1
|
Yu W, Wang K, Li H, Ma T, Wu Y, Shang Y, Zhang C, Fan F, Lv S. An updated review of few-layer black phosphorus serving as a promising photocatalyst: synthesis, modification and applications. NANOSCALE 2024; 16:19131-19173. [PMID: 39320464 DOI: 10.1039/d4nr02567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Semiconductor photocatalysts represent a potential strategy to simultaneously solve the global energy shortage and environmental pollution, and black phosphorus (BP) has gained widespread applications in photocatalysis due to its high hole mobility, strong light trapping capabilities, and adjustable band gap. Nevertheless, the original material exhibits unsatisfactory photocatalytic activity in terms of low carrier separation efficiency, weak environmental stability, and difficult to control layer thickness. The following review briefly presents the fundamental characteristics and extensively discusses the synthesis methods and modification strategies for few-layer black phosphorus (FL-BP). Furthermore, various applications of composite photocatalysts derived from FL-BP such as water splitting, pollutant degradation, the carbon dioxide reduction reaction (CO2RR), phototherapy, bacterial disinfection, N2 fixation, and hydrogenation reactions are reviewed. Finally, the opportunities and challenges for the development and further investigation of advanced FL-BP-based photocatalysts are also presented.
Collapse
Affiliation(s)
- Wei Yu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Ting Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yingying Wu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yongchang Shang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Fuhao Fan
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Shifei Lv
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
2
|
Wang J, Miao Y, Lu Z, Zhang Q, Guo W, Zhao M, Zhai X, Du H. High-Yield Exfoliation of Stanene Nanodots for High-Performance Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46590-46599. [PMID: 39171824 DOI: 10.1021/acsami.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Stanene nanodots (SnNDs) derived from layered tin have attracted considerable interest due to their conveniently tunable bandgap and topological superconductivity. However, high-yield exfoliation of ultrathin SnNDs is still a challenge due to the short layer spacing and strong binding energy. In this work, atomically thin SnNDs with a uniform size of 2.3 nm are successfully prepared by utilizing imidazolium ionic liquid-assisted exfoliation. The obtained SnNDs possess a wide bandgap of 2.69 eV, along with notable solvent compatibility (well dispersed in both polar and nonpolar solvents) and excellent stability. Furthermore, we construct Ir(ppy)3-based green OLED with hybridizing SnNDs and graphene oxide (GO) as the hole injection layer (HIL). It proves that the application of SnNDs helps to modulate the work function and passivate surface defects of GO, increasing hole mobility and thereby improving the device performance. Compared to the PEDOT:PSS-based control device, the optimized SnNDs-GO-based OLED demonstrates an improvement of 6.56, 41.06, and 8.16% in current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE), respectively. This work not only introduces a new approach to preparing 2D SnNDs but also creates a novel HIL material for OLED devices.
Collapse
Affiliation(s)
- Jingkun Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yanqin Miao
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Ze Lu
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Qi Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Wenhao Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Min Zhao
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
- Aluminum-Magnesium Based New Material R&D Co., Ltd., Subsidiary of Xing Xian County Economic and Technological Development Zone, Xing Xian County 033600, China
| | - Xinping Zhai
- Research Institute of Microscale Optoelectronics, School of Jia Yang, Zhejiang Shuren, Shaoxing, Zhejiang 312028, China
| | - Huayun Du
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
3
|
Xiao L, Zheng Q, Luo S, Ying Y, Zhou R, Zhou S, Li X, Ye X, Yu Z, Xu Q, Liao H, Xu J. Pd-intercalated black phosphorus: An efficient electrocatalyst for CO 2 reduction. SCIENCE ADVANCES 2024; 10:eadn2707. [PMID: 38896618 PMCID: PMC11186487 DOI: 10.1126/sciadv.adn2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Nanoconfined catalysts enhance stabilization of reaction intermediates, facilitate electron transfer, and safeguard active centers, leading to superior electrocatalytic activity, particularly in CO2 reduction reactions (CO2RR). Despite their effectiveness, crafting nanoconfined catalysts is challenging due to unclear formation mechanisms. In this study, we introduce an electrochemical method to grow Pd clusters within the interlayers of two-dimensional black phosphorus, creating Pd cluster-intercalated black phosphorus (Pd-i-BP) as an electrocatalyst. Using in situ electrochemical liquid phase transmission electron microscopy (EC-TEM), we revealed the synthesis mechanism of Pd-i-BP, involving electrochemically driven Pd ion intercalation followed by reduction within the BP layers. The Pd-i-BP electrocatalyst exhibits exemplary CO2-to-formate conversion, achieving 90% Faradaic efficiency for formate production, owing to its distinct nanoconfined structure that stabilizes intermediates and enhances electron transfer. Density functional theory (DFT) calculations underscore the structural benefits for enhancing intermediate adsorption and catalyzing the reaction. Our insights deepen understanding of nanoconfined material synthesis, promising advanced, high-efficiency catalysts.
Collapse
Affiliation(s)
- Liangping Xiao
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, P. R. China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, P. R. China
| | - Qizheng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shiwen Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yifan Ying
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Rusen Zhou
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Shiyuan Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xingyun Li
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaoyuan Ye
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Qingchi Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, P. R. China
| | - Honggang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jun Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, P. R. China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, P. R. China
| |
Collapse
|
4
|
Yang R, Mei L, Lin Z, Fan Y, Lim J, Guo J, Liu Y, Shin HS, Voiry D, Lu Q, Li J, Zeng Z. Intercalation in 2D materials and in situ studies. Nat Rev Chem 2024; 8:410-432. [PMID: 38755296 DOI: 10.1038/s41570-024-00605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
Intercalation of atoms, ions and molecules is a powerful tool for altering or tuning the properties - interlayer interactions, in-plane bonding configurations, Fermi-level energies, electronic band structures and spin-orbit coupling - of 2D materials. Intercalation can induce property changes in materials related to photonics, electronics, optoelectronics, thermoelectricity, magnetism, catalysis and energy storage, unlocking or improving the potential of 2D materials in present and future applications. In situ imaging and spectroscopy technologies are used to visualize and trace intercalation processes. These techniques provide the opportunity for deciphering important and often elusive intercalation dynamics, chemomechanics and mechanisms, such as the intercalation pathways, reversibility, uniformity and speed. In this Review, we discuss intercalation in 2D materials, beginning with a brief introduction of the intercalation strategies, then we look into the atomic and intrinsic effects of intercalation, followed by an overview of their in situ studies, and finally provide our outlook.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Liang Mei
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, China
| | - Yingying Fan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jongwoo Lim
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jinghua Guo
- Advanced Light Source, Energy Storage and Distributed Resources Division, and Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yijin Liu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hyeon Suk Shin
- Center for 2D Quantum Heterostructures, Institute for Basic Science, and Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, Canada.
| | - Ju Li
- Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, P. R. China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
5
|
Goren AY, Gungormus E, Vatanpour V, Yoon Y, Khataee A. Recent Progress on Synthesis and Properties of Black Phosphorus and Phosphorene As New-Age Nanomaterials for Water Decontamination. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38604807 DOI: 10.1021/acsami.3c19230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Concerted efforts have been made in recent years to find solutions to water and wastewater treatment challenges and eliminate the difficulties associated with treatment methods. Various techniques are used to ensure the recycling and reuse of water resources. Owing to their excellent chemical, physical, and biological properties, nanomaterials play an important role when integrated into water/wastewater treatment technologies. Black phosphorus (BP) is a potential nanomaterial candidate for water and wastewater treatment, especially its monolayer 2D derivative called phosphorene. Phosphorene offers relative adjustability in its direct bandgap, high charge carrier mobility, and improved in-plane anisotropy compared to the most extensively studied 2D nanomaterials. In this study, we examined the physical and chemical characteristics and synthetic processes of BP and phosphorene. We provide an overview of the latest advancements in the main applications of BP and phosphorene in water/wastewater treatment, which are categorized as photocatalytic, adsorption, and membrane filtration processes. Additionally, we explore the existing difficulties in the integration of BP and phosphorene into water/wastewater treatment technologies and prospects for future research in this field. In summary, this review highlights the ongoing necessity for significant research efforts on the integration of BP and phosphorene in water and wastewater applications.
Collapse
Affiliation(s)
- A Yagmur Goren
- Department of Environmental Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Elif Gungormus
- Department of Chemical Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- Environmental Engineering Department & National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Istanbul 34469, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Alireza Khataee
- Department of Chemical Engineering & ITU Synthetic Fuels and Chemicals Technology Center (ITU-SENTEK), Istanbul Technical University, Istanbul 34469, Turkey
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| |
Collapse
|
6
|
Zhao M, Casiraghi C, Parvez K. Electrochemical exfoliation of 2D materials beyond graphene. Chem Soc Rev 2024; 53:3036-3064. [PMID: 38362717 DOI: 10.1039/d3cs00815k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
After the discovery of graphene in 2004, the field of atomically thin crystals has exploded with the discovery of thousands of 2-dimensional materials (2DMs) with unique electronic and optical properties, by making them very attractive for a broad range of applications, from electronics to energy storage and harvesting, and from sensing to biomedical applications. In order to integrate 2DMs into practical applications, it is crucial to develop mass scalable techniques providing crystals of high quality and in large yield. Electrochemical exfoliation is one of the most promising methods for producing 2DMs, as it enables quick and large-scale production of solution processable nanosheets with a thickness well below 10 layers and lateral size above 1 μm. Originally, this technique was developed for the production of graphene; however, in the last few years, this approach has been successfully extended to other 2DMs, such as transition metal dichalcogenides, black phosphorous, hexagonal boron nitride, MXenes and many other emerging 2D materials. This review first provides an introduction to the fundamentals of electrochemical exfoliation and then it discusses the production of each class of 2DMs, by introducing their properties and giving examples of applications. Finally, a summary and perspective are given to address some of the challenges in this research area.
Collapse
Affiliation(s)
- Minghao Zhao
- Department of Chemistry, University of Manchester, M13 9PL Manchester, UK.
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, M13 9PL Manchester, UK.
| | - Khaled Parvez
- Department of Chemistry, University of Manchester, M13 9PL Manchester, UK.
| |
Collapse
|
7
|
Zhang Z, He D, Zhang K, Yang H, Zhao S, Qu J. Recent Advances in Black Phosphorous-Based Photocatalysts for Degradation of Emerging Contaminants. TOXICS 2023; 11:982. [PMID: 38133383 PMCID: PMC10747269 DOI: 10.3390/toxics11120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The recalcitrant nature of emerging contaminants (ECs) in aquatic environments necessitates the development of effective strategies for their remediation, given the considerable impacts they pose on both human health and the delicate balance of the ecosystem. Semiconductor-based photocatalytic technology is recognized for its dual benefits in effectively addressing both ECs and energy-related challenges simultaneously. Among the plethora of photocatalysts, black phosphorus (BP) stands as a promising nonmetallic candidate, offering a host of advantages including its tunable direct band gap, broad-spectrum light absorption capabilities, and exceptional charge mobility. Nevertheless, pristine BP frequently underperforms, primarily due to issues related to its limited ambient stability and the rapid recombination of photogenerated electron-hole pairs. To overcome these challenges, substantial research efforts have been devoted to the creation of BP-based photocatalysts in recent years. However, there is a noticeable absence of reviews regarding the advancement of BP-based materials for the degradation of ECs in aqueous solutions. Therefore, to fill this gap, a comprehensive review is undertaken. In this review, we first present an in-depth examination of the fabrication processes for bulk BP and BP nanosheets (BPNS). The review conducts a thorough analysis and comparison of the merits and limitations inherent in each method, thereby delineating the most auspicious avenues for future research. Then, in line with the pathways followed by photogenerated electron-hole pairs at the interface, BP-based photocatalysts are systematically categorized into heterojunctions (Type I, Type II, Z-scheme, and S-scheme) and hybrids, and their photocatalytic performances against various ECs and the corresponding degradation mechanisms are comprehensively summarized. Finally, this review presents personal insights into the prospective avenues for advancing the field of BP-based photocatalysts for ECs remediation.
Collapse
Affiliation(s)
- Zhaocheng Zhang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China;
| | - Dongyang He
- School of Environment, Northeast Normal University, Changchun 130117, China; (K.Z.); (H.Y.); (S.Z.)
| | - Kangning Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China; (K.Z.); (H.Y.); (S.Z.)
| | - Hao Yang
- School of Environment, Northeast Normal University, Changchun 130117, China; (K.Z.); (H.Y.); (S.Z.)
| | - Siyu Zhao
- School of Environment, Northeast Normal University, Changchun 130117, China; (K.Z.); (H.Y.); (S.Z.)
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun 130117, China; (K.Z.); (H.Y.); (S.Z.)
| |
Collapse
|
8
|
Chang Q, Fu X, Gao J, Zhang Z, Liu X, Huang C, Li Y. Advanced Multilayered Electrode with Planar Building Blocks Structure for High-Performance Lithium-Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305317. [PMID: 37566440 DOI: 10.1002/adma.202305317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/04/2023] [Indexed: 08/12/2023]
Abstract
To achieve the high-performance of lithium-ion battery, the optimization of electrode materials has generally been considered as the one of the important methods. But most of those works pay attention to the new materials preparation or interface modification rather than the structural innovation. Here, an advanced electrode (GDY/BP/GDY-E) with multilevel layered architecture constructed by planar building blocks stacking structure has been designed and fabricated to explore the structure design of the electrode. This new structure is assembled by graphdiyne (GDY) and black phosphorus (BP) in parallel to form a building block (GDY/BP/GDY). The electric fields between the two GDY sides of the planar building block structure contribute to the superior migration dynamics of lithium ions and desirable pseudocapacitance behavior. Meanwhile, the planar stacking structure of GDY/BP/GDY can efficiently inhibit volume expansion of BP and a series of parasitic reactions of electrolytes during the long-term cycling. The advanced GDY/BP/GDY-E exhibits excellent high-rate performance (1418.8 mAh g-1 at 0.1 A g-1 ) and cycling stability (391.7 mAh g-1 after 5000 cycles at 10 A g-1 ). Such structural design of electrode materials shows a new way to develop high-performance electrodes.
Collapse
Affiliation(s)
- Qian Chang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research / Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- College of Materials Science and Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Xinlong Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research / Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingchi Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research / Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihui Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research / Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Changshui Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research / Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research / Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Tian H, Wang J, Lai G, Dou Y, Gao J, Duan Z, Feng X, Wu Q, He X, Yao L, Zeng L, Liu Y, Yang X, Zhao J, Zhuang S, Shi J, Qu G, Yu XF, Chu PK, Jiang G. Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chem Soc Rev 2023; 52:5388-5484. [PMID: 37455613 DOI: 10.1039/d2cs01018f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The polymorphism of phosphorus-based materials has garnered much research interest, and the variable chemical bonding structures give rise to a variety of micro and nanostructures. Among the different types of materials containing phosphorus, elemental phosphorus materials (EPMs) constitute the foundation for the synthesis of related compounds. EPMs are experiencing a renaissance in the post-graphene era, thanks to recent advancements in the scaling-down of black phosphorus, amorphous red phosphorus, violet phosphorus, and fibrous phosphorus and consequently, diverse classes of low-dimensional sheets, ribbons, and dots of EPMs with intriguing properties have been produced. The nanostructured EPMs featuring tunable bandgaps, moderate carrier mobility, and excellent optical absorption have shown great potential in energy conversion, energy storage, and environmental remediation. It is thus important to have a good understanding of the differences and interrelationships among diverse EPMs, their intrinsic physical and chemical properties, the synthesis of specific structures, and the selection of suitable nanostructures of EPMs for particular applications. In this comprehensive review, we aim to provide an in-depth analysis and discussion of the fundamental physicochemical properties, synthesis, and applications of EPMs in the areas of energy conversion, energy storage, and environmental remediation. Our evaluations are based on recent literature on well-established phosphorus allotropes and theoretical predictions of new EPMs. The objective of this review is to enhance our comprehension of the characteristics of EPMs, keep abreast of recent advances, and provide guidance for future research of EPMs in the fields of chemistry and materials science.
Collapse
Affiliation(s)
- Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gengchang Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanpeng Dou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Zunbin Duan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Xiaoxiao Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xingchen He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Paul K Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Fang S, Zhang S, Ni L, Zou G, Hou H, Liu H, Deng W, Ji X. Electrochemically Engineering a Single-Crystal Nickel-Rich Layered Cathode. Inorg Chem 2023; 62:4514-4524. [PMID: 36872651 DOI: 10.1021/acs.inorgchem.2c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Nickel-rich layered electrode material has been attracting significant attention owing to its high specific capacity as a cathode for lithium-ion batteries. Generally, the high-nickel ternary precursors obtained by traditional coprecipitation methods are micron-scale. In this work, the submicrometer single-crystal LiNi0.8Co0.1Mn0.1O2 (NCM) cathode is efficiently prepared by electrochemically anodic oxidation followed by a molten-salt-assisted reaction without the need of extreme alkaline environments and complex processes. More importantly, when prepared under optimal voltage (10 V), single-crystal NCM exhibits a moderate particle size (∼250 nm) and strong metal-oxygen bonds due to reasonable and balanced crystal nucleation/growth rate, which are conducive to greatly enhancing the Li+ diffusion kinetics and structure stability. Given that a good discharge capacity of 205.7 mAh g-1 at 0.1 C (1 C = 200 mAh g-1) and a superior capacity retention of 87.7% after 180 cycles at 1 C are obtained based on the NCM electrode, this strategy is effective and flexible for developing a submicrometer single-crystal nickel-rich layered cathode. Besides, it can be adopted to elevate the performance and utilization of nickel-rich cathode materials.
Collapse
Affiliation(s)
- Susu Fang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shu Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Lianshan Ni
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huiqun Liu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.,School of Material Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, Henan, Zhengzhou 450001 China
| |
Collapse
|
11
|
Lu X, Cai M, Wu X, Zhang Y, Li S, Liao S, Lu X. Controllable Synthesis of 2D Materials by Electrochemical Exfoliation for Energy Storage and Conversion Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206702. [PMID: 36513389 DOI: 10.1002/smll.202206702] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
2D materials have captured much recent research interest in a broad range of areas, including electronics, biology, sensors, energy storage, and others. In particular, preparing 2D nanosheets with high quality and high yield is crucial for the important applications in energy storage and conversion. Compared with other prevailing synthetic strategies, the electrochemical exfoliation of layered starting materials is regarded as one of the most promising and convenient methods for the large-scale production of uniform 2D nanosheets. Here, recent developments in electrochemical delamination are reviewed, including protocols, categories, principles, and operating conditions. State-of-the-art methods for obtaining 2D materials with small numbers of layers-including graphene, black phosphorene, transition metal dichalcogenides and MXene-are also summarized and discussed in detail. The applications of electrochemically exfoliated 2D materials in energy storage and conversion are systematically reviewed. Drawing upon current progress, perspectives on emerging trends, existing challenges, and future research directions of electrochemical delamination are also offered.
Collapse
Affiliation(s)
- Xueyi Lu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mohang Cai
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xuemin Wu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yongfei Zhang
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuai Li
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Department of Physics and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shijun Liao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 501641, China
| | - Xia Lu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
12
|
Ampong DN, Agyekum E, Agyemang FO, Mensah-Darkwa K, Andrews A, Kumar A, Gupta RK. MXene: fundamentals to applications in electrochemical energy storage. NANOSCALE RESEARCH LETTERS 2023; 18:3. [PMID: 36732431 DOI: 10.1186/s11671-023-03786-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/31/2023] [Indexed: 05/24/2023]
Abstract
A new, sizable family of 2D transition metal carbonitrides, carbides, and nitrides known as MXenes has attracted a lot of attention in recent years. This is because MXenes exhibit a variety of intriguing physical, chemical, mechanical, and electrochemical characteristics that are closely linked to the wide variety of their surface terminations and elemental compositions. Particularly, MXenes are readily converted into composites with materials including oxides, polymers, and CNTs, which makes it possible to modify their characteristics for a variety of uses. MXenes and MXene-based composites have demonstrated tremendous promise in environmental applications due to their excellent reducibility, conductivity, and biocompatibility, in addition to their well-known rise to prominence as electrode materials in the energy storage sector. The remarkable characteristics of 2D MXene, including high conductivity, high specific surface area, and enhanced hydrophilicity, account for the increasing prominence of its use in storage devices. In this review, we highlight the most recent developments in the use of MXenes and MXene-based composites for electrochemical energy storage while summarizing their synthesis and characteristics. Key attention is paid to applications in supercapacitors, batteries, and their flexible components. Future research challenges and perspectives are also described.
Collapse
Affiliation(s)
- Daniel Nframah Ampong
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emmanuel Agyekum
- Department of Material Science and Engineering, Hohai University, Nanjing, China
| | - Frank Ofori Agyemang
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwadwo Mensah-Darkwa
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Anthony Andrews
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India.
| | - Ram K Gupta
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA.
- Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA.
| |
Collapse
|
13
|
Zhang G, Chen D, Lu J. A review on black-phosphorus-based composite heterojunction photocatalysts for energy and environmental applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Han Y, Rong X, Yingang Xue MW, Dai H, Liu Y. Progress in the preparation, application, and recycling of black phosphorus. CHEMOSPHERE 2023; 311:137161. [PMID: 36347351 DOI: 10.1016/j.chemosphere.2022.137161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Black phosphorus nanosheets (BPNSs) are a new member of the nanomaterial family, and they have good development potential in electrochemistry, electronics, optoelectronics, environmental protection, biomedical, and other fields because of their bandgap width, high anisotropy, broad optical absorption, high carrier mobility and many other features. Although many articles have been published about the preparation and application of BPNSs, these aspects have not been elucidated, and we aimed to fill this knowledge gap in this review. First, we used VOSviewer software to sort out articles published in the past 5 years and drew a literature map, which allowed us to sort out the relationship between various studies related to BPNSs, and reflect on the research focus in recent years. Because BPNSs must be made from black phosphorus (BP), and BPNSs are a nano form of BP, the collation of the BP preparation scheme was also helpful for the related research on BPNSs. This paper introduces the preparation of bulk BP and BPNSs, analyzes and compares the advantages and disadvantages of each method, and points out the most promising methods in the future. Then, we propose improvement directions for this method. We also introduce the characterization of BPNSs and combine it with the subsequent photocatalytic application of BPNSs. As a new material, the effect of BPNSs on the environment is still unknown; thus, an end treatment scheme for BPNSs is summarized according to existing methods. Based on the experience of nanomaterial treatment, this paper proposes a research focus for the end treatment of BPNSs in the future, providing a reference scheme for the end treatment of other nanomaterials. Finally, we summarize the full text and propose recommended methods and improvement plans.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xiaolong Rong
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingxin Wang Yingang Xue
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| | - Hao Dai
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yuxuan Liu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
15
|
Wang Y, Kuchena SF. Recent Progress in Aqueous Ammonium-Ion Batteries. ACS OMEGA 2022; 7:33732-33748. [PMID: 36188297 PMCID: PMC9520733 DOI: 10.1021/acsomega.2c04118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Batteries using a water-based electrolyte have the potential to be safer, more durable, less prone to thermal runaways, and less costly than current lithium batteries using an organic solvent. Among the possible aqueous battery options, ammonium-ion batteries (AIBs) are very appealing because the base materials are light, safe, inexpensive, and widely available. This review gives a concise and useful survey of recent progress on emerging AIBs, starting with a brief overview of AIBs, followed by cathode materials, anode materials, electrolytes, and various devices based on ammonium-ion storage. Aside from summarizing the most updated electrodes/electrolytes in AIBs, this review highlights fundamental mechanistic studies in AIBs and state-of-the art applications of ammonium-ion storage. The present work reviews various theoretical efforts and the spectrum studies that have been used to explore ionic transport kinetics, electrolyte structure, solvation behavior of ammonium ions, and the intercalation mechanism in the host structure. Furthermore, diverse applications of ammonium-ion storage apart from aqueous AIBs are discussed, including flexible AIBs, AIBs that can operate across a wide temperature range, ammonium-ion supercapacitors, and battery-supercapacitor hybrid devices. Finally, the review is concluded with perspectives of AIBs, challenges remaining in the field, and possible research directions to address these challenges to boost the performance of AIBs for real-world practical applications.
Collapse
|
16
|
Shu C, Zhou PJ, Jia PZ, Zhang H, Liu Z, Tang W, Sun X. Electrochemical Exfoliation of Two‐Dimensional Phosphorene Sheets and its Energy Application. Chemistry 2022; 28:e202200857. [DOI: 10.1002/chem.202200857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Chengyong Shu
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Ph.D. Jiangqi Zhou
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Ph.D. Zhanhui Jia
- Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an Shaanxi 710049 P. R. China
| | - Hong Zhang
- State Key Laboratory of Space Power-sources Technology Shanghai Institute of Space Power-Sources Shanghai 200245 P. R. China
| | - Zhongxin Liu
- State Key Laboratory of Space Power-sources Technology Shanghai Institute of Space Power-Sources Shanghai 200245 P. R. China
| | - Wei Tang
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Xiaofei Sun
- State Key Laboratory for Manufacturing Systems Engineering School of Mechanical Engineering Xi'an Jiaotong University Xi An Shi, Xi'an 710049 P. R. China
| |
Collapse
|
17
|
Li J, Fang S, Xu L, Wang A, Zou K, Di A, Li F, Deng W, Zou G, Hou H, Ji X. Electrochemical Zintl Cluster Bi22− induced chemically bonded bismuth / graphene oxide composite for sodium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Li Z, Zhang Y, Zhang J, Cao Y, Chen J, Liu H, Wang Y. Sodium-Ion Battery with a Wide Operation-Temperature Range from -70 to 100 °C. Angew Chem Int Ed Engl 2022; 61:e202116930. [PMID: 35044037 DOI: 10.1002/anie.202116930] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 12/27/2022]
Abstract
Sodium-ion batteries (SIBs), as one of the potential candidates for grid-scale energy storage systems, are required to tackle extreme weather conditions. However, the all-weather SIBs with a wide operation-temperature range are rarely reported. Herein, we propose a wide-temperature range SIB, which involves a carbon-coated Na4 Fe3 (PO4 )2 P2 O7 (NFPP@C) cathode, a bismuth (Bi) anode, and a diglyme-based electrolyte. We demonstrate that solvated Na+ can be directly stored by the Bi anode via an alloying reaction without the de-solvent process. Furthermore, the NFPP@C cathode exhibits a high Na+ diffusion coefficient at low temperature. As a result, the Bi//NFPP@C battery exhibits perfect low-temperature behavior. Even at -70 °C, this battery still delivers 70.19 % of the room-temperature capacity. Furthermore, benefitting from the high boiling point of the electrolyte, this battery also works well at a high temperature of up to 100 °C. These results are encouraging for the further exploration of wide-temperature range SIBs.
Collapse
Affiliation(s)
- Zhi Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yu Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yongjie Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Jiawei Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Haimei Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| |
Collapse
|
19
|
Li Z, Zhang Y, Zhang J, Cao Y, Chen J, Liu H, Wang Y. Sodium‐Ion Battery with a Wide Operation‐Temperature Range from −70 to 100 °C. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Yu Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power College of Environmental and Chemical Engineering Shanghai University of Electric Power Shanghai 200090 China
| | - Yongjie Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Jiawei Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Haimei Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power College of Environmental and Chemical Engineering Shanghai University of Electric Power Shanghai 200090 China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| |
Collapse
|
20
|
Li X, Li M, Luo K, Hou Y, Li P, Yang Q, Huang Z, Liang G, Chen Z, Du S, Huang Q, Zhi C. Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti 3C 2 MXenes. ACS NANO 2022; 16:813-822. [PMID: 34962775 DOI: 10.1021/acsnano.1c08358] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dendrite growth and low Coulombic efficiency caused by uneven diffusion and electrodeposition of Zn2+ ions have emerged as a barrier to exploit the Zn metal anode. In this work, we demonstrate the stoichiometric halogenated MXenes (Ti3C2Cl2, Ti3C2Br2, and Ti3C2I2) as an artificial layer that can induce the uniform Zn deposition. The efficient redistribution effect results from the coherent heterogeneous interface reconstruction and regulated ion tiling by halogen surficial termination. The synergetic effects of high lattice matching (90%) between the adopted MXenes and Zn, as well as the positive halogen regulation, Zn2+ ions are guided to nucleate uniformly on the most extensive (000l) crystal plane of the MXene matrix and grow in a planar manner. In terms of Zn ion regulation, Cl termination is found to be more effective than O/F, Br, and I due to its moderate adsorption and diffusion coefficiency for Zn2+ ions. The Ti3C2Cl2-Zn anode achieves a life extension of over 12 times (840 h at 2 mA cm-2//1 mAh cm-2) over that of the bare Zn anode and serves more than 9000 cycles in a battery with a Ti3C2I2 cathode at a high rate of 3 A g-1. Given the abundance of lattice parameters and terminations of MXene materials, the developed strategy is expected to be extended to other metal anode systems.
Collapse
Affiliation(s)
- Xinliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Mian Li
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology& Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Kan Luo
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology& Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Qi Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shiyu Du
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology& Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Qing Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology& Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
21
|
Zhu Y, Xie Z, Li J, Liu Y, Li C, Liang W, Huang W, Kang J, Cheng F, Kang L, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Xu J, Li D, Zhang H. From phosphorus to phosphorene: Applications in disease theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214110] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Zeng Y, Guo Z. Synthesis and stabilization of black phosphorus and phosphorene: recent progress and perspectives. iScience 2021; 24:103116. [PMID: 34646981 PMCID: PMC8497852 DOI: 10.1016/j.isci.2021.103116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-dimensional black phosphorus (BP) has triggered tremendous research interest owing to its unique crystal structure, high carrier mobility, and tunable direct bandgap. Preparation of few-layer BP with high quality and stability is very important for its related research and applications in biomedicine, electronics, and optoelectronics. In this review, the synthesis methods of BP, including the preparation of bulk BP crystal which is an important raw material for preparing few-layer BP, the popular top-down methods, and some direct growth strategies of few-layer BP are comprehensively overviewed. Then chemical ways to enhance the stability of few-layer BP are concretely introduced. Finally, we propose a selection rule of preparation methods of few-layer BP according to the requirement of specific BP properties for different applications. We hope this review would bring some insight for future researches on BP and contributes to the acceleration of BP's commercial progress.
Collapse
Affiliation(s)
- Yonghong Zeng
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhinan Guo
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
23
|
Li X, Li Q, Hou Y, Yang Q, Chen Z, Huang Z, Liang G, Zhao Y, Ma L, Li M, Huang Q, Zhi C. Toward a Practical Zn Powder Anode: Ti 3C 2T x MXene as a Lattice-Match Electrons/Ions Redistributor. ACS NANO 2021; 15:14631-14642. [PMID: 34478265 DOI: 10.1021/acsnano.1c04354] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The renaissance of aqueous Zn ion batteries has drawn intense attention to Zn metal anode issues, including dendrites growth, dead Zn, low efficiency, and other parasitic reactions. However, against the widely used 2D Zn foil, in fact, the Zn powder anode is a more practical choice for Zn-based batteries in industrial applications, but the related solutions are rarely investigated. Herein, we focus on the Zn powder anode and disclose its unknown failure mechanism different from Zn foils. By utilization of 2D flexible conductive Ti3C2Tx MXene flakes with hexagonal close-packed lattice as electrons and ions redistributor, a stable and highly reversible Zn powder anode without dendrite growth and low polarization is constructed. Low lattice mismatch (∼10%) enables a coherent heterogeneous interface between the (0002) plane of deposited Zn and (0002) plane of the Ti3C2Tx MXene. Thus, the Zn2+ ions are induced to undergo rapid uniform nucleation and sustained reversible stripping/plating with low energy barriers via the internally bridged shuttle channels. Paired with cyano group iron hexacyanoferrate (FeHCF) cathode, the FeHCF//MXene@Zn full battery delivers superior cycle durability and rate capability, whose service life with a CE of near 100% touches 850% of bare Zn powder counterparts. The proposed Ti3C2Tx MXene redistributor strategy concerning high-speed electrons/ions channel, low-barrier heterogeneous interface, is expected to be widely applied to other alkali metal anodes.
Collapse
Affiliation(s)
- Xinliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Qing Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Qi Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yuwei Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Longtao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Mian Li
- Qianwan Institute of CNiTECH, Zhongchuangyi Road, Hangzhou Bay District, Ningbo, Zhejiang 315336, China
| | - Qing Huang
- Qianwan Institute of CNiTECH, Zhongchuangyi Road, Hangzhou Bay District, Ningbo, Zhejiang 315336, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
24
|
Recent applications of black phosphorus and its related composites in electrochemistry and bioelectrochemistry: A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
Zhang J, Shin H, Lu W. Top-Down Ultrasonication-Assisted Exfoliation for Prebonded Phosphorene-Graphene Heterostructures Enabling Fast Lithiation/Delithiation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25946-25959. [PMID: 34029054 DOI: 10.1021/acsami.1c03583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We show a top-down synthesis approach to mass-produce phosphorene-graphene nanosheet composites with superior cycle stability and rate capability. Currently, using exfoliation to achieve two-dimensional (2D) materials is primarily limited to pure crystals. We discover that high-quality nanoscale 2D composite phosphorene-graphene sheets can be directly exfoliated from extremely low-cost bulk three-dimensional (3D) black phosphorus-graphite composites synthesized by mechanical milling while maintaining the chemical bonding and intimate electronic contact between 2D composite layers. The hybrid phosphorene-graphene material delivers high reversible capacities of 2030, 2003, and 1597 mAh/g at high current densities of 2, 4, and 6 A/g, respectively. Quantifying the dimensional electrochemical performance, we show that 2D phosphorene-graphene nanosheets not only have excellent electrochemical kinetics for fast lithium-ion diffusion and storage but also maintain the overall structural robustness of the entire electrode for long-term cyclability. This scalable synthesis paves the way for the practical application of phosphorene-graphene materials in batteries.
Collapse
Affiliation(s)
- Jianyu Zhang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hosop Shin
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University-Indianapolis, Indianapolis, Indiana 46202, United States
| | - Wei Lu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
26
|
Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nat Commun 2021; 12:3106. [PMID: 34035250 PMCID: PMC8149852 DOI: 10.1038/s41467-021-23369-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Aqueous graphite-based dual ion batteries have unique superiorities in stationary energy storage systems due to their non-transition metal configuration and safety properties. However, there is an absence of thorough study of the interactions between anions and water molecules and between anions and electrode materials, which is essential to achieve high output voltage. Here we reveal the four-stage intercalation process and energy conversion in a graphite cathode of anions with different configurations. The difference between the intercalation energy and hydration energy of bis(trifluoromethane)sulfonimide makes the best use of the electrochemical stability window of its electrolyte and delivers a high intercalation potential, while BF4− and CF3SO3− do not exhibit a satisfactory potential because the graphite intercalation potential of BF4− is inferior and the graphite intercalation potential of CF3SO3− exceeds the voltage window of its electrolyte. An aqueous dual ion battery based on the intercalation behaviors of bis(trifluoromethane)sulfonimide anions into a graphite cathode exhibits a high voltage of 2.2 V together with a specific energy of 242.74 Wh kg−1. This work provides clear guidance for the voltage plateau manipulation of anion intercalation into two-dimensional materials. The interactions between water molecules, electrode materials and anions are essential yet challenging for aqueous dual ion batteries. Here, the authors demonstrate the voltage manipulation of dual ion batteries through matching intercalation energy and solvation energy of different anions.
Collapse
|
27
|
Xiao Y, Zheng W, Yuan B, Wen C, Lanza M. Highly Accurate Thickness Determination of 2D Materials. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202100056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yiping Xiao
- Institute of Functional Nano and Soft Materials Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren‐Ai Road Suzhou 215123 China
| | - Wenwen Zheng
- Institute of Functional Nano and Soft Materials Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren‐Ai Road Suzhou 215123 China
| | - Bin Yuan
- Institute of Functional Nano and Soft Materials Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren‐Ai Road Suzhou 215123 China
| | - Chao Wen
- Institute of Functional Nano and Soft Materials Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren‐Ai Road Suzhou 215123 China
| | - Mario Lanza
- Physical Sciences and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia
| |
Collapse
|
28
|
Gong D, Wei C, Liang Z, Tang Y. Recent Advances on Sodium‐Ion Batteries and Sodium Dual‐Ion Batteries: State‐of‐the‐Art Na
+
Host Anode Materials. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100014] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Decai Gong
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Chenyang Wei
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Zhongwang Liang
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Yongbing Tang
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Advanced Materials Processing and Mold Ministry of Education Zhengzhou University Zhengzhou 450002 China
| |
Collapse
|
29
|
Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent Progress on the Alloy-Based Anode for Sodium-Ion Batteries and Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1903194. [PMID: 31544320 DOI: 10.1002/smll.201903194] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/23/2019] [Indexed: 05/11/2023]
Abstract
High-energy batteries with low cost are urgently needed in the field of large-scale energy storage, such as grid systems and renewable energy sources. Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) with alloy-based anodes provide huge potential due to their earth abundance, high capacity, and suitable working potential, and are recognized as attractive alternatives for next-generation batteries system. Although some important breakthroughs have been reported, more significant improvements are still required for long lifetime and high energy density. Herein, the latest progress for alloy-based anodes for SIBs and PIBs is summarized, mainly including Sn, Sb, Ge, Bi, Si, P, and their oxides, sulfides, selenides, and phosphides. Specifically, the material designs for the desired Na+ /K+ storage performance, phase transform, ionic/electronic transport kinetics, and specific chemical interactions are discussed. Typical structural features and research strategies of alloy-based anodes, which are used to facilitate processes in battery development for SIBs and PIBs, are also summarized. The perspective of future research of SIBs and PIBs is outlined.
Collapse
Affiliation(s)
- Keming Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chuntai Liu
- Key Laboratory about Materials Forming and Mold Technology of Education Ministry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Liwei Mi
- Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Weihua Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Key Laboratory about Materials Forming and Mold Technology of Education Ministry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Changyu Shen
- Key Laboratory about Materials Forming and Mold Technology of Education Ministry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
30
|
Li X, Li N, Huang Z, Chen Z, Zhao Y, Liang G, Yang Q, Li M, Huang Q, Dong B, Fan J, Zhi C. Confining Aqueous Zn-Br Halide Redox Chemistry by Ti 3C 2T X MXene. ACS NANO 2021; 15:1718-1726. [PMID: 33435679 DOI: 10.1021/acsnano.0c09380] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With fluidity and dangerous corrosiveness, liquid insulating bromine elemental (Br2) can hardly be confined by traditional conductive carriers (mainly carbon materials) for efficient redox without shuttle behavior. Thus, stationary Br2-based energy storage devices are rarely advanced. Here, we introduce an electrochemical active parasite Br2 to the Ti3C2TXMXene host and construct an advanced aqueous zinc redox battery via a facile electrodeposition process (Br-Ti3C2TX). Both ex situ experimental characterizations and density functional theory (DFT) simulations have validated the natural affinity between MXenes and Br species, which is manifested as their spontaneous fixation accompanied by rapid transfer of electrons in the interface region and interlayer confinement. Consequently, the battery delivers a high-voltage plateau at 1.75 V that contributes to an improved energy density of 259 Wh kg-1Br (144 Wh kg-1Br-Ti3C2TX), exhibiting efficient output capability in the high-voltage region. Besides, benefiting from enhanced redox kinetics, the capacity achieved at -15 °C approaches to 69% of the value at room temperature. More importantly, an excellent 10 000 cycles at -15 °C with negligible capacity decay is identified. The paradigm represents a step forward for developing stationary aqueous metal-Br2 batteries.
Collapse
Affiliation(s)
- Xinliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Na Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Yuwei Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Qi Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Mian Li
- Qianwan Institute of CNiTECH, Zhongchuangyi Road, Hangzhou Bay District, Ningbo, Zhejiang 315336, China
| | - Qing Huang
- Qianwan Institute of CNiTECH, Zhongchuangyi Road, Hangzhou Bay District, Ningbo, Zhejiang 315336, China
| | - Binbin Dong
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
- Center for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
31
|
Xu M, Feng Y, Chen B, Meng R, Xia M, Gu F, Yang D, Zhang C, Yang J. Armoring Black Phosphorus Anode with Stable Metal-Organic-Framework Layer for Hybrid K-Ion Capacitors. NANO-MICRO LETTERS 2021; 13:42. [PMID: 34138223 PMCID: PMC8187701 DOI: 10.1007/s40820-020-00570-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/19/2020] [Indexed: 05/28/2023]
Abstract
Potassium-ion capacitors (KICs) are promising for sustainable and eco-friendly energy storage technologies, yet their slow reaction kinetics and poor cyclability induced by large K-ion size are a major obstacle toward practical applications. Herein, by employing black phosphorus nanosheets (BPNSs) as a typical high-capacity anode material, we report that BPNS anodes armored with an ultrathin oriented-grown metal-organic-framework (MOF) interphase layer (BPNS@MOF) exhibit regulated potassium storage behavior for high-performance KICs. The MOF interphase layers as protective layer with ordered pores and high chemical/mechanical stability facilitate K ion diffusion and accommodate the volume change of electrode, beneficial for improved reaction kinetics and enhanced cyclability, as evidenced by substantial characterizations, kinetics analysis and DFT calculations. Consequently, the BPNS@MOF electrode as KIC anodes exhibits outstanding cycle performance outperforming most of the reported state-of-art KICs so far.
Collapse
Affiliation(s)
- Mengzhu Xu
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yutong Feng
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Bingjie Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ruijin Meng
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Mengting Xia
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Feng Gu
- Institute for Process Modelling and Optimization, Jiangsu Industrial Technology Research Institute, SIP, 388 Ruoshui Road, Suzhou, Jiangsu, People's Republic of China
| | - Donglei Yang
- Institute of Molecular Medicine School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Chi Zhang
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Jinhu Yang
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
32
|
Wang N, Mao N, Wang Z, Yang X, Zhou X, Liu H, Qiao S, Lei X, Wang J, Xu H, Ling X, Zhang Q, Feng Q, Kong J. Electrochemical Delamination of Ultralarge Few-Layer Black Phosphorus with a Hydrogen-Free Intercalation Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005815. [PMID: 33244822 DOI: 10.1002/adma.202005815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Due to strong interlayer interaction and ease of oxidation issues of black phosphorus (BP), the domain size of artificial synthesized few-layer black phosphorus (FL-BP) crystals is often below 10 µm, which extremely limits its further applications in large-area thin-film devices and integrated circuits. Herein, a hydrogen-free electrochemical delamination strategy through weak Lewis acid intercalation enabled exfoliation is developed to produce ultralarge FL-BP single-crystalline domains with high quality. The interaction between the weak Lewis acid tetra-n-butylammonium acetate (CH3 COOTBA) and P atoms promotes the average domain size of FL-BP crystal up to 77.6 ± 15.0 µm and the largest domain size is found to be as large as 119 µm. The presence of H+ and H2 O is found to sharply decrease the size of as-exfoliated FL-BP flakes. The electronic transport measurements show that the delaminated FL-BP crystals exhibit a high hole mobility of 76 cm2 V-1 s-1 and an on/off ratio of 103 at 298 K. A broadband photoresponse from 532 to 1850 nm with ultrahigh responsivity is achieved. This work provides a scalable, simple, and low-cost approach for large-area BP films that meet industrial requirements for nanodevices applications.
Collapse
Affiliation(s)
- Ning Wang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Nannan Mao
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhien Wang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xue Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- College of Science, Northwest A&F University, Yangling, 712100, China
| | - Xi Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haining Liu
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xingfeng Lei
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junru Wang
- College of Science, Northwest A&F University, Yangling, 712100, China
| | - Hua Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xi Ling
- Department of Chemistry, Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qingliang Feng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jing Kong
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
33
|
van Druenen M, Collins T, Davitt F, Doherty J, Collins G, Sofer Z, Holmes JD. Stabilization of Black Phosphorus by Sonication-Assisted Simultaneous Exfoliation and Functionalization. Chemistry 2020; 26:17581-17587. [PMID: 33006155 DOI: 10.1002/chem.202003895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Black phosphorus (BP) has extraordinary properties, but its ambient instability remains a critical challenge. Functionalization has been employed to overcome the sensitivity of BP to ambient conditions while preserving its properties. Herein, a simultaneous exfoliation-functionalization process is reported that functionalizes BP flakes during exfoliation and thus provides increased protection, which can be attributed to minimal exposure of the flakes to ambient oxygen and water. A tetrabutylammonium salt was employed for intercalation of BP, resulting in the formation of flakes with large lateral dimensions. The addition of an aryl iodide or an aryl iodonium salt to the exfoliation solvent creates a scalable strategy for the production of functionalized few-layer BP flakes. The ambient stability of functionalized BP was prolonged to a period of one week, as revealed by STEM, AFM, and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Maart van Druenen
- School of Chemistry, Environmental Research Institute &, Tyndall National Institute, University College Cork, Cork, T12 YN60, Ireland.,Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic.,AMBER@CRANN, Trinity College Dublin, Dublin, 2, Ireland
| | - Timothy Collins
- School of Chemistry, Environmental Research Institute &, Tyndall National Institute, University College Cork, Cork, T12 YN60, Ireland.,Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic.,AMBER@CRANN, Trinity College Dublin, Dublin, 2, Ireland
| | - Fionán Davitt
- School of Chemistry, Environmental Research Institute &, Tyndall National Institute, University College Cork, Cork, T12 YN60, Ireland.,Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic.,AMBER@CRANN, Trinity College Dublin, Dublin, 2, Ireland
| | - Jessica Doherty
- School of Chemistry, Environmental Research Institute &, Tyndall National Institute, University College Cork, Cork, T12 YN60, Ireland.,Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic.,AMBER@CRANN, Trinity College Dublin, Dublin, 2, Ireland
| | - Gillian Collins
- School of Chemistry, Environmental Research Institute &, Tyndall National Institute, University College Cork, Cork, T12 YN60, Ireland.,Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic.,AMBER@CRANN, Trinity College Dublin, Dublin, 2, Ireland
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - Justin D Holmes
- School of Chemistry, Environmental Research Institute &, Tyndall National Institute, University College Cork, Cork, T12 YN60, Ireland.,Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 16628, Prague 6, Czech Republic.,AMBER@CRANN, Trinity College Dublin, Dublin, 2, Ireland
| |
Collapse
|
34
|
Yin T, Long L, Tang X, Qiu M, Liang W, Cao R, Zhang Q, Wang D, Zhang H. Advancing Applications of Black Phosphorus and BP-Analog Materials in Photo/Electrocatalysis through Structure Engineering and Surface Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001431. [PMID: 33042754 PMCID: PMC7539224 DOI: 10.1002/advs.202001431] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/24/2020] [Indexed: 05/22/2023]
Abstract
Black phosphorus (BP), an emerging 2D material semiconductor material, exhibits unique properties and promising application prospects for photo/electrocatalysis. However, the applications of BP in photo/electrocatalysis are hampered by the instability as well as low catalysis efficiency. Recently, tremendous efforts have been dedicated toward modulating its intrinsic structure, electronic property, and charge separation for enhanced photo/electrocatalytic performance through structure engineering. Simultaneously, the search for new substitute materials that are BP-analogous is ongoing. Herein, the latest theoretical and experimental progress made in the structural/surface engineering strategies and advanced applications of BP and BP-analog materials in relation to photo/electrocatalysis are extensively explored, and a presentation of the future opportunities and challenges of the materials is included at the end.
Collapse
Affiliation(s)
- Teng Yin
- School of Electronics and InformationHangzhou Dianzi UniversityHangzhou310018China
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060China
| | - Liyuan Long
- School of Electronics and InformationHangzhou Dianzi UniversityHangzhou310018China
| | - Xian Tang
- School of Physics and Optoelectronic EngineeringFoshan UniversityFoshan528000China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China)Ministry of EducationQingdao266100P. R. China
| | - Weiyuan Liang
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060China
| | - Rui Cao
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060China
| | - Qizhen Zhang
- Advanced Institute of Information TechnologyPeking UniversityHangzhou311215China
| | - Dunhui Wang
- School of Electronics and InformationHangzhou Dianzi UniversityHangzhou310018China
| | - Han Zhang
- Institute of Microscale OptoelectronicsCollaborative Innovation Centre for Optoelectronic Science & TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)Shenzhen UniversityShenzhen518060China
| |
Collapse
|
35
|
Li X, Xiao L, Zhou L, Xu Q, Weng J, Xu J, Liu B. Adaptive Bifunctional Electrocatalyst of Amorphous CoFe Oxide @ 2D Black Phosphorus for Overall Water Splitting. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xingyun Li
- Department of Biomaterials College of Materials Xiamen University Xiamen 361005 China
- Department of Physics Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Xiamen University Xiamen 361005 China
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Liangping Xiao
- State Key Lab of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ling Zhou
- Department of Physics Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Xiamen University Xiamen 361005 China
| | - Qingchi Xu
- Department of Physics Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Xiamen University Xiamen 361005 China
| | - Jian Weng
- Department of Biomaterials College of Materials Xiamen University Xiamen 361005 China
| | - Jun Xu
- Department of Physics Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Xiamen University Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518057 China
| | - Bin Liu
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
36
|
Li X, Xiao L, Zhou L, Xu Q, Weng J, Xu J, Liu B. Adaptive Bifunctional Electrocatalyst of Amorphous CoFe Oxide @ 2D Black Phosphorus for Overall Water Splitting. Angew Chem Int Ed Engl 2020; 59:21106-21113. [DOI: 10.1002/anie.202008514] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Xingyun Li
- Department of Biomaterials College of Materials Xiamen University Xiamen 361005 China
- Department of Physics Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Xiamen University Xiamen 361005 China
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Liangping Xiao
- State Key Lab of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ling Zhou
- Department of Physics Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Xiamen University Xiamen 361005 China
| | - Qingchi Xu
- Department of Physics Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Xiamen University Xiamen 361005 China
| | - Jian Weng
- Department of Biomaterials College of Materials Xiamen University Xiamen 361005 China
| | - Jun Xu
- Department of Physics Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Xiamen University Xiamen 361005 China
- Shenzhen Research Institute of Xiamen University Shenzhen 518057 China
| | - Bin Liu
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
37
|
Cheng J, Gao L, Li T, Mei S, Wang C, Wen B, Huang W, Li C, Zheng G, Wang H, Zhang H. Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy Storage Science. NANO-MICRO LETTERS 2020; 12:179. [PMID: 34138158 PMCID: PMC7770910 DOI: 10.1007/s40820-020-00510-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/23/2020] [Indexed: 05/19/2023]
Abstract
Two-dimensional black phosphorus (2D BP), well known as phosphorene, has triggered tremendous attention since the first discovery in 2014. The unique puckered monolayer structure endows 2D BP intriguing properties, which facilitate its potential applications in various fields, such as catalyst, energy storage, sensor, etc. Owing to the large surface area, good electric conductivity, and high theoretical specific capacity, 2D BP has been widely studied as electrode materials and significantly enhanced the performance of energy storage devices. With the rapid development of energy storage devices based on 2D BP, a timely review on this topic is in demand to further extend the application of 2D BP in energy storage. In this review, recent advances in experimental and theoretical development of 2D BP are presented along with its structures, properties, and synthetic methods. Particularly, their emerging applications in electrochemical energy storage, including Li-/K-/Mg-/Na-ion, Li-S batteries, and supercapacitors, are systematically summarized with milestones as well as the challenges. Benefited from the fast-growing dynamic investigation of 2D BP, some possible improvements and constructive perspectives are provided to guide the design of 2D BP-based energy storage devices with high performance.
Collapse
Affiliation(s)
- Junye Cheng
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Lingfeng Gao
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Tian Li
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Shan Mei
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Cong Wang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Bo Wen
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Chao Li
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Guangping Zheng
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Hao Wang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
38
|
Liu Z, Sun Y, Cao H, Xie D, Li W, Wang J, Cheetham AK. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nat Commun 2020; 11:3917. [PMID: 32764557 PMCID: PMC7411046 DOI: 10.1038/s41467-020-17622-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/09/2020] [Indexed: 11/18/2022] Open
Abstract
Phosphorene, monolayer or few-layer black phosphorus, exhibits fascinating anisotropic properties and shows interesting semiconducting behavior. The synthesis of phosphorene nanosheets is still a hot topic, including the shaping of its two-dimensional structure into nanoribbons or nanobelts. Here we report electrochemical unzipping of single crystalline black phosphorus into zigzag-phosphorene nanobelts, as well as nanosheets and quantum dots, via an oxygen-driven mechanism. The experimental results agree well with our theoretical calculations. The calculation for the unzipping mechanism study suggests that interstitial oxygen-pairs are the critical intermediate species for generating zigzag-phosphorene nanobelts. Although phosphorene oxidation has been reported, lengthwise cutting is hitherto unreported. Our discovery of phosphorene cut upon oxidation represents a previously unknown mechanism for the formation of various dimensions of phosphorene nanostructures, especially zigzag-phosphorene nanobelts. It opens up a way for studying the quantum effects and electronic properties of zigzag-phosphorene nanobelts. Here, the authors demonstrate the electrochemical unzipping of single crystalline black phosphorus into zigzag-phosphorene nanobelts, nanosheets, and quantum dots, via a top-down oxygen-driven mechanism.
Collapse
Affiliation(s)
- Zhifang Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yilin Sun
- Institute of Microelectronics, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Huaqiang Cao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Dan Xie
- Institute of Microelectronics, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
| | - Wei Li
- Center of Rare Earth and Inorganic Functional Materials, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Jiaou Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Anthony K Cheetham
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
| |
Collapse
|
39
|
Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus. Nat Commun 2020; 11:2520. [PMID: 32433557 PMCID: PMC7239945 DOI: 10.1038/s41467-020-16077-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/17/2020] [Indexed: 12/02/2022] Open
Abstract
Red phosphorus offers a high theoretical sodium capacity and has been considered as a candidate anode for sodium-ion batteries. Similar to silicon anodes for lithium-ion batteries, the electrochemical performance of red phosphorus is plagued by the large volume variation upon sodiation. Here we perform in situ transmission electron microscopy analysis of the synthesized red-phosphorus-impregnated carbon nanofibers with the corresponding chemo-mechanical simulation, revealing that, the sodiated red phosphorus becomes softened with a “liquid-like” mechanical behaviour and gains superior malleability and deformability against pulverization. The encapsulation strategy of the synthesized red-phosphorus-impregnated carbon nanofibers has been proven to be an effective method to minimize the side reactions of red phosphorus in sodium-ion batteries, demonstrating stable electrochemical cycling. Our study provides a valid guide towards high-performance red-phosphorus-based anodes for sodium-ion batteries. Red phosphorus is a promising anode for Na-ion batteries but suffers from large volume change upon cycling. Here the authors show a red-phosphorus-impregnated carbon nanofiber design in which the sodiated red phosphorus is featured by a “liquid-like” behavior and ultra-stable electrochemical performance is realized.
Collapse
|
40
|
Zhang X, Liu J, Zhang E, Pan R, Li Y, Wan X, Wang H, Zhang J. Atomically thin PdSeO 3 nanosheets: a promising 2D photocatalyst produced by quaternary ammonium intercalation and exfoliation. Chem Commun (Camb) 2020; 56:5504-5507. [PMID: 32296786 DOI: 10.1039/d0cc01642j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In 2018, the two-dimensional (2D) PdSeO3 monolayer was predicted to be a highly promising photocatalyst for direct overall water splitting in the light of density functional theory (DFT) computations. Herein, we present the first report on the synthesis of 2D PdSeO3 nanosheets by using the quaternary ammonium intercalation-assisted electrochemical exfoliation method. The resulting atomically thin PdSeO3 nanosheets possess a moderate band gap with suitable band edge alignments for water splitting, and display excellent activity and stability in photocatalytic H2 evolution.
Collapse
Affiliation(s)
- Xiuming Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liang G, Wang Y, Huang Z, Mo F, Li X, Yang Q, Wang D, Li H, Chen S, Zhi C. Initiating Hexagonal MoO 3 for Superb-Stable and Fast NH 4 + Storage Based on Hydrogen Bond Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907802. [PMID: 32080917 DOI: 10.1002/adma.201907802] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/12/2020] [Indexed: 05/21/2023]
Abstract
Nonmetallic ammonium (NH4 + ) ions are applied as charge carriers for aqueous batteries, where hexagonal MoO3 is initially investigated as an anode candidate for NH4 + storage. From experimental and first-principle calculated results, the battery chemistry proceeds with reversible building-breaking behaviors of hydrogen bonds between NH4 + and tunneled MoO3 electrode frameworks, where the ammoniation/deammoniation mechanism is dominated by nondiffusion-controlled pseudocapacitive behavior. Outstanding electrochemical performance of MoO3 for NH4 + storage is delivered with 115 mAh g-1 at 1 C and can retain 32 mAh g-1 at 150 C. Furthermore, it remarkably exhibits ultralong and stable cyclic performance up to 100 000 cycle with 94% capacity retention and high power density of 4170 W kg-1 at 150 C. When coupled with CuFe prussian blue analogous (PBA) cathode, the full ammonium battery can deliver decent energy density 21.3 Wh kg-1 and the resultant flexible ammonium batteries at device level are also pioneeringly developed for potential realistic applications.
Collapse
Affiliation(s)
- Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Yanlei Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Funian Mo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Xinliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Qi Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Donghong Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
| | - Hongfei Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Shimou Chen
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, China
- Shenzhen Research Institute, City University of Hong Kong, High-Tech Zone, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
42
|
Cui H, Guo Y, Ma W, Zhou Z. 2 D Materials for Electrochemical Energy Storage: Design, Preparation, and Application. CHEMSUSCHEM 2020; 13:1155-1171. [PMID: 31872570 DOI: 10.1002/cssc.201903095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/20/2019] [Indexed: 05/21/2023]
Abstract
Electrochemical energy storage is a promising route to relieve the increasing energy and environment crises, owing to its high efficiency and environmentally friendly nature. However, it is still challenging to realize its widespread application because of unsatisfactory electrode materials, with either high cost or poor activity and new electrode materials are urgently needed. Two-dimensional (2 D) materials are possible candidates, owing to their unique geometry and physicochemical properties. This Review summarizes the latest advances in the development of 2 D materials for electrochemical energy storage. Computational investigation and design of 2 D materials are first introduced, and then preparation methods are presented in detail. Next, the application of such materials in supercapacitors, alkali metal-ion batteries, and metal-air batteries are summarized comprehensively. Finally, the challenges and perspectives are discussed to offer a guideline for future exploration of high-efficiency 2 D materials for electrochemical energy storage.
Collapse
Affiliation(s)
- Huijuan Cui
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin, 300350, P.R. China
| | - Yibo Guo
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin, 300350, P.R. China
| | - Wei Ma
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Zhen Zhou
- School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin, 300350, P.R. China
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, P.R. China
| |
Collapse
|
43
|
Li J, Guo C, Li CM. Recent Advances of Two-Dimensional (2 D) MXenes and Phosphorene for High-Performance Rechargeable Batteries. CHEMSUSCHEM 2020; 13:1047-1070. [PMID: 32073208 DOI: 10.1002/cssc.202000061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Indexed: 06/10/2023]
Abstract
The design and development of advanced electrode materials for high-performance rechargeable batteries have been subjected to extensive studies. Very recently, two-dimensional (2 D) nanomaterials have become promising candidates for batteries, owing to their unique physicochemical properties. In particular, MXenes and phosphorene, which exhibit tailored electrical conductivity and ion storage capability, have attracted increasing attention. This Review presents a comprehensive summary of recent advances in the development of 2 D MXenes and phosphorene as electrode materials for high-performance batteries. Their physicochemical properties, including structural configurations and electronic properties of MXenes and direct band gap and anisotropic properties of phosphorene, are firstly discussed. Then, synthesis methods of the two materials are introduced. Thereafter, their applications as electrode materials in batteries, including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), potassium-ion batteries (PIBs), lithium-sulfur (Li-S) batteries, and metal-air batteries, are summarized and discussed in detail. An emphasis is placed on analyzing performance enhancement mechanisms to elucidate fundamental understanding. Finally, future challenges and opportunities for MXenes and phosphorene as electrode materials for batteries are considered.
Collapse
Affiliation(s)
- Jingsha Li
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, P. R. China
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Chunxian Guo
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, P. R. China
| | - Chang Ming Li
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, P. R. China
- Jiangsu Key Laboratory for Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou, 215011, P. R. China
- Institute of Advanced Cross-field Science and College of Life Science, Qingdao University, Qingdao, 20671, P. R. China
| |
Collapse
|
44
|
Xiao F, Yang X, Wang D, Wang H, Yu DYW, Rogach AL. Metal-Organic Framework Derived CoS 2 Wrapped with Nitrogen-Doped Carbon for Enhanced Lithium/Sodium Storage Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12809-12820. [PMID: 32134619 DOI: 10.1021/acsami.9b22169] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transition metal sulfides are attractive electrode materials for both lithium-ion (LIBs) and sodium-ion batteries (SIBs). Starting from micron-sized Co(IPC)·H2O (IPC: 4-(imidazole-1-yl) phthalic acid) and polydopamine as the metal-organic framework (MOF) precursor and carbon source, respectively, we produced a CoS2/C/C composite constituting CoS2 nanoparticles decorated with N-doped carbon layers and subjected to sulfurization. N-doped carbon layers provided a robust network for the CoS2 nanoparticles, enhancing the structural integrity and electronic conductivity of the resulting CoS2/C/C composite, which exhibited electrochemical performance superior to most existing CoS2 composites, and was one of the best among all MOF derived CoS2 anodes for LIBs and SIBs. The use of nanosized CoS2 particles reduced the diffusion length for the transfer of Li+/Na+ ions, resulting in a high specific capacity at a higher current rate. N-doped carbon layers derived from the MOF precursor and polydopamine provided an electrically conductive network between the CoS2 nanoparticles, thus preventing their aggregation and inhibiting adverse side reactions between the electrolyte and the surface of the electrode, and the high pseudocapacitive contribution resulted in the enhanced rate performance of the CoS2/C/C electrodes.
Collapse
Affiliation(s)
- Fengping Xiao
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xuming Yang
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Donghong Wang
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Huimin Wang
- School of Energy and Environment, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Denis Y W Yu
- School of Energy and Environment, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
45
|
Yang S, Zhang P, Nia AS, Feng X. Emerging 2D Materials Produced via Electrochemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907857. [PMID: 32003077 DOI: 10.1002/adma.201907857] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/16/2019] [Indexed: 06/10/2023]
Abstract
2D materials are important building blocks for the upcoming generation of nanostructured electronics and multifunctional devices due to their distinct chemical and physical characteristics. To this end, large-scale production of 2D materials with high purity or with specific functionalities represents a key to advancing fundamental studies as well as industrial applications. Among the state-of-the-art synthetic protocols, electrochemical exfoliation of layered materials is a very promising approach that offers high yield, great efficiency, low cost, simple instrumentation, and excellent up-scalability. Remarkably, playing with electrochemical parameters not only enables tunable material properties but also increases the material diversities from graphene to a wide spectrum of 2D semiconductors. Here, a succinct and critical survey of the recent progress in this research direction is presented, comprising the strategic design, exfoliation principles, underlying mechanisms, processing techniques, and potential applications of 2D materials. At the end of the discussion, the emerging trends, challenges, and opportunities in real practice are also highlighted.
Collapse
Affiliation(s)
- Sheng Yang
- Chair for Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Panpan Zhang
- Chair for Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Ali Shaygan Nia
- Chair for Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| | - Xinliang Feng
- Chair for Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Mommsenstraße 4, 01062, Dresden, Germany
| |
Collapse
|
46
|
Ding Y, Chen Y, Xu N, Lian X, Li L, Hu Y, Peng S. Facile Synthesis of FePS 3 Nanosheets@MXene Composite as a High-Performance Anode Material for Sodium Storage. NANO-MICRO LETTERS 2020; 12:54. [PMID: 34138262 PMCID: PMC7770659 DOI: 10.1007/s40820-020-0381-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/27/2019] [Indexed: 05/22/2023]
Abstract
Searching for advanced anode materials with excellent electrochemical properties in sodium-ion battery is essential and imperative for next-generation energy storage system to solve the energy shortage problem. In this work, two-dimensional (2D) ultrathin FePS3 nanosheets, a typical ternary metal phosphosulfide, are first prepared by ultrasonic exfoliation. The novel 2D/2D heterojunction of FePS3 nanosheets@MXene composite is then successfully synthesized by in situ mixing ultrathin MXene nanosheets with FePS3 nanosheets. The resultant FePS3 nanosheets@MXene hybrids can increase the electronic conductivity and specific surface area, assuring excellent surface and interfacial charge transfer abilities. Furthermore, the unique heterojunction endows FePS3 nanosheets@MXene composite to promote the diffusion of Na+ and alleviate the drastic change in volume in the cyclic process, enhancing the sodium storage capability. Consequently, the few-layered FePS3 nanosheets uniformly coated by ultrathin MXene provide an exceptional reversible capacity of 676.1 mAh g-1 at the current of 100 mA g-1 after 90 cycles, which is equivalent to around 90.6% of the second-cycle capacity (746.4 mAh g-1). This work provides an original protocol for constructing 2D/2D material and demonstrates the FePS3@MXene composite as a potential anode material with excellent property for sodium-ion batteries.
Collapse
Affiliation(s)
- Yonghao Ding
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Yu Chen
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Na Xu
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Xintong Lian
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Linlin Li
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.
| | - Yuxiang Hu
- Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology, and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Shengjie Peng
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China.
| |
Collapse
|
47
|
Marzo AML, Gusmão R, Sofer Z, Pumera M. Towards Antimonene and 2D Antimony Telluride through Electrochemical Exfoliation. Chemistry 2020; 26:6583-6590. [PMID: 32017255 DOI: 10.1002/chem.201905245] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/29/2019] [Indexed: 11/08/2022]
Abstract
Two-dimensional (2D) layered antimony (Sb) and antimony telluride (Sb2 Te3 ) are two valuable materials for optoelectronic devices and thermoelectric applications. Preparing high-quality sheets of these materials is the initial phase to promote their expected issues. Herein, micrometer-sized few-to-multilayered sheets of Sb and Sb2 Te3 have been obtained by electrochemical exfoliation. The layered rhombohedral Sb was exfoliated in Na2 SO4 and Li2 SO4 electrolytes by anodic-cationic intercalation, and Sb2 Te3 was exfoliated in Na2 SO4 . These findings are important contributions for the solution-based room-temperature electrochemical exfoliation, which is stable under glove-box-free conditions, to further improve the production of high-quality exfoliated sheets.
Collapse
Affiliation(s)
- Adaris M López Marzo
- Center of Advanced Functional Nanorobots, Department of, Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Rui Gusmão
- Center of Advanced Functional Nanorobots, Department of, Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Zdeněk Sofer
- Center of Advanced Functional Nanorobots, Department of, Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Martin Pumera
- Center of Advanced Functional Nanorobots, Department of, Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.,Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 616 00, Czech Republic
| |
Collapse
|
48
|
Kovalska E, Luxa J, Hartman T, Antonatos N, Shaban P, Oparin E, Zhukova M, Sofer Z. Non-aqueous solution-processed phosphorene by controlled low-potential electrochemical exfoliation and thin film preparation. NANOSCALE 2020; 12:2638-2647. [PMID: 31939986 DOI: 10.1039/c9nr10257d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Black phosphorus (BP) in its monolayer form called phosphorene is thought of as a successor of graphene and is of great interest for (opto)electronic applications. A quantitative and scalable method for the synthesis of (mono-)few-layer phosphorene has been an outstanding challenge due to the process irreproducibility and environmental degradation capability of the BP. Here, we report a facile controlled electrochemical exfoliation method for the preparation of a few-layer phosphorene (FP) with nearly 100% yield. Our approach relies on the low-potential influence in anhydrous and oxygen-free low-boiling acetonitrile (AN) and N,N-dimethylformamide (DMF) using alkylammonium ions. Herein, intercalation of positive ions into BP interlayers occurred with a minimum potential of -2.95 V in DMF and -2.85 V in AN and the non-damaging and highly accurate electrochemical exfoliation lasted at -3.8 V. A variety of analytical methods have revealed that in particular DMF-based exfoliation results in high-quality phosphorene of 1-5 layers with good crystallinity and lateral sizes up to tens of micrometers. Moreover, assurance of the oxygen- and water-free environment allowed us to minimize the surface oxidation of BP and, consequently, exfoliated phosphorene. We pioneer an effective and reproducible printing transfer of electrochemically exfoliated phosphorene films onto various flexible and rigid substrates. The surfactant-free process of exfoliation allowed assembly and transfer of thin films based on FP. The phosphorene-based films characterized as direct gap semiconductors have a layer-number-dependent bandgap with a tuning range larger than that of other 2D materials. We show that on varying the films' thickness, it is possible to modify their optical properties, which is a significant advantage for compact and switchable optoelectronic components.
Collapse
Affiliation(s)
- Evgeniya Kovalska
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6 - Dejvice, Czech Republic.
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6 - Dejvice, Czech Republic.
| | - Tomáš Hartman
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6 - Dejvice, Czech Republic.
| | - Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6 - Dejvice, Czech Republic.
| | - Polina Shaban
- Department of Photonics and Optical Information Technology, ITMO University, Kronverkskiy Prospekt, 49, 197101 Sankt-Petersburg, Russia
| | - Egor Oparin
- Department of Photonics and Optical Information Technology, ITMO University, Kronverkskiy Prospekt, 49, 197101 Sankt-Petersburg, Russia
| | - Maria Zhukova
- Department of Photonics and Optical Information Technology, ITMO University, Kronverkskiy Prospekt, 49, 197101 Sankt-Petersburg, Russia
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6 - Dejvice, Czech Republic.
| |
Collapse
|
49
|
Qu G, Xia T, Zhou W, Zhang X, Zhang H, Hu L, Shi J, Yu XF, Jiang G. Property-Activity Relationship of Black Phosphorus at the Nano-Bio Interface: From Molecules to Organisms. Chem Rev 2020; 120:2288-2346. [PMID: 31971371 DOI: 10.1021/acs.chemrev.9b00445] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a novel member of the two-dimensional nanomaterial family, mono- or few-layer black phosphorus (BP) with direct bandgap and high charge carrier mobility is promising in many applications such as microelectronic devices, photoelectronic devices, energy technologies, and catalysis agents. Due to its benign elemental composition (phosphorus), large surface area, electronic/photonic performances, and chemical/biological activities, BP has also demonstrated a great potential in biomedical applications including biosensing, photothermal/photodynamic therapies, controlled drug releases, and antibacterial uses. The nature of the BP-bio interface is comprised of dynamic contacts between nanomaterials (NMs) and biological systems, where BP and the biological system interact. The physicochemical interactions at the nano-bio interface play a critical role in the biological effects of NMs. In this review, we discuss the interface in the context of BP as a nanomaterial and its unique physicochemical properties that may affect its biological effects. Herein, we comprehensively reviewed the recent studies on the interactions between BP and biomolecules, cells, and animals and summarized various cellular responses, inflammatory/immunological effects, as well as other biological outcomes of BP depending on its own physical properties, exposure routes, and biodistribution. In addition, we also discussed the environmental behaviors and potential risks on environmental organisms of BP. Based on accumulating knowledge on the BP-bio interfaces, this review also summarizes various safer-by-design strategies to change the physicochemical properties including chemical stability and nano-bio interactions, which are critical in tuning the biological behaviors of BP. The better understanding of the biological activity of BP at BP-bio interfaces and corresponding methods to overcome the challenges would promote its future exploration in terms of bringing this new nanomaterial to practical applications.
Collapse
Affiliation(s)
- Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tian Xia
- Division of Nanomedicine, Department of Medicine , University of California Los Angeles California 90095 , United States
| | - Wenhua Zhou
- Materials Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P.R. China
| | - Xue Zhang
- Materials Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P.R. China
| | - Haiyan Zhang
- College of Environment , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xue-Feng Yu
- Materials Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , P.R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences 100085 , Beijing , P.R. China.,Institute of Environment and Health , Jianghan University , Wuhan 430056 , China.,Institute of Environment and Health , Hangzhou Institute for Advanced Study, UCAS , Hangzhou 310000 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
50
|
Thurakkal S, Zhang X. Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902359. [PMID: 31993294 PMCID: PMC6974947 DOI: 10.1002/advs.201902359] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/10/2019] [Indexed: 05/25/2023]
Abstract
Owing to their tunable direct bandgap, high charge carrier mobility, and unique in-plane anisotropic structure, black phosphorus nanosheets (BPNSs) have emerged as one of the most important candidates among the 2D materials beyond graphene. However, the poor ambient stability of black phosphorus limits its practical application, due to the chemical degradation of phosphorus atoms to phosphorus oxides in the presence of oxygen and/or water. Chemical functionalization is demonstrated as an efficient approach to enhance the ambient stability of BPNSs. Herein, various covalent strategies including radical addition, nitrene addition, nucleophilic substitution, and metal coordination are summarized. In addition, efficient noncovalent functionalization methods such as van der Waals interactions, electrostatic interactions, and cation-π interactions are described in detail. Furthermore, the preparations, characterization, and diverse applications of functionalized BPNSs in various fields are recapped. The challenges faced and future directions for the chemical functionalization of BPNSs are also highlighted.
Collapse
Affiliation(s)
- Shameel Thurakkal
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4SE‐412 96GöteborgSweden
| | - Xiaoyan Zhang
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4SE‐412 96GöteborgSweden
| |
Collapse
|