1
|
Du M, Li C. Engineering Supramolecular Hydrogels via Reversible Photoswitching of Cucurbit[8]uril-Spiropyran Complexation Stoichiometry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408484. [PMID: 39188206 DOI: 10.1002/adma.202408484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Indexed: 08/28/2024]
Abstract
The integration of photoswitchable supramolecular units into hydrogels allows for spatiotemporal control over their nanoscale topological network and macroscale properties using light. Nevertheless, the current availability of photoswitchable supramolecular interactions for the development of such materials remains limited. Here, the molecular design of a novel photoswitchable cucurbit[8]uril-spiropyran host-guest complex exhibiting fast and reversible switching of binding ratios between 1:2 and 1:1 is reported. Photoswitchable complexation stoichiometries are rationally exploited as (de)crosslinking units in multiple polymers for the design of supramolecular hydrogels displaying highly dynamic and switchable features that are spatiotemporally controlled by light. The hydrogels exhibit rapid reversible mechanical softening-hardening upon alternating irradiation with blue and UV light, which is used to significantly accelerate and improve the efficiency of self-healing and shape-remolding of hydrogels. Furthermore, spiropyran endows such materials with unique reversible photochromic properties for reproducible patterning/erasing and information storage. Using a dual-light-assisted extrusion process, meter-scale hydrogel fibers with enhanced structural integrity and photoswitchable ionic conductivity are constructed and woven into various slidable knots and fluorescent shapes. This work represents an innovative molecular design strategy for advancing the development of spatiotemporally engineered supramolecular hydrogels using light and opens avenues for their prospective applications in dynamic materials and adaptive systems.
Collapse
Affiliation(s)
- Mengqi Du
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuang Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Chiu TH, Wu SY, Yang YC, Yan CJ, Yeh YC. Fabrication of Luminescent Triple-Cross-Linked Gelatin/Alginate Hydrogels through Freezing-Drying-Swelling and Freezing-Thawing Processes. Biomacromolecules 2024; 25:5758-5770. [PMID: 39145523 PMCID: PMC11388451 DOI: 10.1021/acs.biomac.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Lanthanide-containing luminescent hydrogels have shown potential for sensing and imaging applications. Nonetheless, integrating lanthanide ions or complexes into the polymer matrix often results in the poor stability and mechanical strength of the hydrogels. This work presents an innovative approach to fabricating luminescent hydrogels with three dynamic cross-links: imine bond, boronate ester bond, and metal-ligand coordination. Europium(III) (Eu3+) ions are incorporated into a dual-cross-linked matrix composed of phenylboronic acid-polyethylenimine-modified gelatin (PPG) and alginate dialdehyde (ADA) through a combined treatment involving freeze-drying-swelling (FDS) and freeze-thawing (FT) processes. The FDS process facilitates the formation of additional europium-carboxylate cross-links within the polymeric network to enhance its luminescence and stability, while the FT process strengthens the network physically. The impact of the FDS-FT cycle number on the microstructures and properties of PPG/ADA-Eu3+ hydrogels is thoroughly investigated, and their potential for monitoring bacterial growth and detecting copper(II) ions is also demonstrated.
Collapse
Affiliation(s)
- Ting-Hsiang Chiu
- Institute of Polymer Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Ying Wu
- Institute of Polymer Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chen Yang
- Institute of Polymer Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Jie Yan
- Institute of Polymer Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Wang T, Young WO, Suazo MJ, Peera A, Carter MCD, Yeung K, Li L, Torkelson JM. Random Copolymers Based on 2-Ethylhexyl Acrylate Exhibit Unusual Glass Transition Breadth and Facile Autonomous Self-Healing over a Broad Composition Range. Macromol Rapid Commun 2024:e2400198. [PMID: 39150329 DOI: 10.1002/marc.202400198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Statistical copolymers are commercially important because their properties can be tuned by comonomer selection and composition. Rubbery-state styrene (S)/n-butyl acrylate (nBA) copolymers have previously been reported to exhibit facile, autonomous self-healing over a narrow composition band (47/53 to 53/47 mol%). The need for a narrow composition band is explained by alternating comonomer sequences that accommodate interchain secondary bonding. It is hypothesized that copolymers that achieve interchain secondary bonding without alternating sequences can exhibit facile self-healing over a broad composition range. 2-ethylhexyl acrylate (EHA) is identified as yielding sequence-independent secondary bonding interactions. For these interactions it is tested experimentally by glass transition breadth in rubbery-state S/EHA copolymers, with S/n-hexyl acrylate (nHA) and S/nBA copolymers as controls. The n-alkyl acrylate random copolymers exhibit enhanced glass transition breadths over narrow composition bands that correspond to autonomous self-healing. In contrast, S/EHA copolymers exhibit much greater glass transition breadths than S/nHA and S/nBA copolymers at all compositions tested as well as self-healing of damage over a broad composition range with full tensile-property recovery, often in 3-10 h. Characterization of glass transition breadth may serve as a simple screening tool for identifying copolymers that exhibit broad-composition-range, facile, autonomous self-healing and contribute to polymer resilience and sustainability.
Collapse
Affiliation(s)
- Tong Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wenshiue O Young
- The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | - Mathew J Suazo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Asghar Peera
- The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | | | - Kimy Yeung
- The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | - Li Li
- The Dow Chemical Company, 400 Arcola Road, Collegeville, PA, 19426, USA
| | - John M Torkelson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
5
|
He C, Bi S, Liu R, Zhao H, Chen C, Zhao X, Gu J, Yan B. Cation-π Interaction-Enhanced Self-Healing Injectable Hydrogels for Gastric Perforation Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35887-35897. [PMID: 38963542 DOI: 10.1021/acsami.4c01944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Surgical operations are the preferred treatment for gastric perforation (GP) but incur postoperative complications such as gastrointestinal adhesions and bacterial infections, leading to inefficient wound healing and serious complications that may even threaten the life of the patient. Developing hydrogel dressings capable of adapting to the gastric environment (acid) and decreasing visceral adhesions and bacterial infections after GP treatment is crucial. In this article, we developed an injectable, self-healing hydrogel using cation-π interactions between protonated amines and aromatic rings under acidic conditions and explored it for GP repair. The hydrogels demonstrate exceptional self-healing capabilities under acidic conditions and can be effectively tailored for the gastric environment. In addition, the hydrogel demonstrated significant efficacy in preventing gastrointestinal adhesion, reducing inflammation, promoting angiogenesis, and effectively facilitating wound healing in a rat GP model. This novel hydrogel demonstrates adaptability to the gastric environment, rendering it highly promising for potential applications in gastric trauma healing.
Collapse
Affiliation(s)
- Changyuan He
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Hongyu Zhao
- Petroleum Exploration Department of SINOPEC Shenli Oilfield, Dongying 257200, China
| | - Chong Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| |
Collapse
|
6
|
Zhan L, Xu W, Hu Z, Fan J, Sun L, Wang X, Zhang Y, Shi X, Ding B, Yu J, Ma Y. Full-Color "Off-On" Thermochromic Fluorescent Fibers for Customizable Smart Wearable Displays in Personal Health Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310762. [PMID: 38366074 DOI: 10.1002/smll.202310762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Responsive thermochromic fiber materials capable of miniaturization and integrating comfortably and compliantly onto the soft and dynamically deforming human body are promising materials for visualized personal health monitoring. However, their development is hindered by monotonous colors, low-contrast color changes, and poor reversibility. Herein, full-color "off-on" thermochromic fluorescent fibers are prepared based on self-crystallinity phase change and Förster resonance energy transfer for long-term and passive body-temperature monitoring, especially for various personalized customization purposes. The off-on switching luminescence characteristic is derived from the reversible conversion of the dispersion state and fluorescent emission by fluorophores and quencher molecules, which are embedded in the matrix of a phase-change material, during the crystallizing/melting processes. The achievement of full-color fluorescence is attributed to the large modulation range of fluorescence colors according to primary color additive theory. These thermochromic fluorescent fibers exhibit good mechanical properties, fluorescent emission contrast, and reversibility, showing their great potential in flexible smart display devices. Moreover, the response temperature of the thermochromic fibers is controllable by adjusting the phase-change material, enabling body-temperature-triggered luminescence; this property highlights their potential for human body-temperature monitoring and personalized customization. This work presents a new strategy for designing and exploring flexible sensors with higher comprehensive performances.
Collapse
Affiliation(s)
- Luyao Zhan
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Wanxuan Xu
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zixi Hu
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jiayin Fan
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Luping Sun
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xingchi Wang
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Yingying Zhang
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaodi Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Ying Ma
- Key Laboratory of Textiles Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
7
|
Chen Y, Li H, Zhang Y, Li Z, Yang D. Eu 3+-Directed Supramolecular Metallogels with Reversible Quadruple-Stimuli Response Behaviors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309542. [PMID: 38221683 DOI: 10.1002/smll.202309542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Indexed: 01/16/2024]
Abstract
Smart luminescent materials that have the ability to reversibly adapt to external environmental stimuli and possess a wide range of responses are continually emerging, which place higher demands on the means of regulation and response sites. Here, europium ions (Eu3+)-directed supramolecular metallogels are constructed by orthogonal self-assembly of Eu3+ based coordination interactions and hydrogen bonding. A new organic ligand (L) is synthesized, consisting of crown ethers and two flexible amide bonds-linked 1,10-phenanthroline moieties to coordinate with Eu3+. Synergistic intermolecular hydrogen bonding in L and Eu3+-L coordination bonding enable Eu3+ and L to self-assemble into shape-persistent 3D coordination metallogels in MeOH solution. The key to success is the utilization of crown ethers, playing dual roles of acting both as building blocks to build L with C2-symmetrical structure, and as the ideal monomer for increasing the energy transfer from L to Eu3+'s excited state, thus maintaining the excellent luminescence of metallogels. Interestingly, such assemblies show K+, pH, F-, and mechano-induced reversible gel-sol transitions and tunable luminescence properties. Above findings are useful in the studies of molecular switches, dynamic assemblies, and smart luminescent materials.
Collapse
Affiliation(s)
- Yan Chen
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding, Hebei, 071002, China
| | - Huimin Li
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding, Hebei, 071002, China
| | - Yakun Zhang
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding, Hebei, 071002, China
| | - Zhiqiang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, China
| | - Daqing Yang
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding, Hebei, 071002, China
| |
Collapse
|
8
|
Xu C, Cao JF, Pei Y, Kim Y, Moon H, Fan CQ, Liao MC, Wang XY, Yao F, Zhang YJ, Zhang SH, Zhang J, Li JZ, Kim JS, Ma L, Xie ZJ. Injectable hydrogel harnessing foreskin mesenchymal stem cell-derived extracellular vesicles for treatment of chronic diabetic skin wounds. J Control Release 2024; 370:339-353. [PMID: 38685383 DOI: 10.1016/j.jconrel.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Chronic skin wounds are a serious complication of diabetes with a high incidence rate, which can lead to disability or even death. Previous studies have shown that mesenchymal stem cells derived extracellular vesicles (EVs) have beneficial effects on wound healing. However, the human foreskin mesenchymal stem cell (FSMSCs)-derived extracellular vesicle (FM-EV) has not yet been isolated and characterized. Furthermore, the limited supply and short lifespan of EVs also hinder their practical use. In this study, we developed an injectable dual-physical cross-linking hydrogel (PSiW) with self-healing, adhesive, and antibacterial properties, using polyvinylpyrrolidone and silicotungstic acid to load FM-EV. The EVs were evenly distributed in the hydrogel and continuously released. In vivo and vitro tests demonstrated that the synergistic effect of EVs and hydrogel could significantly promote the repair of diabetic wounds by regulating macrophage polarization, promoting angiogenesis, and improving the microenvironment. Overall, the obtained EVs-loaded hydrogels developed in this work exhibited promising applicability for the repair of chronic skin wounds in diabetes patients.
Collapse
Affiliation(s)
- Chang Xu
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Jin-Feng Cao
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
| | - Yue Pei
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Yujin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Huiyeon Moon
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chui-Qin Fan
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Mao-Chuan Liao
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Xing-Yu Wang
- Department of Emergency, ChangYang Tujia Autonomous County People's Hospital, Yichang 443000, China
| | - Fei Yao
- Eye Center of Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yu-Jun Zhang
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Shao-Hui Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian-Zhang Li
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Lian Ma
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China; Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China; Department of Pediatrics, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Zhong-Jian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China; Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China.
| |
Collapse
|
9
|
He C, Bi S, Zhang R, Chen C, Liu R, Zhao X, Gu J, Yan B. A hyaluronic acid hydrogel as a mild photothermal antibacterial, antioxidant, and nitric oxide release platform for diabetic wound healing. J Control Release 2024; 370:543-555. [PMID: 38729434 DOI: 10.1016/j.jconrel.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Hyaluronic acid (HA)-based biopolymer hydrogels are promising therapeutic dressings for various wounds but still underperform in treating diabetic wounds. These wounds are extremely difficult to heal and undergo a prolonged and severe inflammatory process due to bacterial infection, overexpression of reactive oxygen species (ROS), and insufficient synthesis of NO. In this study, a dynamic crosslinked hyaluronic acid (HA) hydrogel dressing (Gel-HAB) loaded with allomelanin (AMNP)-N, N'-dis-sec-butyl-N, N'-dinitroso-1, 4-phenylenediamine (BNN6) nanoparticles (AMNP-BNN6) was developed for healing diabetic wounds. The dynamic acylhydrazone bond formed between hydrazide-modified HA (HA-ADH) and oxidized HA (OHA) makes the hydrogel injectable, self-healing, and biocompatible. The hydrogel, loaded with AMNP-BNN6 nanoparticles, exhibits promising ROS scavenging ability and on-demand release of nitric oxide (NO) under near-infrared (NIR) laser irradiation to achieve mild photothermal antibacterial therapy (PTAT) (∼ 48 °C). Notably, the Gel-HAB hydrogel effectively reduced the oxidative stress level, controlled infections, accelerated vascular regeneration, and promoted angiogenesis, thereby achieving rapid healing of diabetic wounds. The injectable self-healing nanocomposite hydrogel could serve as a mild photothermal-enhanced antibacterial, antioxidant, and nitric oxide release platform for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Changyuan He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Rongya Zhang
- Technology Center, China Tobacco Sichuan Industrial Co. Ltd., Chengdu 610066, China
| | - Chong Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China.
| | - Bin Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
10
|
Liu J, Huang YS, Liu Y, Zhang D, Koynov K, Butt HJ, Wu S. Reconfiguring hydrogel assemblies using a photocontrolled metallopolymer adhesive for multiple customized functions. Nat Chem 2024; 16:1024-1033. [PMID: 38459235 PMCID: PMC11164683 DOI: 10.1038/s41557-024-01476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
Stimuli-responsive hydrogels with programmable shape changes are promising materials for soft robots, four-dimensional printing, biomedical devices and artificial intelligence systems. However, these applications require the fabrication of hydrogels with complex, heterogeneous and reconfigurable structures and customizable functions. Here we report the fabrication of hydrogel assemblies with these features by reversibly gluing hydrogel units using a photocontrolled metallopolymer adhesive. The metallopolymer adhesive firmly attached individual hydrogel units via metal-ligand coordination and polymer chain entanglement. Hydrogel assemblies containing temperature- and pH-responsive hydrogel units showed controllable shape changes and motions in response to these external stimuli. To reconfigure their structures, the hydrogel assemblies were disassembled by irradiating the metallopolymer adhesive with light; the disassembled hydrogel units were then reassembled using the metallopolymer adhesive with heating. The shape change and structure reconfiguration abilities allow us to reprogramme the functions of hydrogel assemblies. The development of reconfigurable hydrogel assemblies using reversible adhesives provides a strategy for designing intelligent materials and soft robots with user-defined functions.
Collapse
Affiliation(s)
- Jiahui Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Yun-Shuai Huang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yazhi Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Dachuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
11
|
Long S, Chen F, Ren H, Hu Y, Chen C, Huang Y, Li X. Ion-Cross-Linked Hybrid Photochromic Hydrogels with Enhanced Mechanical Properties and Shape Memory Behaviour. Polymers (Basel) 2024; 16:1031. [PMID: 38674950 PMCID: PMC11054056 DOI: 10.3390/polym16081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Shape-shifting polymers usually require not only reversible stimuli-responsive ability, but also strong mechanical properties. A novel shape-shifting photochromic hydrogel system was designed and fabricated by embedding hydrophobic spiropyran (SP) into double polymeric network (DN) through micellar copolymerisation. Here, sodium alginate (Alg) and poly acrylate-co-methyl acrylate-co-spiropyran (P(SA-co-MA-co-SPMA)) were employed as the first network and the second network, respectively, to realise high mechanical strength. After being soaked in the CaCl2 solution, the carboxyl groups in the system underwent metal complexation with Ca2+ to enhance the hydrogel. Moreover, after the hydrogel was exposed to UV-light, the closed isomer of spiropyran in the hydrogel network could be converted into an open zwitterionic isomer merocyanine (MC), which was considered to interact with Ca2+ ions. Interestingly, Ca2+ and UV-light responsive programmable shape of the copolymer hydrogel could recover to its original form via immersion in pure water. Given its excellent metal ion and UV light stimuli-responsive and mechanical properties, the hydrogel has potential applications in the field of soft actuators.
Collapse
Affiliation(s)
- Shijun Long
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Fan Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
| | - Han Ren
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
| | - Yali Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
| | - Chao Chen
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Yiwan Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
12
|
Qian H, Tian J, Jiang X, Zhang B, Li X, Yang Y, Gao S, Shao L, Li F. Mechanofluorochromic behaviors and data security protection properties of salicylaldimine-based difluoroboron complexes with different aryl substituents. LUMINESCENCE 2024; 39:e4729. [PMID: 38548706 DOI: 10.1002/bio.4729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
To further explore the relationship between aryl substituents and mechanofluorochromic (MFC) behaviors, four salicylaldimine-based difluoroboron complexes (ts-Ph BF2, ts-Ph-NA BF2, ts-2NA BF2, and ts-triphenylamine [TPA] BF2), including aromatic substituents with different steric hindrance effects, were designed and successfully synthesized. Four complexes with twisted molecular conformation displayed intramolecular charge transfer and aggregation-induced emission properties. Under external mechanical stimuli, the as-synthesized powders of ts-Ph BF2, ts-Ph-NA BF2, and ts-TPA BF2 exhibited redshift fluorescence emission behaviors, and ts-Ph BF2 and ts-TPA BF2 could be recovered to original shifts by fuming, but ts-Ph-NA BF2 displayed irreversible switching. ts-2NA BF2 had no change during the grinding and fuming processes. The results indicated that the MFC behaviors could be attributed to the phase transformation between the well-defined crystalline and disordered amorphous states by X-ray diffraction measurement. Further research illustrated that ts-TPA BF2 with the most significant MFC phenomenon could be applied in data security protection in ink-free rewritable paper.
Collapse
Affiliation(s)
- Han Qian
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Jiazhuang Tian
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Xiaozhou Jiang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Bangcui Zhang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Xueliang Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Yanhua Yang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Shulin Gao
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, P.R. China
| | - Lin Shao
- Chromatographic Analysis Center, Dali Institute for Food Control, Dali, P.R. China
| | - Fumin Li
- Physical and Chemical Inspection Center, Dali Institute for Food Control, Dali, P.R. China
| |
Collapse
|
13
|
Tang J, Xing T, Chen S, Feng J. A Shape Memory Hydrogel with Excellent Mechanical Properties, Water Retention Capacity, and Tunable Fluorescence for Dual Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305928. [PMID: 37986102 DOI: 10.1002/smll.202305928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Information encryption platforms with reliable encryption performance, excellent mechanical performance, and high water retention capacity are highly desired. In this study, a tough double-network hydrogel is designed using the first network of a polyion complex containing lanthanide complexes via one-pot polymerization and the second network of a poly (N-hydroxyethyl acrylamide) (PHEAA) obtained by deep eutectic solvent (DES)-assisted introduction and subsequent photopolymerization. In this system, the pH-induced shape memory function and pH-/wavelength-dependent fluorescence allow the use of the prepared hydrogel as a dual-encryption platform. Owing to its high response reversibility, the hydrogel-based platform exhibits both a high security level and the advantages of rewritability, reprogrammability, and reusability. Additionally, the excellent mechanical properties and water retention capacity owing to the solvent exchange process involving the low-volatility solvent DES and the resulting introduction of the second network of PHEAA offer high practical application value for the hydrogel-based dual encryption platform, demonstrating its potential for information security protection.
Collapse
Affiliation(s)
- Junyi Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Tianyu Xing
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Sijia Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Jiachun Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Yiwu Research Institute of Fudan University, Yiwu City, Zhejiang, 322000, China
| |
Collapse
|
14
|
Cheng X, Hu H, Bu L, Wu Y, Ma Z, Ma Z. Suppressive Photochromism and Promotive Mechanochromism of Rhodamine Mechanophore by the Strategy of Poly(methyl acrylate)/Polyurethane Interpenetrating Polymer Network. ACS Macro Lett 2024; 13:308-314. [PMID: 38373339 DOI: 10.1021/acsmacrolett.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
As molecular design and the structure-property relationships of photochemical molecules established in the literature serve as a convenient reference for mechanophore exploration, many typical mechanophores suffer undesired responses to UV light or even sunlight in bulk polymers. We developed a strategy of a poly(methyl acrylate)/polyurethane (PMA/PU) interpenetrating polymer network (IPN) to suppress the photochromic property of the mechanophore and promote its mechanochromic property. A widely used rhodamine mechanophore (Rh-2OH) was first incorporated into polyurethane (P1). Then P1 was swollen in methyl acrylate and photopolymerized to prepare a PMA2.8/PU IPN (P2). Different from photo/force-responsive P1, P2 selectively responded to force because the low free volume in IPN greatly hinders photoisomerization of the rhodamine spirolactam, suggesting that a simple IPN strategy successfully resolves the giant problem of nonselective response to photo/force for photochromic mechanophores. Moreover, PMA/PU IPN enhanced the mechanical property, resulting in a higher mechanochemical activation ratio than PU, and the prestretching effect of PMA/PU IPN promoted the force sensitivity of rhodamine mechanophores significantly. We believe that the strategy can be applied to other mechanophores, promoting their application in more complicated environments.
Collapse
Affiliation(s)
- Xin Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huan Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lijuan Bu
- Chinese PLA Center for Disease Control and Prevention, Beijing 100071, China
| | - Yu Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhimin Ma
- College of Engineering, Peking University, Beijing 100871, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
15
|
Lu D, Lian Q, Zhu M. Bioinspired Multistimuli-Induced Synergistic Changes in Color and Shape of Hydrogel and Actuator Based on Fluorescent Microgels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304776. [PMID: 38009474 PMCID: PMC10797463 DOI: 10.1002/advs.202304776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Indexed: 11/29/2023]
Abstract
Fluorescent hydrogels have emerged as one of the most promising candidates for developing biomimetic materials and artificial intelligence owing to their unique fluorescence and responsive properties. However, it is still challenging to fabricate hydrogel that exhibits synergistic changes in fluorescence color and shape in response to multistimulus via a simple method. Herein, blue- and orange-emitting fluorescent microgels (MGs) both are designed and synthesized with pH-, thermal-, and cationic-sensitivity via one-step polymerization, respectively. The two fluorescent MGs are incorporated into transparent doubly crosslinked microgel (DX MG) hydrogels with a preset ratio. The DX MG hydrogels can tune the fluorescent color accompanied by size variation via subjecting to external multistimulus. Thus, DX MG hydrogels can be exploited for multiresponsive fluorescent bilayer actuators. The actuators can undergo complex shape deformation and color changes. Inspired by natural organisms, an artificial morning glory with color and size changes are showcased in response to buffer solutions of different pH values. Besides, an intelligent skin hydrogel, imitating natural calotes versicolor, by assembling four layers of DX MG with different ratios of MGs, is tailored. This work serves as an inspiration for the design and fabrication of novel biomimetic smart materials with synergistic functions.
Collapse
Affiliation(s)
- Dongdong Lu
- School of Physical SciencesGreat Bay UniversityDongguan523808P. R. China
- Derpartment of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Qing Lian
- Derpartment of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Mingning Zhu
- School of Biomedical EngineeringGuangdong Medical UniversityDongguan523808P. R. China
| |
Collapse
|
16
|
Zhang Q, Lin C, Chen C, Zhang L, Shi F, Cheng M. Polyelectrolyte chain conformation matters in macroscopic supramolecular self-assembly. Chem Commun (Camb) 2023; 59:14114-14117. [PMID: 37929664 DOI: 10.1039/d3cc04140a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
We demonstrate molecular-conformation-dependent macroscopic supramolecular self-assembly (MSA) driven by electrostatic interactions. Evidence from single molecular force spectroscopy reveals that polyelectrolytes modified on MSA component surfaces make MSA possible with a loop conformation, while those with a flat conformation lead to no assembly, which is attributed to distinct molecular mobility. We believe that this finding is also applicable in fundamental phenomena such as surface adsorption and adhesion regarding polymers.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Cuiling Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chen Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Liqun Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
17
|
Zhou WL, Lin W, Chen Y, Dai XY, Liu Y. Tunable Multicolor Lanthanide Supramolecular Assemblies with White Light Emission Confined by Cucurbituril[7]. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304009. [PMID: 37442787 DOI: 10.1002/smll.202304009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Macrocyclic confinement-induced supramolecular luminescence materials have important application value in the fields of bio-sensing, cell imaging, and information anti-counterfeiting. Herein, a tunable multicolor lanthanide supramolecular assembly with white light emission is reported, which is constructed by co-assembly of cucurbit[7]uril (CB[7]) encapsulating naphthylimidazolium dicarboxylic acid (G1 )/Ln (Eu3+ /Tb3+ ) complex and carbon quantum dots (CD). Benefiting from the macrocyclic confinement effect of CB[7], the supramolecular assembly not only extends the fluorescence intensity of the lanthanide complex G1 /Tb3+ by 36 times, but also increases the quantum yield by 28 times and the fluorescence lifetime by 12 times. Furthermore, the CB[7]/G1 /Ln assembly can further co-assemble with CD and diarylethene derivatives (DAE) to realize the intelligently-regulated full-color spectrum including white light, which results from the competitive encapsulation of adamantylamine and CB[7], the change of pH, and photochromic DAE. The multi-level logic gate based on lanthanide supramolecular assembly is successfully applied in anti-counterfeiting system and information storage, providing an effective method for the research of new luminescent intelligent materials.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- College of Chemistry and Material Science, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao, 028000, P. R. China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
18
|
Muchlis AMG, Yang C, Tsai YT, Ummartyotin S, Lin CC. Multiresponsive Self-Healing Lanthanide Fluorescent Hydrogel for Smart Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46085-46097. [PMID: 37732796 DOI: 10.1021/acsami.3c10662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Lanthanide organometallic complexes exhibit strong luminescence characteristics, owing to their antenna effects. The f-d energy level transition causes this phenomenon, which occurs when ligands and the external electrons of lanthanide metals coordinate. Based on this phenomenon, we used two lanthanide metals, europium (Eu) and terbium (Tb), in the present study as the metal center for iminodiacetic acid ligands. Further, we developed the resulting fluorescent organometallic complex as a smart material. The ligand-metal bond in the material functioned as a metal chelating agent and a cross-linking agent in a dynamically coordinated form, thereby prompting the material to self-heal. Temperature-sensitive poly-N-isopropylacrylamide was incorporated into the material as the polymer backbone. Afterward, we combined it with water-soluble poly(vinyl alcohol) and an additional ligand from poly(acrylic acid) to fabricate a high-performance hydrogel composite material. The shrinkage and expansion of the polymer form a grid between the materials. Because of the different coordination stabilities of Eu3+ and Tb3+, the corresponding material exhibits environmental responses toward excitation wavelength, temperature, and pH, thus generating different colors. When used in fabrics, the cross-linking mechanism of the material effectively looped the material between fabric fibers; furthermore, the temperature sensitivity of the polymer adjusted the size of pores between fabric fibers. At relatively higher temperatures (>32 °C), the polymer structure shrank, fiber pores expanded, and air permeability improved. Thus, this material appears to be promising for use in smart textiles.
Collapse
Affiliation(s)
| | - Ching Yang
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106334, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106334, Taiwan
| | - Yi-Ting Tsai
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106334, Taiwan
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chun Che Lin
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106334, Taiwan
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106334, Taiwan
| |
Collapse
|
19
|
Xiong Y, Yang W, Huang S, Chen X, Wang Q, Ni J, Lin Z. Competitive substitution in europium metal-organic gel for signal-on electrochemiluminescence detection of dipicolinic acid. Mikrochim Acta 2023; 190:426. [PMID: 37792169 DOI: 10.1007/s00604-023-06007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Metal-organic gels (MOGs) emerged as an attractive luminescent soft material for electrochemiluminescence (ECL). In this work, a cathodic ECL-activated europium metal-organic gel (Eu-MOG) has been synthesized by a facile mixing of Eu3+ with 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine (Hcptpy) under mild conditions. The prepared Eu-MOG is highly mesoporous for co-reactant permeation to produce an ultra-stable and high-efficient ECL, based on the antenna effect of Eu3+ coordinating with Hcptpy. Moreover, dipicolinic acid (DPA) can competitively coordinate with Eu3+ instead of water molecules, producing an enhanced ECL signal. Therefore, an ECL enhancement assay was developed for DPA detection. There was a linear relationship between the ECL intensity and the logarithmic concentration of DPA in the 0.01-1 μM range, and the detection limit is 7.35 nM. This work displays the promising application of Eu-MOG in the ECL field, opening a broad inspection for seeking a new generation of ECL luminophores.
Collapse
Affiliation(s)
- Ya Xiong
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 36 Xianqian Street, Zhangzhou, 363000, Fujian, China
| | - Weiqiang Yang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 36 Xianqian Street, Zhangzhou, 363000, Fujian, China.
| | - Shengxiu Huang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 36 Xianqian Street, Zhangzhou, 363000, Fujian, China
| | - Xiaoping Chen
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 36 Xianqian Street, Zhangzhou, 363000, Fujian, China
| | - Qingxiang Wang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 36 Xianqian Street, Zhangzhou, 363000, Fujian, China
| | - Jiancong Ni
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, 36 Xianqian Street, Zhangzhou, 363000, Fujian, China.
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
20
|
Huang YS, Zhou Y, Zeng X, Zhang D, Wu S. Reversible Crosslinking of Commodity Polymers via Photocontrolled Metal-Ligand Coordination for High-Performance and Recyclable Thermoset Plastics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305517. [PMID: 37401043 DOI: 10.1002/adma.202305517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Thermoset plastics, highly desired for their stability, durability, and chemical resistance, are currently consumed in over 60 million tons annually across the globe, but they are difficult to recycle due to their crosslinked structures. The development of recyclable thermoset plastics is an important but challenging task. In this work, recyclable thermoset plastics are prepared by crosslinking a commodity polymer, polyacrylonitrile (PAN), with a small percentage of a Ru complex via nitrile-Ru coordination. PAN is obtained from industry and the Ru complex is synthesized in one step, which enables the production of recyclable thermoset plastics in an efficient way. In addition, the thermoset plastics exhibit impressive mechanical performance, boasting a Young's modulus of 6.3 GPa and a tensile strength of 109.8 MPa. Moreover, they can be de-crosslinked when exposed to both light and a solvent and can then be re-crosslinked upon heating. This reversible crosslinking mechanism enables the recycling of thermosets from a mixture of plastic waste. The preparation of recyclable thermosets from other commodity polymers such as poly(styrene-coacrylonitrile) (SAN) resins and polymer composites through reversible crosslinking is also demonstrated. This study shows that reversible crosslinking via metal-ligand coordination is a new strategy for designing recyclable thermosets using commodity polymers.
Collapse
Affiliation(s)
- Yun-Shuai Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaolong Zeng
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Dachuan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
21
|
Ding W, Vallabhuneni S, Liu J, Wang X, Zhao Y, Wang Y, Tang Q, Wang Y, Zhang X, Kota AK, Tang J. Eu 3+ Complex-Based Superhydrophobic Fluorescence Sensor for Cr(VI) Detection in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2574. [PMID: 37764603 PMCID: PMC10535327 DOI: 10.3390/nano13182574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Cr(VI) compounds are bioaccumulative and highly toxic pollutants, and there is a need for simple and fast detection methods to monitor their trace levels. In this work, we developed a Eu3+ complex-based fluorescence sensor to easily detect Cr(VI) in water droplets. Our sensor consists of a nanofibrous membrane electrospun with a blend of polyvinylidene fluoride (PVDF), silica particles, and Eu3+ complex. Upon modifying the membrane surface with fluoroalkyl chemistry, the sensor displayed superhydrophobicity. When a water droplet with Cr(VI) was placed on such a superhydrophobic fluorescence sensor, the overlapping absorption of Cr(VI) and Eu3+ complex facilitated the inner filter effect, allowing the selective detection of Cr(VI) down to 0.44 µM (i.e., 45.76 µg L-1). We proposed and designed of new inexpensive and fast sensor for the detection of Cr(VI).
Collapse
Affiliation(s)
- Wei Ding
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Sravanthi Vallabhuneni
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jin Liu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinzhi Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yue Zhao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qinglin Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xiaolin Zhang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Arun Kumar Kota
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineeeing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
22
|
Gu P, Luo X, Zhou S, Wang D, Li Z, Chai Y, Zhang Y, Shi S, Russell TP. Stabilizing Liquids Using Interfacial Supramolecular Assemblies. Angew Chem Int Ed Engl 2023; 62:e202303789. [PMID: 37198522 DOI: 10.1002/anie.202303789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/19/2023]
Abstract
Stabilizing liquids based on supramolecular assembly (non-covalent intermolecular interactions) has attracted significant interest, due to the increasing demand for soft, liquid-based devices where the shape of the liquid is far from the equilibrium spherical shape. The components comprising these interfacial assemblies must have sufficient binding energies to the interface to prevent their ejection from the interface when the assemblies are compressed. Here, we highlight recent advances in structuring liquids based on non-covalent intermolecular interactions. We describe some of the progress made that reveals structure-property relationships. In addition to treating advances, we discuss some of the limitations and provide a perspective on future directions to inspire further studies on structured liquids based on supramolecular assembly.
Collapse
Affiliation(s)
- Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaobo Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Zhongyu Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yu Chai
- Department of Physics, City University of Hong Kong, Kowloon, P. R. China
| | - Yuzhe Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Thomas P Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
23
|
Liu C, Steppert AK, Liu Y, Weis P, Hu J, Nie C, Xu WC, Kuehne AJC, Wu S. A Photopatternable Conjugated Polymer with Thermal-Annealing-Promoted Interchain Stacking for Highly Stable Anti-Counterfeiting Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303120. [PMID: 37257837 DOI: 10.1002/adma.202303120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Photoresponsive polymers can be conveniently used to fabricate anti-counterfeiting materials through photopatterning. However, an unsolved problem is that ambient light and heat can damage anti-counterfeiting patterns on photoresponsive polymers. Herein, photo- and thermostable anti-counterfeiting materials are developed by photopatterning and thermal annealing of a photoresponsive conjugated polymer (MC-Azo). MC-Azo contains alternating azobenzene and fluorene units in the polymer backbone. To prepare an anti-counterfeiting material, an MC-Azo film is irradiated with polarized blue light through a photomask, and then thermally annealed under the pressure of a photonic stamp. This strategy generates a highly secure anti-counterfeiting material with dual patterns, which is stable to sunlight and heat over 200 °C. A key for the stability is that thermal annealing promotes interchain stacking, which converts photoresponsive MC-Azo to a photostable material. Another key for the stability is that the conjugated structure endows MC-Azo with desirable thermal properties. This study shows that the design of photopatternable conjugated polymers with thermal-annealing-promoted interchain stacking provides a new strategy for the development of highly stable and secure anti-counterfeiting materials.
Collapse
Affiliation(s)
- Chengwei Liu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ann-Kathrin Steppert
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yazhi Liu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Philipp Weis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jianyu Hu
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Nie
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Alexander J C Kuehne
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
24
|
Zhu J, Tao J, Yan W, Song W. Pathways toward wearable and high-performance sensors based on hydrogels: toughening networks and conductive networks. Natl Sci Rev 2023; 10:nwad180. [PMID: 37565203 PMCID: PMC10411675 DOI: 10.1093/nsr/nwad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/02/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023] Open
Abstract
Wearable hydrogel sensors provide a user-friendly option for wearable electronics and align well with the existing manufacturing strategy for connecting and communicating with large numbers of Internet of Things devices. This is attributed to their components and structures, which exhibit exceptional adaptability, scalability, bio-compatibility, and self-healing properties, reminiscent of human skin. This review focuses on the recent research on principal structural elements of wearable hydrogels: toughening networks and conductive networks, highlighting the strategies for enhancing mechanical and electrical properties. Wearable hydrogel sensors are categorized for an extensive exploration of their composition, mechanism, and design approach. This review provides a comprehensive understanding of wearable hydrogels and offers guidance for the design of components and structures in order to develop high-performance wearable hydrogel sensors.
Collapse
Affiliation(s)
- Junbo Zhu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jingchen Tao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wei Yan
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Weixing Song
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
25
|
Wang J, Lu T, Li Y, Wang J, Spruijt E. Aqueous coordination polymer complexes: From colloidal assemblies to bulk materials. Adv Colloid Interface Sci 2023; 318:102964. [PMID: 37515864 DOI: 10.1016/j.cis.2023.102964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
1-dimensional (1D) coordination polymers refer to the macromolecules that have metal ions incorporated in their pendent groups or main chain through metal-binding ligand groups. They have intrinsic advantages over traditional polymers to regulate the polymer structures and functions owing to the nature of the metal-ligand bond. Consequently, they have great potential for the development of smart and functional structures and materials and therapeutic agents. Water-soluble 1D coordination polymers and assemblies are an important subtype of coordination polymers with distinctive interests for demanding applications in aqueous systems, such as biological and medical applications. This review highlights the recent progress and research achievements in the design and use of water-soluble 1D coordination polymers and assemblies. The overview covers the design and structure control of 1D coordination polymers, their colloidal assemblies, including nanoparticles, nanofibers, micelles and vesicles, and fabricated bulk materials such as membraneless liquid condensates, security ink, hydrogel actuators, and smart fabrics. Finally, we discuss the potential applications of several of these coordination polymeric structures and materials and give an outlook on the field of aqueous coordination polymers.
Collapse
Affiliation(s)
- Jiahua Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Tiemei Lu
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Evan Spruijt
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
26
|
Zhou WL, Dai XY, Lin W, Chen Y, Liu Y. A pillar[5]arene noncovalent assembly boosts a full-color lanthanide supramolecular light switch. Chem Sci 2023; 14:6457-6466. [PMID: 37325139 PMCID: PMC10266474 DOI: 10.1039/d3sc01425h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023] Open
Abstract
A photo-responsive full-color lanthanide supramolecular switch was constructed from a synthetic 2,6-pyridine dicarboxylic acid (DPA)-modified pillar[5]arene (H) complexing with lanthanide ion (Ln3+ = Tb3+ and Eu3+) and dicationic diarylethene derivative (G1) through a noncovalent supramolecular assembly. Benefiting from the strong complexation between DPA and Ln3+ with a 3 : 1 stoichiometric ratio, the supramolecular complex H/Ln3+ presented an emerging lanthanide emission in the aqueous and organic phase. Subsequently, a network supramolecular polymer was formed by H/Ln3+ further encapsulating dicationic G1via the hydrophobic cavity of pillar[5]arene, which greatly contributed to the increased emission intensity and lifetime, and also resulted in the formation of a lanthanide supramolecular light switch. Moreover, full-color luminescence, especially white light emission, was achieved in aqueous (CIE: 0.31, 0.32) and dichloromethane (CIE: 0.31, 0.33) solutions by the adjustment of different ratios of Tb3+ and Eu3+. Notably, the photo-reversible luminescence properties of the assembly were tuned via alternant UV/vis light irradiation due to the conformation-dependent photochromic energy transfer between the lanthanide and the open/closed-ring of diarylethene. Ultimately, the prepared lanthanide supramolecular switch was successfully applied to anti-counterfeiting through the use of intelligent multicolored writing inks, and presents new opportunities for the design of advanced stimuli-responsive on-demand color tuning with lanthanide luminescent materials.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
- College of Chemistry and Material Science, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University Tongliao 028000 P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271016 China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| |
Collapse
|
27
|
Niu Q, Han H, Li H, Li Z. Room-Temperature Self-Healing Glassy Luminescent Hybrid Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5979-5985. [PMID: 37079713 DOI: 10.1021/acs.langmuir.2c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The self-healing of glassy polymer materials on site has always been a huge challenge due to their frozen polymer network. We herein report self-repairable glassy luminescent film by assembling a lanthanide-containing polymer with randomly hyperbranched polymers possessing multiple hydrogen (H) bonds. Because of multiple H bonds, the hybrid film exhibits enhanced mechanical strength, with high glass transition temperature (Tg) of 40.3 °C and high storage modulus of 3.52 GPa, meanwhile, dynamic exchange of multiple H bonds enables its rapid room-temperature self-healing ability. This research provides new insights in preparing mechanical robust yet repairable polymeric functional materials.
Collapse
Affiliation(s)
- Qingyu Niu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hang Han
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Huanrong Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Zhiqiang Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
28
|
Niu Q, Han H, Liu X, Li B, Li H, Li Z. A rapid self-healing glassy polymer/metal-organic-framework hybrid membrane at room temperature. Dalton Trans 2023; 52:3148-3157. [PMID: 36790126 DOI: 10.1039/d2dt03926e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of repairable MOF-polymer hybrid materials will greatly extend their service life by repairing fractured parts on the spot; however, it is difficult for robust glassy polymers to self-heal below the glass transition temperature (Tg) as the polymer network is frozen. We herein report glassy polyMOF-RHP hybrid membranes by integrating lanthanide polyMOF (polyLnMOF) with randomly hyperbranched polymers (RHP) bearing a high density of hydrogen bonds. Since crystalline lanthanide MOFs act as multiconnected cross-linking agents and cross-link the interpenetrating polymer network, the obtained polyLnMOF-polymer membrane shows enhanced mechanical strength with a storage modulus of 3.09 GPa and a Tg up to 49 °C. Meanwhile, the high intersegment migration ability of the polyLnMOF-polymer network facilitates the exchange of hydrogen-bonded pairs even in the glassy state, leading to an instantaneous room-temperature self-healing ability. The polyLnMOF-polymer membranes inherit the ratiometric temperature-sensing behavior of pristine lanthanide MOFs, resulting in more processable temperature-sensing membranes. This work provides an appealing strategy for the design of mechanically robust, yet self-healing, MOF-polymer functional materials.
Collapse
Affiliation(s)
- Qingyu Niu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China.
| | - Hang Han
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China.
| | - Xiao Liu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China.
| | - Bin Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China.
| | - Huanrong Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China.
| | - Zhiqiang Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China.
| |
Collapse
|
29
|
Wang M, Nie C, Liu J, Wu S. Organic‒inorganic semi-interpenetrating networks with orthogonal light- and magnetic-responsiveness for smart photonic gels. Nat Commun 2023; 14:1000. [PMID: 36813808 PMCID: PMC9946997 DOI: 10.1038/s41467-023-36706-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Living matter has the ability to perceive multiple stimuli and respond accordingly. However, the integration of multiple stimuli-responsiveness in artificial materials usually causes mutual interference, which makes artificial materials work improperly. Herein, we design composite gels with organic‒inorganic semi-interpenetrating network structures, which are orthogonally responsive to light and magnetic fields. The composite gels are prepared by the co-assembly of a photoswitchable organogelator (Azo-Ch) and superparamagnetic inorganic nanoparticles (Fe3O4@SiO2). Azo-Ch assembles into an organogel network, which shows photoinduced reversible sol-gel transitions. In gel or sol state, Fe3O4@SiO2 nanoparticles reversibly form photonic nanochains via magnetic control. Light and magnetic fields can orthogonally control the composite gel because Azo-Ch and Fe3O4@SiO2 form a unique semi-interpenetrating network, which allows them to work independently. The orthogonal photo- and magnetic-responsiveness enables the fabrication of smart windows, anti-counterfeiting labels, and reconfigurable materials using the composite gel. Our work presents a method to design orthogonally stimuli-responsive materials.
Collapse
Affiliation(s)
- Minghao Wang
- grid.59053.3a0000000121679639CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| | - Chen Nie
- grid.59053.3a0000000121679639CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| | - Junbang Liu
- grid.59053.3a0000000121679639CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, 230026 Hefei, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
30
|
Zhang Y, Wang R, Lu W, Li W, Chen S, Chen T. Mechanical tough and multicolor aggregation-induced emissive polymeric hydrogels for fluorescent patterning. NANOSCALE ADVANCES 2023; 5:725-732. [PMID: 36756500 PMCID: PMC9890953 DOI: 10.1039/d2na00757f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Aggregation-induced emissive fluorogens (AIEgens) are promising building blocks for fluorescent polymeric hydrogels (FPHs) because intense fluorescence intensities are usually guaranteed by spontaneous aggregates of hydrophobic AIEgens in a hydrophilic polymer network. However, most AIE-active FPHs are single-color fluorescent and cannot display tunable emission colors. Additionally, efforts to produce mechanically strong AIE-active hydrogels have been largely ignored, restricting their potential uses. Herein, we present the synthesis of an AIE-active methyl picolinate-substituted 1,8-naphthalimide monomer (MP-NI) for fabricating mechanical tough and multicolor FPHs. Owing to the introduction of bulky and coordinative methyl picolinate group, these specially designed MP-NI molecules were forced to adopt propeller-shaped conformation that renders them with intense aggregation-induced blue emission. Moreover, the MP-NI moieties grafted in a hydrogel matrix can sensitize red and green fluorescence of Eu3+and Tb3+ via antenna effect. Consequently, multicolor fluorescent hydrogels that sustain a high stress of 1 MPa were obtained by chemically introducing MP-NI moieties into dually cross-linked alginate polymer networks with high-density metal (Ca2+/Tb3+/Eu3+) coordination and hydrogen bonding crosslinks. Their capacity to enable the writing of arbitrary multicolor fluorescent patterns using Eu3+/Tb3+ as inks were finally demonstrated, suggesting their potential uses for smart display and information encryption.
Collapse
Affiliation(s)
- Yi Zhang
- College of Material Science and Engineering, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Ruijia Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Wanning Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Si Chen
- College of Material Science and Engineering, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| |
Collapse
|
31
|
Zhu T, Ni Y, Biesold GM, Cheng Y, Ge M, Li H, Huang J, Lin Z, Lai Y. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem Soc Rev 2023; 52:473-509. [PMID: 36484322 DOI: 10.1039/d2cs00173j] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogel-based conductive materials for smart wearable devices have attracted increasing attention due to their excellent flexibility, versatility, and outstanding biocompatibility. This review presents the recent advances in multifunctional conductive hydrogels for electronic devices. First, conductive hydrogels with different components are discussed, including pure single network hydrogels based on conductive polymers, single network hydrogels with additional conductive additives (i.e., nanoparticles, nanowires, and nanosheets), double network hydrogels based on conductive polymers, and double network hydrogels with additional conductive additives. Second, conductive hydrogels with a variety of functionalities, including self-healing, super toughness, self-growing, adhesive, anti-swelling, antibacterial, structural color, hydrophobic, anti-freezing, shape memory and external stimulus responsiveness are introduced in detail. Third, the applications of hydrogels in flexible devices are illustrated (i.e., strain sensors, supercapacitors, touch panels, triboelectric nanogenerator, bioelectronic devices, and robot). Next, the current challenges facing hydrogels are summarized. Finally, an imaginative but reasonable outlook is given, which aims to drive further development in the future.
Collapse
Affiliation(s)
- Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yan Cheng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
32
|
Zhang J, Li R, Bei Y, Xu XD, Kang W. Design of a large Stokes shift ratiometric fluorescent sensor with hypochlorite detection towards the potential application as invisible security ink. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121859. [PMID: 36108409 DOI: 10.1016/j.saa.2022.121859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Hypochlorite (ClO-) as a well-known highly reactive oxygen species (ROS), is widely used as preservative and household disinfectant in daily life. Although many fluorescence imaging sensors for ClO- have been reported, the development of ClO- ratio fluorescence sensors with large Stokes shift is still quite limited. This sensor shows obvious benefits including minimizing environmental intervention and improving signal-to-noise ratio. In the present project, we report an innovative conjugated pyrene-based system, 1-B, as a chlorine fluorescence sensor. The detector exhibits ratio detection performance, large Stokes and emission shifts. Furthermore, the system has desired sensitivity as well as selectivity for ClO-. Based on these excellent properties, the sensor 1-B was successfully used as ink to encrypt patterns and anti-counterfeiting information through inkjet printing technology. Compared with the existing probes, the probe shows some superior characteristics, which provides a promising tool for exploring the role of ClO- response sensor in the field of anti-counterfeiting.
Collapse
Affiliation(s)
- Junying Zhang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Ruochen Li
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yiling Bei
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Xing-Dong Xu
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China.
| | - Wenbing Kang
- National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
33
|
Zhang Q, Zhao B, Lin Z, Shi F, Cheng M. Macroscopic Supramolecular Assembly of Rigid Building Blocks Facilitated by Layer-By-Layer Assembled Microgel Film. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2459-2467. [PMID: 36538496 DOI: 10.1021/acsami.2c19546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Macroscopic supramolecular assembly (MSA) of building blocks larger than 1 μm provides new methodology for fabrication of functional supramolecular materials and a platform for mechanism investigation of interfacial phenomena. Most reports on MSA are restricted to soft hydrogels, and supramolecular groups can be directly integrated into a hydrogel matrix to generate sufficient attraction for maintaining macroscopic assemblies. For non-hydrogel stiff building blocks, two layer-by-layer modification processes consisting of flexible spacing coating and additional interacting groups are necessary to enable MSA, which is laborious and time-consuming. Approaches for highly efficient MSA based on flexible spacing coating are desired. In this work, MSA of polydimethylsiloxane (PDMS) building blocks is demonstrated by inducing microgel films that serve as both flexible spacing coating and surface functional groups, thus avoiding a two-step LbL modification process. By the varying bilayer number of microgel films, the MSA probability of modified PDMS increases from 54% at 3 bilayers to 100% at 6 bilayers. Control experiments and in situ force measurement strongly support the obtained MSA results and verify the dominant role of the microgel film as a flexible spacing coating and a supramolecularly interactive layer in achieving MSA. Moreover, the underlying mechanism is interpreted as low Young's modulus microgel films rendering surface groups highly mobile to enhance the multivalent interfacial binding. Taken together, this work has demonstrated the feasibility of MSA of rigid building blocks assisted by microgel films as flexible spacing coating and supramolecularly interactive layer simultaneously, which may extend the application fields of microgel materials to interfacial adhesion and advanced manufacturing with MSA methodology.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingkun Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenxing Lin
- State Key Laboratory of Marine Coatings, Marine Chemical Research Institute Co., Ltd., Qingdao 266071, China
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
34
|
Wang Y, He C, Chen C, Dong W, Yang X, Wu Y, Kong Q, Yan B. Thermoresponsive Self-Healing Zwitterionic Hydrogel as an In Situ Gelling Wound Dressing for Rapid Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55342-55353. [PMID: 36473731 DOI: 10.1021/acsami.2c15820] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is highly desired yet challenging to fabricate biocompatible injectable self-healing hydrogels with anti-bacterial adhesion properties for complex wounds that can autonomously adapt to different shapes and depths and can promote angiogenesis and dermal collagen synthesis for rapid wound healing. Herein, an injectable zwitterionic hydrogel with excellent self-healing property, good cytocompatibility, and antibacterial adhesion was developed from a thermoresponsive ABA triblock copolymer poly[(N-isopropyl acrylamide)-co-(butyl acrylate)-co-(sulfobetaine methacrylate)]-b-poly(ethylene glycol)-b-poly[(N-isopropyl acrylamide)-co-(butyl acrylate)-co-(sulfobetaine methacrylate)] (PZOPZ). The prepared PZOPZ hydrogel exhibits a distinct thermal-induced sol-gel transition around physiological temperature and could be easily applied in a sol state and in situ gelled to adapt complex wounds of different shapes and depths for complete coverage. Meanwhile, the hydrogel possesses a rapid self-healing ability and can recover autonomously from damage to maintain structural and functional integrity. In addition, the CCK-8 and 2D/3D cell culture experiments revealed that the PZOPZ hydrogel dressing shows low cytotoxicity to L929 cells and can effectively prevent the adhesion of Staphylococcus aureus and Escherichia coli. In vivo investigations verified that the PZOPZ hydrogel could increase angiogenesis and dermal collagen synthesis and shorten the transition from the inflammatory to the proliferative stage, thereby providing more favorable conditions for faster wound healing. Overall, this work provides a promising strategy to develop injectable zwitterionic hydrogel dressings with multiple functions for clinic wound management.
Collapse
Affiliation(s)
- Ye Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
- Department of Orthopedics, Affiliated Hospital of North Sichuan Medical College, Nanchong637000, China
| | - Changyuan He
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| | - Chong Chen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| | - Wentao Dong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| | - Xuekun Yang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| | - Ye Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| | - Qingquan Kong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| | - Bin Yan
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610041, China
| |
Collapse
|
35
|
Liu Y, Wang L, Jiang J, Wang X, Dai C, Weng G. Fast Healing of Covalently Cross-Linked Polymeric Hydrogels by Interfacially Ignited Fast Gelation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yongqi Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Lei Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jingtao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xiangke Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chenghao Dai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Gengsheng Weng
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Ningbo Key Laboratory of Specialty Polymers, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
36
|
Lee G, Zarei M, Wei Q, Zhu Y, Lee SG. Surface Wrinkling for Flexible and Stretchable Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203491. [PMID: 36047645 DOI: 10.1002/smll.202203491] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in nanolithography, miniaturization, and material science, along with developments in wearable electronics, are pushing the frontiers of sensor technology into the large-scale fabrication of highly sensitive, flexible, stretchable, and multimodal detection systems. Various strategies, including surface engineering, have been developed to control the electrical and mechanical characteristics of sensors. In particular, surface wrinkling provides an effective alternative for improving both the sensing performance and mechanical deformability of flexible and stretchable sensors by releasing interfacial stress, preventing electrical failure, and enlarging surface areas. In this study, recent developments in the fabrication strategies of wrinkling structures for sensor applications are discussed. The fundamental mechanics, geometry control strategies, and various fabricating methods for wrinkling patterns are summarized. Furthermore, the current state of wrinkling approaches and their impacts on the development of various types of sensors, including strain, pressure, temperature, chemical, photodetectors, and multimodal sensors, are reviewed. Finally, existing wrinkling approaches, designs, and sensing strategies are extrapolated into future applications.
Collapse
Affiliation(s)
- Giwon Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mohammad Zarei
- Department of Chemistry, University of Ulsan, Ulsan, 44776, South Korea
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44776, South Korea
| |
Collapse
|
37
|
Hou Y, Ma S, Hao J, Lin C, Zhao J, Sui X. Construction and Ion Transport-Related Applications of the Hydrogel-Based Membrane with 3D Nanochannels. Polymers (Basel) 2022; 14:polym14194037. [PMID: 36235985 PMCID: PMC9571189 DOI: 10.3390/polym14194037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogel is a type of crosslinked three-dimensional polymer network structure gel. It can swell and hold a large amount of water but does not dissolve. It is an excellent membrane material for ion transportation. As transport channels, the chemical structure of hydrogel can be regulated by molecular design, and its three-dimensional structure can be controlled according to the degree of crosslinking. In this review, our prime focus has been on ion transport-related applications based on hydrogel materials. We have briefly elaborated the origin and source of hydrogel materials and summarized the crosslinking mechanisms involved in matrix network construction and the different spatial network structures. Hydrogel structure and the remarkable performance features such as microporosity, ion carrying capability, water holding capacity, and responsiveness to stimuli such as pH, light, temperature, electricity, and magnetic field are discussed. Moreover, emphasis has been made on the application of hydrogels in water purification, energy storage, sensing, and salinity gradient energy conversion. Finally, the prospects and challenges related to hydrogel fabrication and applications are summarized.
Collapse
|
38
|
Lu W, Si M, Le X, Chen T. Mimicking Color-Changing Organisms to Enable the Multicolors and Multifunctions of Smart Fluorescent Polymeric Hydrogels. Acc Chem Res 2022; 55:2291-2303. [PMID: 35899979 DOI: 10.1021/acs.accounts.2c00320] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fluorescent polymer hydrogels (FPHs) are of significant interest for diverse emerging applications such as visualized sensing, smart display, camouflaging skins, soft actuators/robots, because they can synergize the features of classic fluorescent polymers and hydrogels. With great efforts in the past decades, the major challenge in this field has been believed to be not whether a given FPH of interest can be prepared but how to fabricate robust FPHs with multicolor tunability and multifunctional synergy. Such materials will conceptually minimize the contribution of passive materials to the mass and size of the final system, holding great potential to facilitate multiple applications. To this end, one promising way is to learn from the Nature that has superb capability to forge delicate or sometimes beyond-imagination materials. Chameleons and cephalopods serve as typical examples, which are famous for not only diverse skin color adaptability under changing environmental demands, but also synergistic skin color and body gesture changes to communicate, warn, camouflage, etc. Biological studies revealed their structural color-changing capacity derives from different types of skin chromatophores and their rational multilayer arrangement in under-skin tissues. Besides, their superb ability to heterogeneously integrate soft tissues with disparate functions into topology-optimized architectures has led to various multifunctional performances. Such natural strategies, if replicated and implemented in artificial systems, would significantly benefit and advance the development of robust FPHs for various applications.In this Account, we summarizes the key advances of smart FPHs mainly achieved by our groups. We start by introducing the unique hierarchical multilayer structures of skin chromatophores in structural color-changing reptiles, followed by an in-depth discussion on how a rational integration of bioinspiration and man-made design makes it possible to largely expand the fluorescence color-changing range of smart FPHs to almost cover the whole visible spectrum. Then, to closely mimic the multifunctional behaviors of chameleons and cephalopods, we further develop efficient strategies to introduce supramolecular interactions or heterogeneously integrating smart FPHs with other soft materials with disparate functions, producing a number of multifunctional fluorescent polymeric hydrogel systems. These robust FPHs can find many frontier applications, including bioinspired synergistic color/shape switchable hydrogel actuators/robots, smart systems with on-demand fluorescent patterning capacities for displaying or information encryption, as well as robust chemosensors for important food or environmental analytes. We expect that the discussion presented in this Account would promote better understanding of the discoloration systems in nature, and advance the development of bioinspired color-changing materials.
Collapse
Affiliation(s)
- Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Chinese Academy of Sciences, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Muqing Si
- Key Laboratory of Marine Materials and Related Technologies, Chinese Academy of Sciences, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Chinese Academy of Sciences, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Chinese Academy of Sciences, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
39
|
Xu WC, Liu C, Liang S, Zhang D, Liu Y, Wu S. Designing Rewritable Dual-Mode Patterns using a Stretchable Photoresponsive Polymer via Orthogonal Photopatterning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202150. [PMID: 35642603 DOI: 10.1002/adma.202202150] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The fabrication of dual-mode patterns in the same region of a material is a promising approach for high-density information storage, new anti-counterfeiting technologies, and highly secure encryption. However, dual-mode patterns are difficult to achieve because the two patterns in one material may interfere with each other during fabrication and usage. The development of noninterfering dual-mode patterns requires new materials and patterning techniques. Herein, a novel orthogonal photopatterning technique is reported for the fabrication of noninterfering dual-mode patterns on an azopolymer P1. P1 is a unique material that exhibits both photoinduced reversible solid-to-liquid transitions and good stretchability. In the first step of orthogonal photopatterning, patterned photonic structures are fabricated on a P1 film via masked nanoimprinting controlled by photoinduced reversible solid-to-liquid transitions. In the second step, the P1 film is stretched and irradiated with polarized light through a photomask, which generates a chromatic polarization pattern. In particular, the photonic structures and chromatic polarization in the dual-mode pattern are noninterfering. Another feature of dual-mode patterns is that they are rewritable via photo-, thermal, or solution reprocessing, which are useful for recycling and reprogramming. This study opens an avenue for the development of novel materials and techniques for photopatterning.
Collapse
Affiliation(s)
- Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chengwei Liu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dachuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yazhi Liu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
40
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
41
|
Zhang X, Tang Y, Wang P, Wang Y, Wu T, Li T, Huang S, Zhang J, Wang H, Ma S, Wang L, Xu W. A review of recent advances in metal ion hydrogels: mechanism, properties and their biological applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj02843c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms, common properties and biological applications of different types of metal ion hydrogels are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Puying Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yanyan Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tingting Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tao Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Shuo Huang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jie Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Haili Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Songmei Ma
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Linlin Wang
- Department of Food Engineering, Shandong Business Institute, Yantai 264670, P. R. China
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| |
Collapse
|
42
|
Yu HJ, Zhou XL, Dai X, Shen FF, Zhou Q, Zhang YM, Xu X, Liu Y. A tunable full-color lanthanide noncovalent polymer based on cucurbituril-mediated supramolecular dimerization. Chem Sci 2022; 13:8187-8192. [PMID: 35919438 PMCID: PMC9278346 DOI: 10.1039/d2sc02384a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022] Open
Abstract
The construction of lanthanide multicolor luminescent materials with tunable photoluminescence properties has been developed as one of the increasingly significant topics and shown inventive applications in miscellaneous fields. However, fabricating such materials based on synergistically assembly-induced emission rather than simple blending of different fluorescent dyes together still remains a challenge. Herein, we report a europium-based noncovalent polymer with tunable full-color emission, which is constructed from the 2,6-pyridinedicarboxylic acid-bearing bromophenylpyridinium salt. This rationally designed bifunctional component can concurrently serve as a guest molecule and a chelating ligand to associate with cucurbit[8]uril and europium ions, thus leading to the formation of a trichromatic (red–green–blue, RGB) photoluminescent polypseudorotaxane-type noncovalent polymer in aqueous solution. Meanwhile, the full-color emission enclosed within the RGB color triangle could be readily produced by simply tuning the molar ratio of cucurbit[8]uril and europium ions. The lanthanide supramolecular polymer featuring tricolor emission, long lifetime, high photoluminescence efficiency and low cytotoxicity could be further applied in multicolor imaging in a cellular environment. These results provide a new and feasible strategy for the construction of full-color single lanthanide self-assembled nanoconstructs. A lanthanide noncovalent polymer is constructed by integrating host–guest complexation and metal–ligand coordination, and can exhibit tunable trichromatic emission and multiple excited-state lifetimes under single wavelength excitation.![]()
Collapse
Affiliation(s)
- Hua-Jiang Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Lu Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fang-Fang Shen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingyang Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
43
|
Bicak T, Garnier M, Sabbah M, Griffete N. Photoinduced synthesis of fluorescent hydrogels without fluorescent monomers. Chem Commun (Camb) 2022; 58:9614-9617. [DOI: 10.1039/d2cc02888c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent monomer-free one-step strategy is developed for the synthesis of fluorescent acrylamide gels, using inexpensive and commercially available rhodamine B as the hydrogen donor in type II photoinitiation system....
Collapse
|
44
|
Ion-induced white-light-emitting polymeric hydrogels with high mechanical strength and reversible stimuli-responsive properties. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Qin Z, Su W, Liu P, Ma J, Zhang Y, Jiao T. Facile Preparation of a Rhodamine B Derivative-Based Fluorescent Probe for Visual Detection of Iron Ions. ACS OMEGA 2021; 6:25040-25048. [PMID: 34604683 PMCID: PMC8482772 DOI: 10.1021/acsomega.1c04206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 05/17/2023]
Abstract
Iron ions play an important role in our lives. Excessive or lack of iron ion intake leads to many diseases. At the same time, the water environment is easily polluted by these metal ions with the acceleration of industrialization. Therefore, the detection of iron ions in the water environment and the human body is particularly important. In this paper, we prepared a RhB-EDA fluorescent probe by condensing rhodamine B (RhB) with ethylenediamine (EDA) for high recognition of Fe3+. A RhB-EDA molecule itself is colorless and has no fluorescence emission in an alcohol solution. When Fe3+ was added, the lactam ring structure of the fluorescent probe opened, and the UV and fluorescence spectra changed. At the same time, the color of the mixed solution gradually deepened toward pink. Therefore, dual spectral detection and naked-eye observation of Fe3+ were realized. In addition, with the decrease of the pH value and the prolongation of chelating time, the ultraviolet absorbance and fluorescence emission intensity were enhanced and the color of the mixed solution deepened. The RhD-EDA fluorescent probe is simple and accurate and provides good technical support for the detection of Fe3+.
Collapse
Affiliation(s)
- Zhihui Qin
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Weiwei Su
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Ping Liu
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Jinming Ma
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Yaru Zhang
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- Hebei
Key Laboratory of Applied Chemistry, School of Environmental and Chemical
Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
- State
Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 438 West Hebei Street, Qinhuangdao 066004, P. R. China
| |
Collapse
|
46
|
Deng J, Wu H, Xie W, Jia H, Xia Z, Wang H. Metal Cation-Responsive and Excitation-Dependent Nontraditional Multicolor Fluorescent Hydrogels for Multidimensional Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39967-39975. [PMID: 34374507 DOI: 10.1021/acsami.1c12604] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescent polymeric hydrogels especially multicolor fluorescent polymeric hydrogels (MFPHs) have important applications in information storage, encryption, and encoding. MFPHs are generally prepared by incorporating multiple traditional fluorescent materials into hydrogels. In recent years, nontraditional luminescent polymers without any traditional π-conjugated chromophores have received increasing attention. Here, we report a novel type of nontraditional MFPHs prepared by in situ polymerization of acrylamide (AAm) in the presence of poly(itaconic acid) (PITAc). The hydrogen-bonded mechanically strong PAAm/PITAc hydrogels show strong intrinsic fluorescence, and the fluorescence emission is excitation-dependent and metal cation-responsive. More impressively, the hydrogels treated with metal cations also possess excitation-dependent fluorescence. We developed a multi-ion inkjet printing (MIIP) technique to print texts or designed patterns onto the hydrogel surface using different metal cation solutions as inks, and then variable texts or patterns appear under the irradiation of UV, violet, and blue lights. Patterns can be further changed by selective printing, erasing, or reprinting on some regions. Therefore, multidimensional information encryption is achieved. This work provides a new strategy for preparing MFPHs for wide applications.
Collapse
Affiliation(s)
- Junwen Deng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hangrui Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wendi Xie
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Haoyuan Jia
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhonggang Xia
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huiliang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
47
|
Han J, Xie C, Huang YS, Wagner M, Liu W, Zeng X, Liu J, Sun S, Koynov K, Butt HJ, Wu S. Ru-Se Coordination: A New Dynamic Bond for Visible-Light-Responsive Materials. J Am Chem Soc 2021; 143:12736-12744. [PMID: 34346213 DOI: 10.1021/jacs.1c05648] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photodynamic bonds are stable in the dark and can reversibly dissociate/form under light irradiation. Photodynamic bonds are promising building blocks for responsive or healable materials, photoactivated drugs, nanocarriers, extracellular matrices, etc. However, reactive intermediates from photodynamic bonds usually lead to side reactions, which limit the use of photodynamic bonds. Here, we report that the Ru-Se coordination bond is a new photodynamic bond that reversibly dissociates under mild visible-light-irradiation conditions. We observed that Ru-Se bonds form via the coordination of a selenoether ligand with [Ru(tpy)(biq)(H2O)]Cl2 (tpy = 2,2':6',2″-terpyridine, biq = 2,2'-biquinoline) in the dark, while the Ru-Se bond reversibly dissociates under visible-light irradiation. No side reaction is detected in the formation and dissociation of Ru-Se bonds. To demonstrate that the Ru-Se bond is applicable to different operating environments, we prepared photoresponsive amphiphiles, surfaces, and polymer gels using Ru-Se bonds. The amphiphiles with Ru-Se bonds showed reversible morphological transitions between spherical micelles and bowl-shaped assemblies for dark/light irradiation cycles. The surfaces modified with Ru-Se-bond-containing compounds showed photoswitchable wettability. Polymer gels with Ru-Se cross-links underwent photoinduced reversible sol-gel transitions, which can be used for reshaping and healing. Our work demonstrates that the Ru-Se bond is a new type of dynamic bond, which can be used for constructing responsive, reprocessable, switchable, and healable materials that work in a variety of environments.
Collapse
Affiliation(s)
- Jianxiong Han
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Yun-Shuai Huang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Wendong Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaolong Zeng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jiahui Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shijie Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
48
|
Li B, Qin Y, Li Z, Zhang Y, Li H. Smart luminescent hydrogel with superior mechanical performance based on polymer networks embedded with lanthanide containing clay nanocomposites. NANOSCALE 2021; 13:11380-11386. [PMID: 34160533 DOI: 10.1039/d1nr01642c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to their inherent biocompatibility and unique optical properties, luminescent hydrogels have recently garnered tremendous interest. However, most of the explored luminescent hydrogels cannot well meet the requirements of both sufficient mechanical properties and smart luminescence. Here we report a smart luminescent hydrogel with superior mechanical performance by in situ copolymerization of the acrylamide monomers and lanthanide loaded clay nanosheets. The Eu-DPA@clay nanosheets emitting center can not only be well dispersed in aqueous solution, but also maintain robust luminescence. Interestingly, the additional interaction between the Eu-DPA@clay nanosheets and the polymer network endows the hydrogel with excellent mechanical properties. Moreover, a luminescence on/off switch is also achieved by alternative acid and base stimuli, which may have potential applications in smart luminescent devices.
Collapse
Affiliation(s)
- Bin Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China.
| | - Yan Qin
- Inner Mongolia Yitai Coal Based New Materials Research Institute Co., Ltd, High Tech Industrial Park, Ordos 010700, P. R. China
| | - Zhiqiang Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China.
| | - Ying Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China.
| | - Huanrong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China.
| |
Collapse
|
49
|
Zhang B, Dong X, Zhou Q, Lu S, Zhang X, Liao Y, Yang Y, Wang H. Carboxymethyl chitosan‒promoted luminescence of lanthanide metallogel and its application in assay of multiple metal ions. Carbohydr Polym 2021; 263:117986. [PMID: 33858579 DOI: 10.1016/j.carbpol.2021.117986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 10/24/2022]
Abstract
In this work, the luminescence of lanthanide supramolecular metallogel formed by the self-assembly of 5,5',5″-(1,3,5-triazine-2,4,6-triyl)tris(azanediyl)triisophthalate (H6L) and Tb3+ was efficiently promoted by carboxymethyl chitosan (CMCS). The total quantum yield of the resultant metallogel (denoted as H6L/Tb3+/CMCS gel) was 9 times higher than the gel without CMCS. The average lifetime of H6L/Tb3+/CMCS gel increased from 0.51 ms to 1.20 ms. More importantly, the aqueous dispersion of H6L/Tb3+/CMCS xerogels showed a stable and pH-dependent luminescence. Based on the selective affinity of CMCS to different metal ions as well as with the aid of principal component analysis, H6L/Tb3+ /CMCS can be used as a sensor array to distinguish 11 metal ions (P < 0.05). This work provides a new strategy for the design and development of bio-based functional luminescent lanthanide supramolecular metallogels.
Collapse
Affiliation(s)
- Binbin Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuelin Dong
- Key Laboratory of Rare Mineral Exploration and Utilization, Ministry of Land and Resources, Geological Experimental Testing Center of Hubei Province, Wuhan 430034, China
| | - Qi Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shan Lu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinwei Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yajiang Yang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
50
|
Wei S, Qiu H, Shi H, Lu W, Liu H, Yan H, Zhang D, Zhang J, Theato P, Wei Y, Chen T. Promotion of Color-Changing Luminescent Hydrogels from Thermo to Electrical Responsiveness toward Biomimetic Skin Applications. ACS NANO 2021; 15:10415-10427. [PMID: 34061509 DOI: 10.1021/acsnano.1c02720] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The active color-changing ability of many living species has inspired scientists to replicate the optical property into soft wet and tissue-like hydrogel materials. However, the color-changing processes of most reported examples are controlled by the traditional stimuli (e.g., pH, temperature, and ions), which may suffer from the residual chemical product accumulation, and have difficulty in achieving local control and integration into the commercial robots, especially when applied as biomimetic skins. Herein, inspired by the nervous (bioelectricity) control of skin color change in cephalopods, we present an electrically powered multicolor fluorescent hydrogel system with asymmetric configuration that couples thermoresponsive fluorescent hydrogel with stacked graphene assembly (SGA)-based conductive paper through luminous paint as the middle layer. Owing to the highly controllable electrical stimulus in terms of amplitude and duration, the Joule heat supplied by SGA film can be regulated locally and in real time, leading to precise and local emission color control at low voltage. It also avoids the addition of any chemicals. Furthermore, the electrically powered color-changing hydrogel system can be conveniently integrated into the commercial robots as biomimetic skins that help them achieve desirable camouflage, display, or alarming functions.
Collapse
Affiliation(s)
- Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Huiyu Qiu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Huihui Shi
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hao Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Huizhen Yan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Dachuan Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jiawei Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Patrick Theato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str. 18, D-76131 Karlsruhe, Germany
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|