xu
- Key Laboratory of Graphene Technologies & Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201,China
| | - D Vasanth Raj
- Key Laboratory of Graphene Technologies & Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201,China
| | - Xufeng Zhou
- Key Laboratory of Graphene Technologies & Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201,China.
| | - Zhaoping Liu
- Key Laboratory of Graphene Technologies & Applications of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201,China.
| |
Collapse
|
44
|
Wang L, Chen S, Li W, Wang K, Lou Z, Shen G. Grain-Boundary-Induced Drastic Sensing Performance Enhancement of Polycrystalline-Microwire Printed Gas Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804583. [PMID: 30484929 DOI: 10.1002/adma.201804583] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/04/2018] [Indexed: 05/13/2023]
Abstract
The development of materials with high efficiency and stable signal output in a bent state is important for flexible electronics. Grain boundaries provide lasting inspiration and a promising avenue for designing advanced functionalities using nanomaterials. Combining bulk defects in polycrystalline materials is shown to result in rich new electronic structures, catalytic activities, and mechanical properties for many applications. However, direct evidence that grain boundaries can create new physicochemical properties in flexible electronics is lacking. Here, a combination of bulk electrosensitive measurements, density functional theory calculations, and atomic force microscopy technology with quantitative nanomechanical mapping is used to show that grain boundaries in polycrystalline wires are more active and mechanically stable than single-crystalline wires for real-time detection of chemical analytes. The existence of a grain boundary improves the electronic and mechanical properties, which activate and stabilize materials, and allow new opportunities to design highly sensitive, flexible chemical sensors.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Shuai Chen
- College of Physics and Mathematics and Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130012, China
| | - Kang Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Zheng Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
Li R, Zhang W, Zhou K. Metal-Organic-Framework-Based Catalysts for Photoreduction of CO 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705512. [PMID: 29894012 DOI: 10.1002/adma.201705512] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 02/04/2018] [Indexed: 05/21/2023]
Abstract
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal-organic frameworks (MOFs) have attracted much attention as CO2 photoreduction-related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light-absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF-based photocatalysts are discussed here, beginning with the introduction of the characteristics of high-efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti-O, Zr-O, and Fe-O clusters and functional organic linkers such as amino-modified, photosensitizer-functionalized, and electron-rich conjugated linkers) and three types of MOF-based composites (metal-MOF, semiconductor-MOF, and photosensitizer-MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF-based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.
Collapse
Affiliation(s)
- Rui Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wang Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
46
|
Guan K, Liu Q, Ji Y, Zhang M, Wu Y, Zhao J, Liu G, Jin W. Precisely Controlling Nanochannels of Graphene Oxide Membranes through Lignin-Based Cation Decoration for Dehydration of Biofuels. CHEMSUSCHEM 2018; 11:2315-2320. [PMID: 29733542 DOI: 10.1002/cssc.201800479] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Lignin-based cations introduced into graphene oxide (GO) have been found to bring about stabilization of the nanostructure and the active sites and to give rise to various interactions for subsequent modification with polyelectrolyte and nanospacers, with a view to precisely controlling the nanochannels of the GO-based membranes. The resulting membranes exhibited excellent performance in biofuel dehydration with water flux of 4000-6000 g m-2 h-1 , which exceeds that of the state-of-the-art polymeric and GO-based membranes.
Collapse
Affiliation(s)
- Kecheng Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing, 210009, P R China), (Dr. G. Liu), (Prof. W. Jin
| | - Quan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing, 210009, P R China), (Dr. G. Liu), (Prof. W. Jin
| | - Yufan Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing, 210009, P R China), (Dr. G. Liu), (Prof. W. Jin
| | - Mengchen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing, 210009, P R China), (Dr. G. Liu), (Prof. W. Jin
| | - Yulin Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing, 210009, P R China), (Dr. G. Liu), (Prof. W. Jin
| | - Jing Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing, 210009, P R China), (Dr. G. Liu), (Prof. W. Jin
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing, 210009, P R China), (Dr. G. Liu), (Prof. W. Jin
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing, 210009, P R China), (Dr. G. Liu), (Prof. W. Jin
| |
Collapse
|
47
|
Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nat Commun 2017; 8:2011. [PMID: 29222493 PMCID: PMC5722819 DOI: 10.1038/s41467-017-02198-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022] Open
Abstract
Smart regulation of substance permeability through porous membranes is highly desirable for membrane applications. Inspired by the stomatal closure feature of plant leaves at relatively high temperature, here we report a nano-gating membrane with a negative temperature-response coefficient that is capable of tunable water gating and precise small molecule separation. The membrane is composed of poly(N-isopropylacrylamide) covalently bound to graphene oxide via free-radical polymerization. By virtue of the temperature tunable lamellar spaces of the graphene oxide nanosheets, the water permeance of the membrane could be reversibly regulated with a high gating ratio. Moreover, the space tunability endows the membrane with the capability of gradually separating multiple molecules of different sizes. This nano-gating membrane expands the scope of temperature-responsive membranes and has great potential applications in smart gating systems and molecular separation. The smart regulation of substance permeability is highly desirable for membrane separation technologies. Here, the authors design a poly(N-isopropylacrylamide)-grafted graphene oxide membrane with temperature tunable lamellar spaces, allowing for water gating and size-variable molecular separations.
Collapse
|
48
|
Sun X, Lin T, Song Q, Fu Y, Wang Y, Jin F, Zhao H, Li W, Su Z, Chu B. Improved performance of hole-transporting layer-free perovskite solar cells by using graphene oxide sheets as the nucleation centers. RSC Adv 2017. [DOI: 10.1039/c7ra08680f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphene oxide sheets (GOSs) are introduced between indium tin oxide (ITO) and CH3NH3PbI3 in inverted hole-transport layer-free planar heterojunction perovskite solar cells.
Collapse
|