1
|
Meng Y, Xu L, Cheng G. Bioelectronics hydrogels for implantable cardiac and brain disease medical treatment application. Int J Biol Macromol 2025; 299:139945. [PMID: 39837454 DOI: 10.1016/j.ijbiomac.2025.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Hydrogel-based bioelectronic systems offer significant benefits for point-of-care diagnosis, treatment of cardiac and cerebral disease, surgical procedures, and other medical applications, ushering in a new era of advancements in medical technology. Progress in hydrogel-based bioelectronics has advanced from basic instrument and sensing capabilities to sophisticated multimodal perceptions and feedback systems. Addressing challenges related to immune responses and inflammation regulation after implantation, physiological dynamic mechanism, biological toxicology as well as device size, power consumption, stability, and signal conversion is crucial for the practical implementation of hydrogel-based bioelectronics in medical implants. Therefore, further exploration of hydrogel-based bioelectronics is imperative, and a comprehensive review is necessary to steer the development of these technologies for use in implantable therapies for cardiac and brain/neural conditions. In this review, a concise overview is provided on the fundamental principles underlying ionic electronic and ionic bioelectronic mechanisms. Additionally, a comprehensive examination is conducted on various bioelectronic materials integrated within hydrogels for applications in implantable medical treatments. The analysis encompasses a detailed discussion on the representative structures and physical attributes of hydrogels. This includes an exploration of their intrinsic properties such as mechanical strength, dynamic capabilities, shape-memory features, stability, stretchability, and water retention characteristics. Moreover, the discussion extends to properties related to interactions with tissues or the environment, such as adhesiveness, responsiveness, and degradability. The intricate relationships between the structure and properties of hydrogels are thoroughly examined, along with an elucidation of how these properties influence their applications in implantable medical treatments. The review also delves into the processing techniques and characterization methods employed for hydrogels. Furthermore, recent breakthroughs in the applications of hydrogels are logically explored, covering aspects such as materials, structure, properties, functions, fabrication procedures, and hybridization with other materials. Finally, the review concludes by outlining the future prospects and challenges associated with hydrogels-based bioelectronics systems.
Collapse
Affiliation(s)
- Yanfang Meng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Lin Xu
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
2
|
Lin Z, Luo M, Liang J, Li Z, Lin Y, Chen X, Chen B, Peng L, Ouyang Y, Mou L. A liquid metal-based sticky conductor for wearable and real-time electromyogram monitoring with machine learning classification. J Mater Chem B 2025. [PMID: 40007317 DOI: 10.1039/d4tb01711k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Skin electronics face challenges related to the interface between rigid and soft materials, resulting in discomfort and signal inaccuracies. This study presents the development and characterization of a liquid metal-polydimethylsiloxane (LM-PDMS) sticky conductor designed for wearable electromyography (EMG) monitoring. The conductor leverages a composite of LM inks and PDMS, augmented with silver nanowires (AgNWs) and surface-modified with mercaptoundecanoic acid (MUD) to enhance conductivity. The mechanical properties of the PDMS matrix were optimized using Triton-X to achieve a flexible and adhesive configuration suitable for skin contact. Our LM-PDMS sticky conductor demonstrated excellent stretchability, could endure up to 300% strain without damage, and maintained strong adherence to the skin without relative displacement. Biocompatibility tests confirmed high cell viability, making it suitable for long-term use. EMG signal analysis revealed reliable muscle activity detection, with advanced signal processing techniques effectively filtering noise and stabilizing the baseline. Furthermore, we employed machine learning algorithms to classify EMG signals, achieving high accuracy in distinguishing different muscle activities. This study showcases the potential of LM-PDMS sticky conductors for advanced wearable bioelectronics, offering promising applications in personalized healthcare and real-time muscle activity monitoring.
Collapse
Affiliation(s)
- Zixin Lin
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Mingmei Luo
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Jiayi Liang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Zijie Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Yanting Lin
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| | - Xiaman Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Baozhu Chen
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Liang Peng
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Yongchang Ouyang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Department of Biotechnology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| | - Lei Mou
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
| |
Collapse
|
3
|
Kwon YW, Kim E, Koh CS, Park YG, Hong YM, Lee S, Lee J, Kim TJ, Mun W, Min SH, Kim S, Lim JA, Jung HH, Park JU. Implantable Soft Neural Electrodes of Liquid Metals for Deep Brain Stimulation. ACS NANO 2025; 19:7337-7349. [PMID: 39957079 DOI: 10.1021/acsnano.4c18030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Stimulating large volumes of neural networks using macroelectrodes can modulate disorder-associated brain circuits effectively. However, conventional solid-metal electrodes often cause unwanted brain damage due to their high mechanical stiffness. In contrast, low-modulus liquid metals provide tissue-like stiffness while maintaining macroscale electrode dimensions. Here, we present implantable soft macroelectrodes made from biocompatible liquid metals for brain stimulation. These probes can be easily fabricated by simply filling polymeric tubes with a liquid metal, offering a straightforward method for creating brain stimulation devices. They can be customized in various lengths and diameters and also serve as recording microelectrodes. The electrode tips are enhanced with platinum nanoclusters, resulting in low impedance and effective charge injection while preventing liquid metal leakage into brain tissue. In vivo experiments in neuropathic pain rat models demonstrate the stability and effectiveness of these probes for simultaneous neural stimulation and recording, demonstrating their potential for pain alleviation and behavioral control.
Collapse
Affiliation(s)
- Yong Won Kwon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Enji Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young-Geun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Yeon-Mi Hong
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Sanghoon Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Jakyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Tae Jun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Wonki Mun
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Hyun Min
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sumin Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Jung Ah Lim
- Yonsei-KIST Convergence Research Institute, Seoul 03722, Republic of Korea
- Soft Hybrid Materials Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, South Korea
- Yonsei-KIST Convergence Research Institute, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Ahmad M, Shukla D, Zhu Y, Velev OD. Biodegradable Chitosan-Based Stretchable Electronics with Recyclable Silver Nanowires. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39968770 DOI: 10.1021/acsami.4c20193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The combination of biodegradability and biocompatibility makes chitosan a principal bioresourced material in biomedical engineering, wearable technology, and medical diagnostics, particularly for integration in human interfaces for soft electronic applications. However, this requires the introduction of soft electronic circuits with the capability of recycling the functional materials, while biodegrading the substrate. This paper presents the development and characterization of biodegradable soft circuits that are constructed using stretchable and flexible substrates from plasticized chitosan and conductive functional wiring from recyclable silver nanowires (AgNWs). The chitosan substrate demonstrates tunable mechanical properties with a maximum stretchability of ∼116%, in addition to desirable characteristics such as transparency, breathability, and controlled degradation. The plasticizing effect of glycerol reduces the rigidity associated with pure chitosan and imparts flexibility and stretchability to the AgNW-chitosan-glycerol (AgNW-Chi-Gly) composite. The AgNWs embedded in the Chi-Gly matrix are highly conductive, and their functionality in soft electronic devices such as strain sensors and electromyography (EMG) sensors is demonstrated. We show that the soft chitosan-based substrates can be subject to biodegradation at the end of their operational lifespan. The AgNWs can be recycled and reused, enhancing the overall sustainability of such soft electronic devices.
Collapse
Affiliation(s)
- Mesbah Ahmad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Darpan Shukla
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Yan J, Yang S, Chen J, Wu X, Qing Y. Dynamic BO bonds-induced viscoelasticity and surface adhesion regulation for constructing konjac glucomannan-based soft actuators with superior mobility and capturability. Int J Biol Macromol 2025; 305:141033. [PMID: 39954880 DOI: 10.1016/j.ijbiomac.2025.141033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
In all soft actuators, achieving both outstanding mobility and capturability is crucial; however, these properties are usually mutually exclusive due to the lack of an effective mechanism for controlling the viscoelasticity of the switching polymer matrix while maintaining a moderate surface adhesion. In this study, we propose a dynamic bond cross-linking strategy to successfully develop a magnetically responsive soft hydrogel (MRSH) with exceptional mobility (117.56 mm/s) and capturability. By introducing dynamic BO bonds into the KGM@Fe3O4@PSSMA NPs composite matrix, the crosslinking density and overall cohesion of MRSH can be precisely controlled, resulting in unique non-Newtonian fluid characteristics. Additionally, the dynamic BO bonds transition between associative and dissociative states with the hydroxyl groups on the KGM molecular chains, which can effectively regulate the amount of hydroxyl groups on the surface of MRSH, thereby achieving demonstrate moderate surface adhesion. As a result, the synthesized MRSH exhibits remarkable capturability on various target surfaces and maintains outstanding mobility, even in underwater environments. This work paves the way for new possibilities in the field of soft actuators and engineering by overcoming the limitations of traditional soft actuators in terms of surface adhesion and responsiveness through innovative structural design and material combinations.
Collapse
Affiliation(s)
- Jie Yan
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Suwen Yang
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianshan Chen
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xianzhang Wu
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yan Qing
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
6
|
Pan L, Xie Y, Yang H, Bao X, Chen J, Zou M, Li RW. Omnidirectionally Stretchable Spin-Valve Sensor Array with Stable Giant Magnetoresistance Performance. ACS NANO 2025; 19:5699-5708. [PMID: 39883044 DOI: 10.1021/acsnano.4c15964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Flexible magnetic sensors, which have advantages such as deformability, vector field sensing, and noncontact detection, are an important branch of flexible electronics and have significant applications in fields such as magnetosensitive electronic skin. Human skin surfaces have complicated deformations, which pose a demand for magnetic sensors that can withstand omnidirectional strain while maintaining stable performance. However, existing flexible magnetic sensor arrays can only withstand stretching along specific directions and are prone to failure under complicated deformations. Here, we demonstrate an omnidirectionally stretchable spin-valve sensor array with high stretchability and excellent performance. By integrating the modulus-distributed structure with liquid metal, the sensor can maintain its performance under complex deformations, enabling the overall system with omnidirectional stretchability. The fabricated spin-valve sensor exhibits a nearly unchanged giant magnetoresistance ratio of 8% and a maximum sensitivity of 0.93%/Oe upon omnidirectional strain up to 86% and can maintain stable performance without fatigue for over 1000 stretching cycles. Furthermore, this spin-valve sensor array is characterized by stable sensing performance for magnetic fields under complicated deformations and can be applied as a magnetosensitive electronic skin. Our results provide insights into the development of next-generation stretchable and wearable magnetoelectronics.
Collapse
Affiliation(s)
- Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Mengting Zou
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Wang Q, Sun Y, Qin C, Lin Y, Fang T, Yang C, Zhang J, Lu YQ, Kong D. Stretchable and Permeable Liquid Metal Micromeshes Featuring Strain-Insensitive Resistance Through In Situ Structural Transformations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417799. [PMID: 39910891 DOI: 10.1002/adma.202417799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/12/2025] [Indexed: 02/07/2025]
Abstract
Gallium-based liquid metals hold promises for applications in stretchable electronics and beyond. However, these materials often encounter notable resistance increases during stretching and have negligible permeability to gases and liquids. This study presents an in situ structural transformation mechanism to create stretchable and permeable liquid metal micromeshes with strain-insensitive resistance. These micromeshes are fabricated by spin-coating liquid metal onto microfiber textiles and subjecting them to several stretching cycles. Consequently, the micromeshes transform from a smooth finish to wrinkled textures due to the growth in their oxide nanoskins. The distinct microstructure alters the stretching-relaxing mode to folding-unfolding, thereby minimizing fluctuations in resistance. The practical significance of this development is demonstrated through the fabrication of wearable heaters and LED matrices using transformed liquid metal micromeshes. Moreover, when integrated into Janus textiles featuring unidirectional water transport, these micromesh conductors act as sensing electrodes capable of acquiring high-fidelity biopotentials, even during intense sweating. These advancements highlight the capability of ambient air as a powerful reactive environment for tailoring the properties of microscale liquid metals.
Collapse
Affiliation(s)
- Qian Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210021, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210021, China
| | - Changqing Qin
- College of Chemical Engineering and Technology, Engineering Research Center of Seawater Utilization Technology of Ministry of Education, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
| | - Yong Lin
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210021, China
| | - Ting Fang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210021, China
| | - Cheng Yang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210021, China
| | - Jinheng Zhang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210021, China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210021, China
| |
Collapse
|
8
|
Ramesh TV, Narongrit FW, Rispoli JV. Adaptable, wearable, and stretchable coils: A review. Magn Reson Med 2025. [PMID: 39902582 DOI: 10.1002/mrm.30428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025]
Abstract
Over the last four decades, there have been various evolutions in the design and development of coils, from volume coils to the recent introduction of wireless receive arrays. A recent aim has been to develop coils that can closely conform to the anatomy of interest to increase the acquired signal. This goal has given rise to designs ranging from adaptable transmit coils to on-body stretchable receive arrays made using fabric or elastomer substrates. This review covers the design, fabrication details, experimental setup, and MRI results of adaptable, wearable, and stretchable MRI coils. The active and passive automatic tuning and matching strategies are examined with respect to mitigating signal-to-noise ratio reduction when the coil form is altered. A brief discussion of wireless MRI coils, which provide a solution to overcome the cabling issues associated with MRI coil development, is also included. The adaptable, wearable, and stretchable coils and various coil tuning techniques represent innovative radiofrequency coil solutions that pave the way for next-generation MRI hardware development.
Collapse
Affiliation(s)
- Thejas Vishnu Ramesh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Folk W Narongrit
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Joseph V Rispoli
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Yu R, Wu L, Yang Z, Wu J, Chen H, Pan S, Zhu M. Dynamic Liquid Metal-Microfiber Interlocking Enables Highly Conductive and Strain-insensitive Metastructured Fibers for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415268. [PMID: 39690796 DOI: 10.1002/adma.202415268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Stretchable fibers with high conductivity are vital components for smart textiles and wearable electronics. However, embedding solid conductive materials in polymers significantly reduces conductive pathways when stretched, causing a sharp drop in conductivity. Here, a stretchable metastructured fiber with dynamic liquid metal-microfiber interlocking interface is reported to realize highly conductive yet ultrastable conductance. The Cu-EGaIn mixture is partially embedded within the porous microfiber mat, thereby enabling its roll-up into a spiral-layered metastructured fiber with self-compensating conductive pathways. The metastructured fiber shows outstanding performance, including high conductivity of 1.5 × 106 S m-1, large stretchability up to 629%, and ultrastable conductance with only 16% relative resistance change at 100% strain, which far surpasses the theoretical value. Moreover, these fibers have served as versatile platforms for wearable temperature-visualizing electrothermal fiber heaters and fully stretchable smart sensing-display fabrics. This dynamic solid-liquid interfacial interlocking strategy is promising for stretchable electronics.
Collapse
Affiliation(s)
- Rouhui Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Liang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhonghua Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huifang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shaowu Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
10
|
Zhexembekova A, Lim S, Min H, Lee CY. Liquid metal composite with carbon nanotubes for reliable interconnection between Pt electrodes. Chem Commun (Camb) 2025; 61:2115-2118. [PMID: 39801441 DOI: 10.1039/d4cc05500d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
We report a CNT/eGaIn composite that suppresses dissolutive wetting on platinum, maintaining interconnect stability for up to 30 days. Minimizing CNT aggregation prevents gallium penetration, enhancing the reliability of liquid metal components in electronics.
Collapse
Affiliation(s)
- Anar Zhexembekova
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Seongyeop Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Hyegi Min
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Chang Young Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
11
|
Gu W, Hu J, Li L, Hong M, Zhang D, Chen J, Ye J, Zhou S. Liquid Metal Nanobiohybrids for High-Performance Solar-Driven Methanogenesis via Multi-Interface Engineering. Angew Chem Int Ed Engl 2025:e202423336. [PMID: 39825039 DOI: 10.1002/anie.202423336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/20/2025]
Abstract
Nanobiohybrids for solar-driven methanogenesis present a promising solution to the global energy crisis. However, conventional semiconductor-based nanobiohybrids face challenges such as limited tunability and poor biocompatibility, leading to undesirable spontaneous electron and proton transfer that compromise their structural stability and CH4 selectivity. Herein, we introduced eutectic gallium-indium alloys (EGaIn), featuring a self-limiting surface oxide layer surrounding the liquid metal core after sonication, integrated with Methanosarcina barkeri (M. b). The well-designed M. b-EGaIn nanobiohybrids exhibited superior performance, achieving a maximum CH4 yield of 455.64±15.99 μmol g-1, long-term stability across four successive 7-day cycles, and remarkable CH4 selectivity of >99 %. These improvements stem from enhanced proton-coupled electron transfer involving hydrogen atoms at the core-shell interface, further facilitated by the elevated expression of hydrogenases at the abiotic-biotic interface. This study provides an insightful concept for nanobiohybrid design through multi-interface engineering, advancing sustainable and scalable CO2-to-biofuel conversion under ambient conditions.
Collapse
Affiliation(s)
- Wenzhi Gu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jing Hu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Lei Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Mingqiu Hong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Dong Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jiajing Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| |
Collapse
|
12
|
Park C, Park H, Kim J. Unsupervised Sim-to-Real Adaptation of Soft Robot Proprioception Using a Dual Cross-Modal Autoencoder. Soft Robot 2025. [PMID: 39761056 DOI: 10.1089/soro.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Data-driven calibration methods have shown promising results for accurate proprioception in soft robotics. This process can be greatly benefited by adopting numerical simulation for computational efficiency. However, the gap between the simulated and real domains limits the accurate, generalized application of the approach. Herein, we propose an unsupervised domain adaptation framework as a data-efficient, generalized alignment of these heterogeneous sensor domains. A dual cross-modal autoencoder was designed to match the sensor domains at a feature level without any extensive labeling process, facilitating the computationally efficient transferability to various tasks. Moreover, our framework integrates domain adaptation with anomaly detection, which endows robots with the capability for external collision detection. As a proof-of-concept, the methodology was adopted for the famous soft robot design, a multigait soft robot, and two fundamental perception tasks for autonomous robot operation, involving high-fidelity shape estimation and collision detection. The resulting perception demonstrates the digital-twinned calibration process in both the simulated and real domains. The proposed design outperforms the existing prevalent benchmarks for both perception tasks. This unsupervised framework envisions a new approach to imparting embodied intelligence to soft robotic systems via blending simulation.
Collapse
Affiliation(s)
- Chaeree Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea
| | - Hyunkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea
| | - Jung Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea
| |
Collapse
|
13
|
Li H, Zhang C, Xu H, Yang Q, Luo Z, Li C, Kai L, Meng Y, Zhang J, Liang J, Chen F. Microstructured Liquid Metal-Based Embedded-Type Sensor Array for Curved Pressure Mapping. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413233. [PMID: 39587827 PMCID: PMC11744523 DOI: 10.1002/advs.202413233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Indexed: 11/27/2024]
Abstract
Human hands can envelop the surface of an object and recognize its shape through touch. However, existing stretchable haptic sensors exhibit limited flexibility and stability to detect pressure during deformation, while also solely achieving recognition of planar objects. Inspired by the structure of skin tissue, an embedded construction-enabled liquid metal-based e-skin composed of a liquid metal microstructured electrode (LM-ME) array is fabricated for curved pressure mapping. The embedded LM-ME-based sensor elements are fabricated by using femtosecond laser-induced micro/nanostructures and water/hydrogel assisted patterning method, which enables high sensitivity (7.42 kPa-1 in the range of 0-0.1 kPa) and high stability through an interlinked support isolation structure for the sensor units. The sensor array with a high interfacial toughness of 1328 J m-2 can maintain pressure sensation under bending and stretching conditions. Additionally, the embedded construction and laser-induced bumps effectively reduce crosstalk from 58 to 7.8% compared to conventional flexible sensors with shared surfaces. The stretchable and mechanically stable sensor arrays possess shape-adaptability that enables pressure mapping on non-flat surfaces, which has great potential for object recognition in robotic skins and human-computer interaction.
Collapse
Affiliation(s)
- Haoyu Li
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Chengjun Zhang
- School of Instrument Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Hongyu Xu
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Qing Yang
- School of Instrument Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Zexiang Luo
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Cheng Li
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Lin Kai
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yizhao Meng
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Jialiang Zhang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Jie Liang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for InformationSchool of Electronic Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
14
|
Kim M, Hong S, Khan R, Park JJ, In JB, Ko SH. Recent Advances in Nanomaterial-Based Biosignal Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405301. [PMID: 39610205 DOI: 10.1002/smll.202405301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Indexed: 11/30/2024]
Abstract
Recent research for medical fields, robotics, and wearable electronics aims to utilize biosignal sensors to gather bio-originated information and generate new values such as evaluating user well-being, predicting behavioral patterns, and supporting disease diagnosis and prevention. Notably, most biosignal sensors are designed for body placement to directly acquire signals, and the incorporation of nanomaterials such as metal-based nanoparticles or nanowires, carbon-based or polymer-based nanomaterials-offering stretchability, high surface-to-volume ratio, and tunability for various properties-enhances their adaptability for such applications. This review categorizes nanomaterial-based biosignal sensors into three types and analyzes them: 1) biophysical sensors that detect deformation such as folding, stretching, and even pulse, 2) bioelectric sensors that capture electric signal originating from human body such as heart and nerves, and 3) biochemical sensors that catch signals from bio-originated fluids such as sweat, saliva and blood. Then, limitations and improvements to nanomaterial-based biosignal sensors is depicted. Lastly, it is highlighted on deep learning-based signal processing and human-machine interface applications, which can enhance the potential of biosignal sensors. Through this paper, it is aim to provide an understanding of nanomaterial-based biosignal sensors, outline the current state of the technology, discuss the challenges that be addressed, and suggest directions for development.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwoo Hong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rizwan Khan
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Bin In
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Department of Intelligent Energy and Industry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research / Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
15
|
Kassanos P, Hourdakis E. Implantable Passive Sensors for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2024; 25:133. [PMID: 39796923 PMCID: PMC11723123 DOI: 10.3390/s25010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
In recent years, implantable sensors have been extensively researched since they allow localized sensing at an area of interest (e.g., within the vicinity of a surgical site or other implant). They allow unobtrusive and potentially continuous sensing, enabling greater specificity, early warning capabilities, and thus timely clinical intervention. Wireless remote interrogation of the implanted sensor is typically achieved using radio frequency (RF), inductive coupling or ultrasound through an external device. Two categories of implantable sensors are available, namely active and passive. Active sensors offer greater capabilities, such as on-node signal and data processing, multiplexing and multimodal sensing, while also allowing lower detection limits, the possibility to encode patient sensitive information and bidirectional communication. However, they require an energy source to operate. Battery implantation, and maintenance, remains a very important constraint in many implantable applications even though energy can be provided wirelessly through the external device, in some cases. On the other hand, passive sensors offer the possibility of detection without the need for a local energy source or active electronics. They also offer significant advantages in the areas of system complexity, cost and size. In this review, implantable passive sensor technologies will be discussed along with their communication and readout schemes. Materials, detection strategies and clinical applications of passive sensors will be described. Advantages over active sensor technologies will be highlighted, as well as critical aspects related to packaging and biocompatibility.
Collapse
Affiliation(s)
| | - Emmanouel Hourdakis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15772 Athens, Greece;
| |
Collapse
|
16
|
Yan J, Ding J, Cao Y, Yi H, Zhan L, Gao Y, Ge K, Ji H, Li M, Feng H. Additively Manufactured Flexible EGaIn Sensor for Dynamic Detection and Sensing on Ultra-Curved Surfaces. SENSORS (BASEL, SWITZERLAND) 2024; 25:37. [PMID: 39796832 PMCID: PMC11722807 DOI: 10.3390/s25010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Electronic skin is widely employed in multiple applications such as health monitoring, robot tactile perception, and bionic prosthetics. In this study, we fabricated millimeter-scale electronic skin featuring compact sensing units using the Boston Micro Fabrication S130 (a high-precision additive manufacturing device) and the template removal method. We used a gallium-based liquid metal and achieved an inner channel diameter of 0.1 mm. The size of the sensing unit was 3 × 3 mm2. This unit exhibited a wide linear sensing range (10-22,000 Pa) and high-pressure resolution (10 Pa) even on an ultra-curved surface (radius of curvature was 6 mm). Sliding was successfully detected at speeds of 8-54 mm/s. An artificial nose with nine sensing units was fabricated, and it exhibited excellent multitouch and sliding trajectory recognition capabilities. This confirmed that the electronic skin functioned normally, even on an ultra-curved surface.
Collapse
Affiliation(s)
- Jiangnan Yan
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Jianing Ding
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Yang Cao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Hongyu Yi
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Limeng Zhan
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Yifan Gao
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Kongyu Ge
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Hongjun Ji
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Mingyu Li
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| | - Huanhuan Feng
- Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Li P, Feng Y, Ding C, Zhong R, Yan W, Song J, Hong Z, Hu B, Tan J, Sun J, Song X. Magnetointeractive Cr 2Te 3-Coated Liquid Metal Droplets for Flexible Memory Arrays and Wearable Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414519. [PMID: 39713936 DOI: 10.1002/adma.202414519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Magnetic liquid metal droplets, featured by unique fluidity, metallic conductivity, and magnetic reactivity, are of growing significance for next-generation flexible electronics. Conventional fabrication routes, which typically incorporate magnetic nanoparticles into liquid metals, otherwise encounter the pitfall pertaining to surface adhesivity and corrosivity over device modules. Here, an innovative approach of synergizing liquid metals with 2D magnetic materials is presented, accordingly creating chromium(III)-telluride-coated liquid metal (CT-LM) droplets via a simple self-assembly process. The CT-LM droplets exhibit controllable deformation and locomotion under magnetic fields, demonstrate nonadherence to various surfaces, and enable cost-effective recycling of components. The functionality of CT-LM droplets is validated through their use in magnetointeractive memory devices to enable sensing/storing 64 magnetic paths and in wearable sensors as the flexible vibrator for dynamic gesture recognition with machine learning assistance. This work opens new avenues for the functional droplet design and broadens the horizons of flexible electronics.
Collapse
Affiliation(s)
- Puyan Li
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yixiong Feng
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang, 100733, China
| | - Chenchen Ding
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Ruirui Zhong
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weiyu Yan
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Junjie Song
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoxi Hong
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Bingtao Hu
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jianrong Tan
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Xiuju Song
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Zhexembekova A, Lim S, Lee C, Kim YT, Lee CY. A Liquid Metal Balloon for the Exfoliation of an Ultrathin and Uniform Gallium Oxide Layer. Molecules 2024; 29:5894. [PMID: 39769983 PMCID: PMC11677224 DOI: 10.3390/molecules29245894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
We report the exfoliation of ultrathin gallium oxide (Ga2O3) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium-indium alloy (eGaIn). These Ga2O3 films enable the selective adsorption of carbon nanotubes (CNTs) dispersed in water, resulting in the formation of a dense, percolating CNT network on their surface. The self-assembled CNT network on Ga2O3 provides a versatile platform for device fabrication. As an example application, we fabricated a chemiresistive gas sensor for detecting simulants of chemical warfare agents (CWAs), including diisopropyl methylphosphonate (DIMP), dimethyl methylphosphonate (DMMP), and triethyl phosphate (TEP). The sensor exhibited reversible responses, high sensitivity, and low limits of detection (13 ppb for DIMP, 28 ppb for DMMP, and 53 ppb for TEP). These findings highlight the potential of Ga2O3 films derived from liquid metal balloons for integrating CNTs into functional electronic devices.
Collapse
Affiliation(s)
- Anar Zhexembekova
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Seongyeop Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Cheongha Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Yun-Tae Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Chang Young Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
19
|
Liang Y, Gao J, Wang Q, Lu N, Zhang YC, Zhu XD. Self-healing Micro-Supercapacitor Based on Robust Liquid Metal-CNT-PEDOT:PSS Film for Wireless Powering of Integrated Strain Sensor. SMALL METHODS 2024:e2401581. [PMID: 39648531 DOI: 10.1002/smtd.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Indexed: 12/10/2024]
Abstract
The limited energy density of micro-supercapacitors (MSCs) and challenges in their integration significantly impede the advancement of MSCs in wearable electronic devices. Here, this work designs a robust and wrinkled liquid metal-CNT-PEDOT:PSS film with high capacity and self-healing properties (defined as LM-CNT-PEDOT:PSS). The wrinkled structure further enhances tensile properties of LM-CNT-PEDOT:PSS and increases its active specific surface area per unit. Simultaneously, the incorporation of liquid metal (LM) enhances both the mechanical and healing properties of the LM-CNT-PEDOT:PSS electrode. The flexible and self-healing MSC based on wrinkled LM-CNT-PEDOT:PSS shows a remarkable specific capacitance of 114.29 mF cm-2 and a high areal energy density of 15.47 µW h cm-2. Furthermore, the electrochemical performance of the healed MSC retained 90.01% of its initial performance, and the MSC unit can be arbitrarily integrated according to various energy and voltage requirements through the healing properties of LM-CNT-PEDOT:PSS, widening the range of applications in next-generation microelectronic devices. The wrinkled LM-CNT-PEDOT:PSS film is utilized for the fabrication of a highly sensitive strain sensor. Simultaneously, the prepared sensor can be seamlessly integrated with wireless charging and MSC to facilitate convenient monitoring of physiological signals, thereby offering an effective solution for the advancement of wearable technology and self-powered systems.
Collapse
Affiliation(s)
- Yue Liang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qiang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Nan Lu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yong-Chao Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiao-Dong Zhu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
20
|
Bao F, Ni F, Zhai Q, Sun Z, Song X, Lin Y. A Flexible Sensing Material with High Force and Thermal Sensitivity Based on GaInSn in Capillary Embedded in PDMS. Polymers (Basel) 2024; 16:3426. [PMID: 39684171 DOI: 10.3390/polym16233426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Flexible sensing materials have become a hot topic due to their sensitive electrical response to external force or temperature and their promising applications in flexible wear and human-machine interaction. In this study, a PDMS/capillary GaInSn flexible sensing material with high force and thermal sensitivity was prepared utilizing liquid metal (LM, GaInSn), flexible silicone capillary, and polydimethylsiloxane (PDMS). The resistance (R) of the flexible sensing materials under the action of different forces and temperatures was recorded in real-time. The electrical performance results confirmed that the R of the sensing material was responsive to temperature changes and increased with the increasing temperature, indicating its ability to transmit temperature signals into electrical signals. The R was also sensitive to the external force, such as cyclic stretching, cyclic compression, cyclic bending, impact and rolling. The ΔR/R0 changed periodically and stably with the cyclic stretching, cyclic compression and cyclic bending when the conductive pathway diameter was 0.5-1.0 mm, the cyclic tensile strain ≤ 20%, the cyclic tensile rate ≤ 2.0 mm/min, the compression ratio ≤ 0.5, and the relative bending curvature ≤ 0.16. Moreover, the material exhibited sensitivity in detecting biological signals, such as the joint movements of the finger, wrist, elbow and the stand up-crouch motion. In conclusion, this work provides a method for preparing a sensing material with the capillary structure, which was confirmed to be sensitive to force and heat, and it produced different types of R signals under different deformations and different temperatures.
Collapse
Affiliation(s)
- Fandou Bao
- School of Physics and Electronic Engineering, Jining University, Qufu 273155, China
| | - Fengyao Ni
- Shandong Donghong Pipe Industry Co., Ltd., Qufu 273155, China
| | - Qianqian Zhai
- School of Physics and Electronic Engineering, Jining University, Qufu 273155, China
| | - Zhizhuang Sun
- Shandong Donghong Pipe Industry Co., Ltd., Qufu 273155, China
| | - Xiaolin Song
- School of Physics and Electronic Engineering, Jining University, Qufu 273155, China
| | - Yu Lin
- School of Physics and Electronic Engineering, Jining University, Qufu 273155, China
| |
Collapse
|
21
|
Khan MAK, Zhao Y, Datta S, Paul P, Vasini S, Thundat T, Liu PQ. Deterministic Fabrication of Liquid Metal Nanopatterns for Nanophotonics Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403722. [PMID: 39308286 DOI: 10.1002/smll.202403722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Indexed: 12/13/2024]
Abstract
Gallium-based liquid metals (LMs) are widely used for stretchable and reconfigurable electronics thanks to their fluidic nature and excellent conductivity. These LMs possess attractive optical properties for photonics applications as well. However, due to the high surface tension of the LMs, it is challenging to form LM nanostructures with arbitrary shapes using conventional nanofabrication techniques. As a result, LM-based nanophotonics has not been extensively explored. Here, a simple yet effective technique is demonstrated to deterministically fabricate LM nanopatterns with high yield over a large area. This technique demonstrates for the first time the capability to fabricate LM nanophotonic structures of various precisely defined shapes and sizes using two different LMs, that is, liquid gallium and liquid eutectic gallium-indium alloy. High-density arrays of LM nanopatterns with critical feature sizes down to ≈100 nm and inter-pattern spacings down to ≈100 nm are achieved, corresponding to the highest resolution of any LM fabrication technique developed to date. Additionally, the LM nanopatterns demonstrate excellent long-term stability under ambient conditions. This work paves the way toward further development of a wide range of LM nanophotonics technologies and applications.
Collapse
Affiliation(s)
- Md Abdul Kaium Khan
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Yaoli Zhao
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Shreyan Datta
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Puspita Paul
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Shoaib Vasini
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Thomas Thundat
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Peter Q Liu
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
22
|
Peng Y, Wu H, Wang Z, Wang Y, Wang H. A Soft Inductive Bimodal Sensor for Proprioception and Tactile Sensing of Soft Machines. Soft Robot 2024; 11:1055-1067. [PMID: 38868951 DOI: 10.1089/soro.2023.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
The somatosensory system is crucial for living beings to survive and thrive in complex environments and to interact with their surroundings. Similarly, rapidly developed soft robots need to be aware of their own posture and detect external stimuli. Bending and force sensing are key for soft machines to achieve embodied intelligence. Here, we present a soft inductive bimodal sensor (SIBS) that uses the strain modulation of magnetic permeability and the eddy-current effect for simultaneous bidirectional bending and force sensing with only two wires. The SIBS is made of a flexible planar coil, a porous ferrite film, and a soft conductive film. By measuring the inductance at two different frequencies, the bending angle and force can be obtained and decoupled. Rigorous experiments revealed that the SIBS can achieve high resolution (0.44° bending and 1.09 mN force), rapid response, excellent repeatability, and high durability. A soft crawling robot embedded with one SIBS can sense its own shape and interact with and respond to external stimuli. Moreover, the SIBS is demonstrated as a wearable human-machine interaction to control a crawling robot via wrist bending and touching. This highlights that the SIBS can be readily implemented in diverse applications for reliable bimodal sensing.
Collapse
Affiliation(s)
- Yulian Peng
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Houping Wu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Zhengyan Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Yufeng Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Hongbo Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Zhan F, Li N, Wang L, Wang S, Liu J, Song G. Instantaneous Tiltmeter Triggered by Dynamic Wetting Behavior. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409182. [PMID: 39444074 DOI: 10.1002/adma.202409182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/02/2024] [Indexed: 10/25/2024]
Abstract
A novel instantaneous tiltmeter with dynamic and static monitoring functions is reported that is based on liquid metal dynamic wetting behavior in a bio-fabricated anisotropic microchannel. The proposed system achieves instantaneous tiltmeter functionality, offering a broad detection range (-90°-90°) with high precision (0.05°), a rapid reaction time (0.11 s), and enhanced durability. Moreover, a seamless integration has enabled water wave detection, language programming, and human limb monitoring. Especially, the integration of tiltmeter and a 3D motion platform results in a surface structure scanning system capable of effectively performing large area (>200 cm2) and height difference scanning functions. This innovative approach holds great potential for transformative changes in the fields of advanced manufacturing, flexible robotics, and the flexible sensing, further facilitating widespread adoption.
Collapse
Affiliation(s)
- Fei Zhan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Shuizhong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
24
|
Li J, Fang Z, Wei D, Liu Y. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring. Adv Healthc Mater 2024; 13:e2401532. [PMID: 39285808 DOI: 10.1002/adhm.202401532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Indexed: 12/18/2024]
Abstract
The rapid advancements in artificial intelligence, micro-nano manufacturing, and flexible electronics technology have unleashed unprecedented innovation and opportunities for applying flexible sensors in healthcare, wearable devices, and human-computer interaction. The human body's tactile perception involves physical parameters such as pressure, temperature, and humidity, all of which play an essential role in maintaining human health. Inspired by the sensory function of human skin, many bionic sensors have been developed to simulate human skin's perception to various stimuli and are widely applied in health monitoring. Given the urgent requirements for sensing performance and integration of flexible sensors in the field of wearable devices and health monitoring, here is a timely overview of recent advances in pressure, humidity, temperature, and multi-functional sensors for human health monitoring. It covers the fundamental components of flexible sensors and categorizes them based on different response mechanisms, including resistive, capacitive, voltage, and other types. Specifically, the application of these flexible tactile sensors in the area of human health monitoring is highlighted. Based on this, an extended overview of recent advances in dual/triple-mode flexible sensors integrating pressure, humidity, and temperature tactile sensing is presented. Finally, the challenges and opportunities of flexible sensors are discussed.
Collapse
Affiliation(s)
- Jiaqi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Zhengping Fang
- College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Dongsong Wei
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
25
|
Han Y, Tetik H, Malakooti MH. 3D Soft Architectures for Stretchable Thermoelectric Wearables with Electrical Self-Healing and Damage Tolerance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407073. [PMID: 39212649 DOI: 10.1002/adma.202407073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 09/04/2024]
Abstract
Flexible thermoelectric devices (TEDs) exhibit adaptability to curved surfaces, holding significant potential for small-scale power generation and thermal management. However, they often compromise stretchability, energy conversion, or robustness, thus limiting their applications. Here, the implementation of 3D soft architectures, multifunctional composites, self-healing liquid metal conductors, and rigid semiconductors is introduced to overcome these challenges. These TEDs are extremely stretchable, functioning at strain levels as high as 230%. Their unique design, verified through multiphysics simulations, results in a considerably high power density of 115.4 µW cm⁻2 at a low-temperature gradient of 10 °C. This is achieved through 3D printing multifunctional elastomers and examining the effects of three distinct thermal insulation infill ratios (0%, 12%, and 100%) on thermoelectric energy conversion and structural integrity. The engineered structure is lighter and effectively maintains the temperature gradient across the thermoelectric semiconductors, thereby resulting in higher output voltage and improved heating and cooling performance. Furthermore, these thermoelectric generators show remarkable damage tolerance, remaining fully functional even after multiple punctures and 2000 stretching cycles at 50% strain. When integrated with a 3D-printed heatsink, they can power wearable sensors, charge batteries, and illuminate LEDs by scavenging body heat at room temperature, demonstrating their application as self-sustainable electronics.
Collapse
Affiliation(s)
- Youngshang Han
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Nano-Engineered Systems, University of Washington, Seattle, WA, 98195, USA
| | - Halil Tetik
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Mohammad H Malakooti
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Nano-Engineered Systems, University of Washington, Seattle, WA, 98195, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
26
|
Wang J, Ye T, Jiao Y, Ren W, Li Y, Li X, Li Y, Li D, Li F, Wang Y, Song J, Zou K, Mao W, Wu M, Tan R, Lu J, He E, Wang L, Chen H, Li L, Li Q, Bai C, Gao R, Ren J, Li W, Cao Y, Zhang Y. A Metalgel with Liquid Metal Continuum Immobilized in Polymer Network. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409137. [PMID: 39449216 DOI: 10.1002/adma.202409137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Indexed: 10/26/2024]
Abstract
Gels are formed by fluids that expand throughout the whole volume of 3D polymer networks. To unlock unprecedented properties, exploring new fluids immobilized in polymer networks is crucial. Here, a new liquid metal-polymer gel material termed "metalgel" is introduced via fluid replacement strategy, featuring 92.40% vol liquid metal fluid as a continuum immobilized by interconnected nanoscale polymer network. The unique structure endows metalgel with high electrical conductivity (up to 3.18 × 106 S·m‒1), tissue-like softness (Young's modulus as low as 70 kPa), and low gas permeability (4.50 × 10‒22 m2·s‒1·Pa‒1). Besides, metalgel demonstrates electrical stability under extreme deformations, such as being run over by a 4.5-metric-tonne truck, and maintains its integrity in various environments for up to 180 days. The immobilization of high-volume-fraction liquid metal fluid is realized by electrostatic interactions is further revealed. Potential applications for metalgel are diverse and include soft electromagnetic shielding, hermetic sealing, and stimulating/sensing electrodes in implantable bioelectronics, underscoring its broad applicability.
Collapse
Affiliation(s)
- Jiacheng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Tingting Ye
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Weitong Ren
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Yiran Li
- Department of Physics, Nanjing University, Nanjing, 210023, China
| | - Xusong Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiran Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Dan Li
- Department of Immunology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fangyan Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuanzhen Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jie Song
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Kuangyi Zou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Wei Mao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Ming Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ruiyang Tan
- College of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiang Lu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Lie Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Hao Chen
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Qianming Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Chenyu Bai
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Rui Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Junye Ren
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Wenfei Li
- Department of Physics, Nanjing University, Nanjing, 210023, China
| | - Yi Cao
- Department of Physics, Nanjing University, Nanjing, 210023, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
27
|
Wang L, Kong D. Stretchable and Self-Adhesive Conductors for Smart Epidermal Electronics. Macromol Rapid Commun 2024:e2400774. [PMID: 39579092 DOI: 10.1002/marc.202400774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Epidermal electronics utilize deformable devices that are seamlessly integrated into the body for various cutting-edge applications. Stretchable conductors are essential for creating electrodes in these devices, allowing them to interface with the skin for sensing and stimulation. Despite considerable progress in improved deformability, these conductors may not easily adhere to the skin for long-term use. There is a growing interest in imparting self-adhesive properties to epidermal devices to ensure secure integration with the body. This article focuses on the emerging field of stretchable and self-adhesive conductors. It explores the design strategy required to enable stretchability and conformability in these materials and discusses their pivotal applications in smart epidermal electronics. Additionally, this article also addresses the current challenges and future directions in this dynamic area of research.
Collapse
Affiliation(s)
- Lin Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210021, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210021, China
| |
Collapse
|
28
|
Hajalilou A, Parvini E, Morgado TA, Alhais Lopes P, Melo Jorge ME, Freitas M, Tavakoli M. Replacing the Gallium Oxide Shell with Conductive Ag: Toward a Printable and Recyclable Composite for Highly Stretchable Electronics, Electromagnetic Shielding, and Thermal Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61157-61168. [PMID: 39469861 DOI: 10.1021/acsami.4c17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Liquid metal (LM)-based composites hold promise for soft electronics due to their high conductivity and fluidic nature. However, the presence of α-Ga2O3 and GaOOH layers around LM droplets impairs conductivity and performance. We tackle this issue by replacing the oxide layer with conductive silver (Ag) using an ultrasonic-assisted galvanic replacement reaction. The Ag-coated nanoparticles form aggregated, porous microparticles that are mixed with styrene-isoprene-styrene (SIS) polymers, resulting in a digitally printable composite with superior electrical conductivity and electromechanical properties compared to conventional fillers. Adding more LM enhances these properties further. The composite achieves EMI shielding effectiveness (SE) exceeding 75 dB in the X-band frequency range, even at 200% strain, meeting stringent military and medical standards. It is applicable in wireless communications and Bluetooth signal blocking and as a thermal interface material (TIM). Additionally, we highlight its recyclability using a biodegradable solvent, underscoring its eco-friendly potential. This composite represents a significant advancement in stretchable electronics and EMI shielding, with implications for wearable and bioelectronic applications.
Collapse
Affiliation(s)
- Abdollah Hajalilou
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Elahe Parvini
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Tiago A Morgado
- Instituto de Telecomunicações and Department of Electrical Engineering, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - M Estrela Melo Jorge
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Marta Freitas
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| |
Collapse
|
29
|
Wang B, Jiang X, Liu L, Wu BC, Zhao D. Effect of Anions on Deformation of Gallium-Based Liquid Metal in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23483-23490. [PMID: 39436096 DOI: 10.1021/acs.langmuir.4c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
In this study, deformation behaviors of gallium-based liquid metals in acidified cupric sulfate or cupric chloride solutions with varying concentrations of chloride anion or sulfate anion were investigated to explore their potential applications in soft machines and electronics. Gallium-based liquid metals are known for their unique deformability, making them promising materials for various fields. Previous research has shown that deformation of the liquid metal can be achieved in the presence of acidified cupric or ferric salts. However, the specific influence of different anions on the deformation process remains unclear. Our findings indicate that the deformation rate of the liquid metal increases with higher concentrations of chloride ions and decreases with higher concentrations of sulfate ions in the solution. UV-vis absorbance spectra of the solutions were analyzed to identify the formation of hydrated cupric cations. It was observed that increasing the concentration of Cl- ions promotes the formation of cupric-chloro complexes, thereby reducing the concentration of hydrated cupric ions in the solution. Furthermore, the addition of sulfate ions to the solution enhances the ionic strength of the medium, leading to the dissociation of cupric-chloro complexes. Additionally, sulfate ions can form insoluble layers with gallium ions, which impede the deformation of the liquid metal. The deformation rate of the liquid metal was found to be inversely correlated with the concentration of cupric ions in the solution. These results provide valuable insights into the deformable behavior of gallium-based liquid metals and their potential applications in liquid metal-based soft robots. This study highlights the importance of understanding the role of different anions in the deformation process of liquid metals, shedding light on the design and optimization of soft machines and electronics utilizing these materials.
Collapse
Affiliation(s)
- Bingxing Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaoying Jiang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Liheng Liu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bin-Chao Wu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Donglin Zhao
- Division of Chemical and Energy Engineering, School of Engineering, London South Bank University, London SE1 0AA, United Kingdom
| |
Collapse
|
30
|
Wei Y, Bhuyan P, Zhang Q, Kim S, Bae Y, Singh M, Park S. Stretchable and Elastic Triboelectric Nanogenerator with Liquid-Metal Grid-Patterned Single Electrode for Wearable Energy-Harvesting Devices. Macromol Rapid Commun 2024; 45:e2400321. [PMID: 39283823 DOI: 10.1002/marc.202400321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/31/2024] [Indexed: 11/09/2024]
Abstract
Triboelectric nanogenerators (TENGs) have garnered significant attention as efficient energy-harvesting systems for sustainable energy sources in the field of self-powered wearable devices. Various conductive materials are used to build wearable devices, among which, gallium-based liquid metal (LM) is a preferred electrode owing to its fluidity and metallic conductivity even when strained. In this study, a stretchable, elastic, and wearable triboelectric nanogenerator is designed using a single electrode fabricated by embedding LM grid patterns into a stretchable silicone substrate through a two-step spray-coating process. Contrary to conventional double-electrode TENG that is challenging to integrate to human body, the LM grid-patterned single-electrode TENG (LMG-SETENG) has a simplified design and provides more flexibility. The LMG-SETENG can generate voltages of up to 100 V via triboelectrification upon contact with the human body, even under various degrees of strain, owing to the fluidity of the LM electrode. The generated energy can be utilized as a sustainable energy source to power various small appliances. Moreover, the proposed LMG-SETENG can be utilized in soft robotics, electronic skin, and healthcare devices.
Collapse
Affiliation(s)
- Yuwen Wei
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Priyanuj Bhuyan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Qingshi Zhang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sihyun Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yejin Bae
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Mukesh Singh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sungjune Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
31
|
Cao Z, Xie Y, Lin JL, Zhong S, Yan C, Yang Z, Li M, Zhou Z, Peng W, Qiu S, Liu J, Li Y. Flexible Crossbar Molecular Devices with Patterned EGaIn Top Electrodes for Integrated All-Molecule-Circuit Implementation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406456. [PMID: 39295460 DOI: 10.1002/adma.202406456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/25/2024] [Indexed: 09/21/2024]
Abstract
Here, a unique crossbar architecture is designed and fabricated, incorporating vertically integrated self-assembled monolayers in electronic devices. This architecture is used to showcase 100 individual vertical molecular junctions on a single chip with a high yield of working junctions and high device uniformity. The study introduces a transfer approach for patterned liquid-metal eutectic alloy of gallium and indium top electrodes, enabling the creation of fully flexible molecular devices with electrical functionalities. The devices exhibit excellent charge transport performance, sustain a high rectification ratio (>103), and stable endurance and retention properties, even when the devices are significantly bent. Furthermore, Boolean logic gates, including OR and AND gates, as well as half-wave and full-wave rectifying circuits, are successfully implemented. The unique design of the flexible molecular device represents a significant step in harnessing the potential of molecular devices for high-density integration and possible molecule-based computing.
Collapse
Affiliation(s)
- Zhou Cao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Xie
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuai Zhong
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, P. R. China
| | - Chenshuai Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Zhenyu Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingyao Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ziming Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wuxian Peng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shengzhe Qiu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
32
|
Handschuh-Wang S, Wang T, Gancarz T, Liu X, Wang B, He B, Dickey MD, Wimmer GW, Stadler FJ. The Liquid Metal Age: A Transition From Hg to Ga. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408466. [PMID: 39295483 DOI: 10.1002/adma.202408466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/25/2024] [Indexed: 09/21/2024]
Abstract
This review offers an illuminating journey through the historical evolution and modern-day applications of liquid metals, presenting a comprehensive view of their significance in diverse fields. Tracing the trajectory from mercury applications to contemporary innovations, the paper explores their pivotal role in industry and research. The analysis spans electrical switches, mechanical applications, electrodes, chemical synthesis, energy storage, thermal transport, electronics, and biomedicine. Each section examines the intricacies of liquid metal integration, elucidating their contributions to technological advancements and societal progress. Moreover, the review critically appraises the challenges and prospects inherent in liquid metal applications, addressing issues of recycling, corrosion management, device stability, economic feasibility, translational hurdles, and market dynamics. By delving into these complexities, the paper advances scholarly understanding and offers actionable insights for researchers, engineers, and policymakers. It aims to catalyze innovation, foster interdisciplinary collaboration, and promote liquid metal-enabled solutions for societal needs. Through its comprehensive analysis and forward-looking perspective, this review serves as a guide for navigating the landscape of liquid metal applications, bridging historical legacies with contemporary challenges, and highlighting the transformative potential of liquid metals in shaping future technologies.
Collapse
Affiliation(s)
- Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Tao Wang
- Advanced Materials Group Co., LTD, Fusionopolis Link #06-07, Nexus One-North, Singapore, 138543, Singapore
| | - Tomasz Gancarz
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, Krakow, 30-059, Poland
| | - Xiaorui Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Bin He
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, 27695, USA
| | - Georg W Wimmer
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Florian J Stadler
- Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Liu L, Pu Y, Fan J, Yan Y, Liu W, Luo K, Wang Y, Zhao G, Chen T, Puiu PD, Huang H. Wearable Sensors, Data Processing, and Artificial Intelligence in Pregnancy Monitoring: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:6426. [PMID: 39409471 PMCID: PMC11479201 DOI: 10.3390/s24196426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
Pregnancy monitoring is always essential for pregnant women and fetuses. According to the report of WHO (World Health Organization), there were an estimated 287,000 maternal deaths worldwide in 2020. Regular hospital check-ups, although well established, are a burden for pregnant women because of frequent travelling or hospitalization. Therefore, home-based, long-term, non-invasive health monitoring is one of the hot research areas. In recent years, with the development of wearable sensors and related data-processing technologies, pregnancy monitoring has become increasingly convenient. This article presents a review on recent research in wearable sensors, physiological data processing, and artificial intelligence (AI) for pregnancy monitoring. The wearable sensors mainly focus on physiological signals such as electrocardiogram (ECG), uterine contraction (UC), fetal movement (FM), and multimodal pregnancy-monitoring systems. The data processing involves data transmission, pre-processing, and application of threshold-based and AI-based algorithms. AI proves to be a powerful tool in early detection, smart diagnosis, and lifelong well-being in pregnancy monitoring. In this review, some improvements are proposed for future health monitoring of pregnant women. The rollout of smart wearables and the introduction of AI have shown remarkable potential in pregnancy monitoring despite some challenges in accuracy, data privacy, and user compliance.
Collapse
Affiliation(s)
- Linkun Liu
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yujian Pu
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Junzhe Fan
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu Yan
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenpeng Liu
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kailong Luo
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yiwen Wang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Guanlin Zhao
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tupei Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Poenar Daniel Puiu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hui Huang
- Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, Singapore 636732, Singapore
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| |
Collapse
|
34
|
Han X, Lin X, Sun Y, Huang L, Huo F, Xie R. Advancements in Flexible Electronics Fabrication: Film Formation, Patterning, and Interface Optimization for Cutting-Edge Healthcare Monitoring Devices. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356954 DOI: 10.1021/acsami.4c11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Flexible electronics can seamlessly adhere to human skin or internal tissues, enabling the collection of physiological data and real-time vital sign monitoring in home settings, which give it the potential to revolutionize chronic disease management and mitigate mortality rates associated with sudden illnesses, thereby transforming current medical practices. However, the development of flexible electronic devices still faces several challenges, including issues pertaining to material selection, limited functionality, and performance instability. Among these challenges, the choice of appropriate materials, as well as their methods for film formation and patterning, lays the groundwork for versatile device development. Establishing stable interfaces, both internally within the device and in human-machine interactions, is essential for ensuring efficient, accurate, and long-term monitoring in health electronics. This review aims to provide an overview of critical fabrication steps and interface optimization strategies in the realm of flexible health electronics. Specifically, we discuss common thin film processing methods, patterning techniques for functional layers, interface challenges, and potential adjustment strategies. The objective is to synthesize recent advancements and serve as a reference for the development of innovative flexible health monitoring devices.
Collapse
Affiliation(s)
- Xu Han
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Xinjing Lin
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Yifei Sun
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| | - Lingling Huang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, 10 Zhenhai Road, Xiamen 361102, Fujian, P. R. China
| | - Fengwei Huo
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruijie Xie
- Institute of Flexible Electronics (IFE, Future Technologies), Xiang'an Campus, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiang'an South Road, Xiamen 361102, Fujian, P. R. China
| |
Collapse
|
35
|
Sun W, Nan J, Che Y, Shan H, Sun Y, Xu W, Zhu S, Zhang J, Yang B. Liquid-metal-based microfluidic nanoplasmonic platform for point-of-care naked-eye antibody detection. Biosens Bioelectron 2024; 261:116469. [PMID: 38850738 DOI: 10.1016/j.bios.2024.116469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024]
Abstract
Despite high sensitivity of nanoparticle-on-mirror cavities, a crucial branch of plasmonic nanomaterials, complex preparation and readout processes limit their extensive application in biosensing. Alternatively, liquid metals (LMs) combining fluidity and excellent plasmonic characteristics have become potential candidates for constructing plasmonic nanostructures. Herein, we propose a microfluidic-integration strategy to construct LM-based immunoassay platform, enabling LM-based nanoplasmonic sensors to be used for point-of-care (POC) clinical biomarker detection. Flowable LM is introduced onto protein-coated Au nanoparticle monolayer to form a "mirror-on-nanoparticle" nanostructure, simplifying the fabrication process in the conventional nanoparticle-on-mirror cavities. When antibodies were captured by antigens coated on the Au nanoparticle monolayer, devices respond both thickness and refractive index change of biomolecular layers, outputting naked-eye readable signals with high sensitivity (limit of detection: ∼ 604 fM) and a broad dynamic range (6 orders). This new assay, which generates quantitative results in 30 min, allows for high-throughput, smartphone-based detection of SARS-CoV-2 antibodies against multiple variants in clinical serum or blood samples. These results establish an advanced avenue for POC testing with LM materials, and demonstrate its potential to facilitate diagnostics, surveillance and prevalence studies for various infectious diseases.
Collapse
Affiliation(s)
- Weihong Sun
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular, Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Jingjie Nan
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular, Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Yuanyuan Che
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Hongli Shan
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Yihan Sun
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular, Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Wei Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular, Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular, Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular, Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China
| |
Collapse
|
36
|
Patil D, Liu S, Ravichandran D, Thummalapalli SV, Zhu Y, Tang T, Golan Y, Miquelard-Garnier G, Asadi A, Li X, Chen X, Song K. Versatile Patterning of Liquid Metal via Multiphase 3D Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402432. [PMID: 38850181 DOI: 10.1002/smll.202402432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/13/2024] [Indexed: 06/10/2024]
Abstract
This paper presents a scalable and straightforward technique for the immediate patterning of liquid metal/polymer composites via multiphase 3D printing. Capitalizing on the polymer's capacity to confine liquid metal (LM) into diverse patterns. The interplay between distinctive fluidic properties of liquid metal and its self-passivating oxide layer within an oxidative environment ensures a resilient interface with the polymer matrix. This study introduces an inventive approach for achieving versatile patterns in eutectic gallium indium (EGaIn), a gallium alloy. The efficacy of pattern formation hinges on nozzle's design and internal geometry, which govern multiphase interaction. The interplay between EGaIn and polymer within the nozzle channels, regulated by variables such as traverse speed and material flow pressure, leads to periodic patterns. These patterns, when encapsulated within a dielectric polymer polyvinyl alcohol (PVA), exhibit an augmented inherent capacitance in capacitor assemblies. This discovery not only unveils the potential for cost-effective and highly sensitive capacitive pressure sensors but also underscores prospective applications of these novel patterns in precise motion detection, including heart rate monitoring, and comprehensive analysis of gait profiles. The amalgamation of advanced materials and intricate patterning techniques presents a transformative prospect in the domains of wearable sensing and comprehensive human motion analysis.
Collapse
Affiliation(s)
- Dhanush Patil
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Siying Liu
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | | | - Yuxiang Zhu
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Tengteng Tang
- The School for Engineering of Matter, Transport and Energy (SEMTE), Ira Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Yuval Golan
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, CNRS, Arts at Métiers Institute of Technology, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Amir Asadi
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX, 77843-3367, USA
| | - Xiangjia Li
- The School for Engineering of Matter, Transport and Energy (SEMTE), Ira Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Xiangfan Chen
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Kenan Song
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
- School of Environmental, Civil, Agricultural and Mechanical (ECAM), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
37
|
Liu X, Wang Q, Zhou S, Feng S, Wei Y, Bu F, Wang K, Wang J, Zhang B, Guan C. Stiffness and Interface Engineered Soft Electronics with Large-Scale Robust Deformability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407886. [PMID: 39180261 DOI: 10.1002/adma.202407886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Skin-like stretchable electronics emerge as promising human-machine interfaces but are challenged by the paradox between superior electronic property and reliable mechanical deformability. Here, a general strategy is reported for establishing robust large-scale deformable electronics by effectively isolating strains and strengthening interfaces. A copolymer substrate is designed to consist of mosaic stiff and elastic areas with nearly four orders of magnitudes modulus contrast and cross-linked interfaces. Electronic functional devices and stretchable liquid metal (LM) interconnects are conformally attached at the stiff and elastic areas, respectively, through hydrogen bonds. As a result, functional devices are completely isolated from strains, and resistances of LM conductors change by less than one time when the substrate is deformed by up to 550%. By this strategy, solar cells, wireless charging antenna, supercapacitors, and light-emitting diodes are integrated into a self-powered electronic skin that can laminate on the human body and exhibit stable performances during repeated multimode deformations, demonstrating an efficient path for realizing highly deformable energy autonomous soft electronics.
Collapse
Affiliation(s)
- Xiangye Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Qiangzheng Wang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Sufeng Zhou
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Shiwei Feng
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yulin Wei
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Fan Bu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Kai Wang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Biao Zhang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Cao Guan
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
38
|
Guo R, Li X, Zhou Y, Zhang Y, Jiang C, Yu Y, Tan Q, Ding W, Wang H. Semi-liquid metal-based highly permeable and adhesive electronic skin inspired by spider web. Sci Bull (Beijing) 2024; 69:2723-2734. [PMID: 39003155 DOI: 10.1016/j.scib.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/05/2024] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Soft and stretchable electronics have garnered significant attention in various fields, such as wearable electronics, electronic skins, and soft robotics. However, current wearable electronics made from materials like conductive elastomers, hydrogels, and liquid metals face limitations, including low permeability, poor adhesion, inadequate conductivity, and limited stretchability. These issues hinder their effectiveness in long-term healthcare monitoring and exercise monitoring. To address these challenges, we introduce a novel design of web-droplet-like electronics featuring a semi-liquid metal coating for wearable applications. This innovative design offers high permeability, excellent stretchability, strong adhesion, and good conductivity for the electronic skin. The unique structure, inspired by the architecture of a spider web, significantly enhances air permeability compared to commercial breathable patches. Furthermore, the distribution of polyborosiloxane mimics the adhesive properties of spider web mucus, while the use of semi-liquid metals in this design results in remarkable conductivity (9 × 106 S/m) and tensile performance (up to 850% strain). This advanced electronic skin technology enables long-term monitoring of various physiological parameters and supports machine learning recognition functions with unparalleled advantages. This web-droplet structure design strategy holds great promise for commercial applications in medical health monitoring and disease diagnosis.
Collapse
Affiliation(s)
- Rui Guo
- School of Precision Instrument and Opto-Electronics Engineering, The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Xiaoqing Li
- School of Precision Instrument and Opto-Electronics Engineering, The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yingtong Zhou
- Institute of Materials Research & Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuqi Zhang
- School of Precision Instrument and Opto-Electronics Engineering, The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Chengjie Jiang
- School of Precision Instrument and Opto-Electronics Engineering, The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yang Yu
- DREAM Ink Technologies Co. Ltd., Beijing 100083, China
| | - Qingting Tan
- Department of Ultrasound, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Wenbo Ding
- Institute of Materials Research & Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hongzhang Wang
- Institute of Materials Research & Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
39
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
40
|
Woodman SJ, Shah DS, Landesberg M, Agrawala A, Kramer-Bottiglio R. Stretchable Arduinos embedded in soft robots. Sci Robot 2024; 9:eadn6844. [PMID: 39259780 DOI: 10.1126/scirobotics.adn6844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
To achieve real-world functionality, robots must have the ability to carry out decision-making computations. However, soft robots stretch and therefore need a solution other than rigid computers. Examples of embedding computing capacity into soft robots currently include appending rigid printed circuit boards to the robot, integrating soft logic gates, and exploiting material responses for material-embedded computation. Although promising, these approaches introduce limitations such as rigidity, tethers, or low logic gate density. The field of stretchable electronics has sought to solve these challenges, but a complete pipeline for direct integration of single-board computers, microcontrollers, and other complex circuitry into soft robots has remained elusive. We present a generalized method to translate any complex two-layer circuit into a soft, stretchable form. This enabled the creation of stretchable single-board microcontrollers (including Arduinos) and other commercial circuits (including SparkFun circuits), without design simplifications. As demonstrations of the method's utility, we embedded highly stretchable (>300% strain) Arduino Pro Minis into the bodies of multiple soft robots. This makes use of otherwise inert structural material, fulfilling the promise of the stretchable electronic field to integrate state-of-the-art computational power into robust, stretchable systems during active use.
Collapse
Affiliation(s)
- Stephanie J Woodman
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| | - Dylan S Shah
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| | - Melanie Landesberg
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| | - Anjali Agrawala
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| | - Rebecca Kramer-Bottiglio
- Department of Mechanical Engineering and Materials Science, Yale University, 9 Hillhouse Ave., New Haven, CT 06511, USA
| |
Collapse
|
41
|
Ye S, Chen X, Sun X, Patel SB, Wu Y, Singler TJ, Zhang P, Zhou G. Oxidation-Induced Oxide Shell Rupture and Phase Separation in Eutectic Gallium-Indium Nanoparticles. ACS NANO 2024; 18:25107-25117. [PMID: 39190644 DOI: 10.1021/acsnano.4c06764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Eutectic gallium-indium (EGaIn), a room-temperature liquid metal, has garnered significant attention for its applications in soft electronics, multifunctional materials, energy engineering and drug delivery. A key factor influencing these diverse applications is the spontaneous formation of a native passivating oxide shell that not only encapsulates the liquid metal but also alters the properties from the bulk counterpart. Using environmental scanning transmission electron microscopy, we report in situ observations of the oxidation of EGaIn nanoparticles by ambient air under high-energy electron beam irradiation. Our findings demonstrate that uneven oxide shell growth, driven by inward diffusion of adsorbed O species, creates unbalanced stresses. This compels the liquid metal to deform toward regions with slower oxide growth, resulting in shell rupture and allowing the liquid metal core to flow out. This process initiates top-down self-similar replication of the core-shell liquid metal nanoparticles, causing larger particles to break down into smaller particles. Additionally, internal oxidation triggers phase separation within the liquid core, ultimately leading to the pulverization of the liquid metal into finer solid particles rich in indium. These mechanistic insights into the oxidation behavior of the liquid metal hold practical implications for leveraging this process to reconfigure EGaIn nanoparticles for various applications.
Collapse
Affiliation(s)
- Shuonan Ye
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Xiaobo Chen
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Xianhu Sun
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shyam Bharatkumar Patel
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Yupeng Wu
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Timothy J Singler
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Pu Zhang
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Guangwen Zhou
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
42
|
Liu S, Wu Y, Jiang L, Xie W, Davis B, Wang M, Zhang L, Liu Y, Xing S, Dickey MD, Bai W. Highly Stretchable, Tissue-like Ag Nanowire-Enhanced Ionogel Nanocomposites as an Ionogel-Based Wearable Sensor for Body Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46538-46547. [PMID: 39087831 DOI: 10.1021/acsami.4c10539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The development of wearable electronic devices for human health monitoring requires materials with high mechanical performance and sensitivity. In this study, we present a novel transparent tissue-like ionogel-based wearable sensor based on silver nanowire-reinforced ionogel nanocomposites, P(AAm-co-AA) ionogel-Ag NWs composite. The composite exhibits a high stretchability of 605% strain and a moderate fracture stress of about 377 kPa. The sensor also demonstrates a sensitive response to temperature changes and electrostatic adsorption. By encapsulating the nanocomposite in a polyurethane transparent film dressing, we address issues such as skin irritation and enable multidirectional stretching. Measuring resistive changes of the ionogel nanocomposite in response to corresponding strain changes enables its utility as a highly stretchable wearable sensor with excellent performance in sensitivity, stability, and repeatability. The fabricated pressure sensor array exhibits great proficiency in stress distribution, capacitance sensing, and discernment of fluctuations in both external electric fields and stress. Our findings suggest that this material holds promise for applications in wearable and flexible strain sensors, temperature sensors, pressure sensors, and actuators.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Yizhang Wu
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Lai Jiang
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Wanrong Xie
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Brayden Davis
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Chapel Hill, North Carolina 27514, United States
| | - Meixiang Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Lin Zhang
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Yihan Liu
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Sicheng Xing
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Chapel Hill, North Carolina 27514, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Wubin Bai
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
43
|
Ma J, Sa Z, Zhang H, Feng J, Wen J, Wang S, Tian Y. Microconfined Assembly of High-Resolution and Mechanically Robust EGaIn Liquid Metal Stretchable Electrodes for Wearable Electronic Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402818. [PMID: 38898769 PMCID: PMC11425843 DOI: 10.1002/advs.202402818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Stretchable electrodes based on liquid metals (LM) are widely used in human-machine interfacing, wearable bioelectronics, and other emerging technologies. However, realizing the high-precision patterning and mechanical stability remains challenging due to the poor wettability of LM. Herein, a method is reported to fabricate LM-based multilayer solid-liquid electrodes (m-SLE) utilizing electrohydrodynamic (EHD) printed confinement template. In these electrodes, LM self-assembled onto these high-resolution templates, assisted by selective wetting on the electrodeposited Cu layer. This study shows that a m-SLE composed of PDMS/Ag/Cu/EGaIn exhibits line width of ≈20 µm, stretchability of ≈100%, mechanical stability ≈10 000 times (stretch/relaxation cycles), and recyclability. The multi-layer structure of m-SLE enables the adjustability of strain sensing, in which the strain-sensitive Ag part can be used for non-distributed detection in human health monitoring and the strain-insensitive EGaIn part can be used as interconnects. In addition, this study demonstrates that near field communication (NFC) devices and multilayer displays integrated by m-SLEs exhibit stable wireless signal transmission capability and stretchability, suggesting its applicability in creating highly-integrated, large-scale commercial, and recyclable wearable electronics.
Collapse
Affiliation(s)
- Jingxuan Ma
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - Zicheng Sa
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - He Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong, 999077, China
| | - Jiayun Feng
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiayue Wen
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450041, China
| | - Shang Wang
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450041, China
| | - Yanhong Tian
- National Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450041, China
| |
Collapse
|
44
|
Aliev TA, Lavrentev FV, Dyakonov AV, Diveev DA, Shilovskikh VV, Skorb EV. Electrochemical platform for detecting Escherichia coli bacteria using machine learning methods. Biosens Bioelectron 2024; 259:116377. [PMID: 38776798 DOI: 10.1016/j.bios.2024.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
We present an electrochemical platform designed to reduce time of Escherichia coli bacteria detection from 24 to 48-h to 30 min. The presented approach is based on a system which includes gallium-indium (eGaIn) alloy to provide conductivity and a hydrogel system to preserve bacteria and their metabolic species during the analysis. The work is dedicated to accurate and fast detection of Escherichia coli bacteria in different environments with the supply of machine learning methods. Electrochemical data obtained during the analysis is processed via multilayer perceptron model to identify i.e. predict bacterial concentration in the samples. The performed approach provides the effectiveness of bacteria identification in the range of 102-109 colony forming units per ml with the average accuracy of 97%. The proposed bioelectrochemical system combined with machine learning model is prospective for food analysis, agriculture, biomedicine.
Collapse
Affiliation(s)
- Timur A Aliev
- Infochemistry Scientific Center, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russia
| | - Filipp V Lavrentev
- Infochemistry Scientific Center, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russia
| | - Alexandr V Dyakonov
- Infochemistry Scientific Center, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russia
| | - Daniil A Diveev
- Infochemistry Scientific Center, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russia
| | - Vladimir V Shilovskikh
- Infochemistry Scientific Center, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russia; Saint Petersburg State University, Universitetskaya Embankment 7-9, Saint-Petersburg, 199034, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, 9 Lomonosova Street, Saint-Petersburg, 191002, Russia.
| |
Collapse
|
45
|
Lim C, Lee S, Kang H, Cho YS, Yeom DH, Sunwoo SH, Park C, Nam S, Kim JH, Lee SP, Kim DH, Hyeon T. Highly Conductive and Stretchable Hydrogel Nanocomposite Using Whiskered Gold Nanosheets for Soft Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407931. [PMID: 39129342 DOI: 10.1002/adma.202407931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Indexed: 08/13/2024]
Abstract
The low electrical conductivity of conductive hydrogels limits their applications as soft conductors in bioelectronics. This low conductivity originates from the high water content of hydrogels, which impedes facile carrier transport between conductive fillers. This study presents a highly conductive and stretchable hydrogel nanocomposite comprising whiskered gold nanosheets. A dry network of whiskered gold nanosheets is fabricated and then incorporated into the wet hydrogel matrices. The whiskered gold nanosheets preserve their tight interconnection in hydrogels despite the high water content, providing a high-quality percolation network even under stretched states. Regardless of the type of hydrogel matrix, the gold-hydrogel nanocomposites exhibit a conductivity of ≈520 S cm-1 and a stretchability of ≈300% without requiring a dehydration process. The conductivity reaches a maximum of ≈3304 S cm-1 when the density of the dry gold network is controlled. A gold-adhesive hydrogel nanocomposite, which can achieve conformal adhesion to moving organ surfaces, is fabricated for bioelectronics demonstrations. The adhesive hydrogel electrode outperforms elastomer-based electrodes in in vivo epicardial electrogram recording, epicardial pacing, and sciatic nerve stimulation.
Collapse
Affiliation(s)
- Chaehong Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghwan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejeong Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Ye Seul Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Da-Hae Yeom
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Chansul Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
46
|
Li D, Cui T, Xu Z, Xu S, Dong Z, Tao L, Liu H, Yang Y, Ren TL. Designs and Applications for the Multimodal Flexible Hybrid Epidermal Electronic Systems. RESEARCH (WASHINGTON, D.C.) 2024; 7:0424. [PMID: 39130493 PMCID: PMC11310101 DOI: 10.34133/research.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024]
Abstract
Research on the flexible hybrid epidermal electronic system (FHEES) has attracted considerable attention due to its potential applications in human-machine interaction and healthcare. Through material and structural innovations, FHEES combines the advantages of traditional stiff electronic devices and flexible electronic technology, enabling it to be worn conformally on the skin while retaining complex system functionality. FHEESs use multimodal sensing to enhance the identification accuracy of the wearer's motion modes, intentions, or health status, thus realizing more comprehensive physiological signal acquisition. However, the heterogeneous integration of soft and stiff components makes balancing comfort and performance in designing and implementing multimodal FHEESs challenging. Herein, multimodal FHEESs are first introduced in 2 types based on their different system structure: all-in-one and assembled, reflecting totally different heterogeneous integration strategies. Characteristics and the key design issues (such as interconnect design, interface strategy, substrate selection, etc.) of the 2 multimodal FHEESs are emphasized. Besides, the applications and advantages of the 2 multimodal FHEESs in recent research have been presented, with a focus on the control and medical fields. Finally, the prospects and challenges of the multimodal FHEES are discussed.
Collapse
Affiliation(s)
- Ding Li
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Tianrui Cui
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Zigan Xu
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Shuoyan Xu
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Zirui Dong
- School of Integrated Circuit,
Tsinghua University, Beijing, China
| | - Luqi Tao
- Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China
| | - Houfang Liu
- Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China
| | - Yi Yang
- School of Integrated Circuit,
Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China
| | - Tian-Ling Ren
- School of Integrated Circuit,
Tsinghua University, Beijing, China
- Beijing National Research Center for Information Science and Technology (BNRist),
Tsinghua University, Beijing, China
| |
Collapse
|
47
|
Mahapatra R, Das S, Gill AK, Singh D, Sangwan A, Ghosh K, Patra D. Sculpting liquid metal stabilized interfaces: a gateway to liquid electronics. NANOSCALE 2024; 16:14350-14357. [PMID: 39018112 DOI: 10.1039/d4nr01836b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Liquid electronics have potential applications in soft robotics, printed electronics, and healable electronics. The intrinsic shortcomings of solid-state electronics can be offset by liquid conductors. Alloys of gallium have emerged as transformative materials for liquid electronics owing to their intrinsic fluidity, conductivity, and low toxicity. However, sculpting liquid metal or its composites into a 3D architecture is a challenging task. To tackle this issue, herein, we explored the interfacial chemistry of metal ions and tannic acid (TA) complexation at a liquid-liquid interface. First, we established that an MIII-TA network at the liquid-liquid interface could structure liquid in liquid by jamming the interfacial film. The surface coverage of the droplet largely depends on the concentration of metal ions, oxidation state of metal ions and pH of the surrounding environment. Further extending the approach, we demonstrated that TA-functionalized gallium nanoparticles (Ga NPs) can also sculpt liquid droplets in the presence of transition metal ions. Finally, a mold-based free-standing 3D architecture is obtained using the interfacial reaction and interfacial crowding of a metal-phenolate network. Conductivity measurement reveals that these liquid constructs can be used for low-voltage electronic applications, thus opening the door for liquid electronics.
Collapse
Affiliation(s)
- Reek Mahapatra
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India.
| | - Subhabrata Das
- Quantum Materials and Device Unit, Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India
| | - Arshdeep Kaur Gill
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India.
| | - Devender Singh
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India.
| | - Anvi Sangwan
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India.
| | - Kaushik Ghosh
- Quantum Materials and Device Unit, Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India
| | - Debabrata Patra
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab, India.
| |
Collapse
|
48
|
Lee S, Chung WG, Jeong H, Cui G, Kim E, Lim JA, Seo H, Kwon YW, Byeon SH, Lee J, Park JU. Electrophysiological Analysis of Retinal Organoid Development Using 3D Microelectrodes of Liquid Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404428. [PMID: 38896876 DOI: 10.1002/adma.202404428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Despite of the substantial potential of human-derived retinal organoids, the degeneration of retinal ganglion cells (RGCs) during maturation limits their utility in assessing the functionality of later-born retinal cell subtypes. Additionally, conventional analyses primarily rely on fluorescent emissions, which limits the detection of actual cell functionality while risking damage to the 3D cytoarchitecture of organoids. Here, an electrophysiological analysis is presented to monitor RGC development in early to mid-stage retinal organoids, and compare distinct features with fully-mature mouse retina. This approach utilizes high-resolution 3D printing of liquid-metal microelectrodes, enabling precise targeting of specific inner retinal layers within organoids. The adaptable distribution and softness of these microelectrodes facilitate the spatiotemporal recording of inner retinal signals. This study not only demonstrates the functional properties of RGCs in retinal organoid development but also provides insights into their synaptic connectivity, reminiscent of fetal native retinas. Further comparison with fully-mature mouse retina in vivo verifies the organoid features, highlighting the potential of early-stage retinal organoids in biomedical research.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Materials Science & Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Won Gi Chung
- Department of Materials Science & Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Han Jeong
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Gang Cui
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Enji Kim
- Department of Materials Science & Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeong Ah Lim
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hunkyu Seo
- Department of Materials Science & Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong Won Kwon
- Department of Materials Science & Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suk Ho Byeon
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Junwon Lee
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science & Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
49
|
Yang X, Chen Y, Chen T, Li J, Wang Y. Active Fabrics With Controllable Stiffness for Robotic Assistive Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404502. [PMID: 38822632 DOI: 10.1002/adma.202404502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Assistive interfaces enable collaborative interactions between humans and robots. In contrast to traditional rigid devices, conformable fabrics with tunable mechanical properties have emerged as compelling alternatives. However, existing assistive fabrics actuated by fluidic or thermal stimuli struggle to adapt to complex body contours and are hindered by challenges such as large volumes after actuation and slow response rates. To overcome these limitations, inspiration is drawn from biological protective organisms combining hard and soft phases, and active assistive fabrics consisting of architectured rigid tiles interconnected with flexible actuated fibers are proposed. Through programmable tessellation of target body shapes into architectured tiles and controlling their interactions by the actuated fibers, the active fabrics can rapidly transition between soft compliant configurations and rigid states conformable to the body (>350 times stiffness change) while minimizing the device volume after actuation. The versatility of these active fabrics is demonstrated as exosuits for tremor suppression and lifting assistance, as body armors for impact mitigation, and integration with electrothermal actuators for smart actuation with convenient folding capabilities. This work offers a practical framework for designing customizable active fabrics with shape adaptivity and controllable stiffness, suitable for applications in wearable exosuits, haptic devices, and medical rehabilitation systems.
Collapse
Affiliation(s)
- Xudong Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yu Chen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Tianyu Chen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Junwei Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
50
|
Krisnadi F, Kim S, Im S, Chacko D, Vong MH, Rykaczewski K, Park S, Dickey MD. Printable Liquid Metal Foams That Grow When Watered. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308862. [PMID: 38252810 DOI: 10.1002/adma.202308862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Pastes and "foams" containing liquid metal (LM) as the continuous phase (liquid metal foams, LMFs) exhibit metallic properties while displaying paste or putty-like rheological behavior. These properties enable LMFs to be patterned into soft and stretchable electrical and thermal conductors through processes conducted at room temperature, such as printing. The simplest LMFs, featured in this work, are made by stirring LM in air, thereby entraining oxide-lined air "pockets" into the LM. Here, it is reported that mixing small amounts of water (as low as 1 wt%) into such LMFs gives rise to significant foaming by harnessing known reactions that evolve hydrogen and produce oxides. The resulting structures can be ≈4-5× their original volume and possess a fascinating combination of attributes: porosity, electrical conductivity, and responsiveness to environmental conditions. This expansion can be utilized for a type of 4D printing in which patterned conductors "grow," fill cavities, and change shape and density with respect to time. Excessive exposure to water in the long term ultimately consumes the metal in the LMF. However, when exposure to water is controlled, the metallic properties of porous LMFs can be preserved.
Collapse
Affiliation(s)
- Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Seoyeon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Sooik Im
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dennis Chacko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Man Hou Vong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Sungjune Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|