1
|
Meng L, Xu Q, Zhang J, Wang X. Colloidal quantum dot materials for next-generation near-infrared optoelectronics. Chem Commun (Camb) 2024; 60:1072-1088. [PMID: 38174780 DOI: 10.1039/d3cc04315k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Colloidal quantum dots (CQDs) are a promising class of materials for next-generation optoelectronic devices, such as displays, LEDs, lasers, photodetectors, and solar cells. CQDs can be obtained at low cost and in large quantities using wet chemistry. CQDs have also been produced using various materials, such as CdSe, InP, perovskites, PbS, PbSe, and InAs. Some of these CQD materials absorb and emit photons in the visible region, making them excellent candidates for displays and LEDs, while others interact with low-energy photons in the near-infrared (NIR) region and are intensively utilized in NIR lasers, NIR photodetectors, and solar cells. In this review, we have focused on NIR CQD materials and reviewed the development of CQD materials for solar cells, NIR lasers, and NIR photodetectors since the first set of reports on CQD materials in these particular applications.
Collapse
Affiliation(s)
- Lingju Meng
- Department of Applied Physics, Aalto University, Espoo, Finland
- Department of Chemistry and Materials Science, Micronova Nanofabrication Centre, Aalto University, Espoo, Finland
| | - Qiwei Xu
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| | - Jiangwen Zhang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| | - Xihua Wang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada.
| |
Collapse
|
2
|
Kim C, Kozakci I, Lee SY, Kim B, Kim J, Lee J, Ma BS, Oh ES, Kim TS, Lee JY. Quantum Dot-Siloxane Anchoring on Colloidal Quantum Dot Film for Flexible Photovoltaic Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302195. [PMID: 37300352 DOI: 10.1002/smll.202302195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Indexed: 06/12/2023]
Abstract
Lead sulfide (PbS) colloidal quantum dots (CQDs) are promising materials for next-generation flexible solar cells because of near-infrared absorption, facile bandgap tunability, and superior air stability. However, CQD devices still lack enough flexibility to be applied to wearable devices owing to the poor mechanical properties of CQD films. In this study, a facile approach is proposed to improve the mechanical stability of CQDs solar cells without compromising the high power conversion efficiency (PCE) of the devices. (3-aminopropyl)triethoxysilane (APTS) is introduced on CQD films to strengthen the dot-to-dot bonding via QD-siloxane anchoring, and as a result, crack pattern analysis reveals that the treated devices become robust to mechanical stress. The device maintains 88% of the initial PCE under 12 000 cycles at a bending radius of 8.3 mm. In addition, APTS forms a dipole layer on CQD films, which improves the open circuit voltage (VOC ) of the device, achieving a PCE of 11.04%, one of the highest PCEs in flexible PbS CQD solar cells.
Collapse
Affiliation(s)
- Changjo Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Irem Kozakci
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Yeon Lee
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Byeongsu Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Junho Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jihyung Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Boo Soo Ma
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun Sung Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung-Yong Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Lee J, Kim B, Kim C, Lee MH, Kozakci I, Cho S, Kim B, Lee SY, Kim J, Oh J, Lee JY. Unlocking the Potential of Colloidal Quantum Dot/Organic Hybrid Solar Cells: Band Tunable Interfacial Layer Approach. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39408-39416. [PMID: 37555937 DOI: 10.1021/acsami.3c08419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Hybrid colloidal quantum dot (CQD)/organic architectures are promising candidates for emerging optoelectronic devices having high performance and inexpensive fabrication. For unlocking the potential of CQD/organic hybrid devices, enhancing charge extraction properties at electron transport layer (ETL)/CQD interfaces is crucial. Hence, we carefully adjust the interface properties between the ETL and CQD layer by incorporating an interfacial layer for the ETL (EIL) using several types of cinnamic acid ligands. The EIL having a cascading band offset (ΔEC) between the ETL and CQD layer suppresses the potential barrier and the local charge accumulation at ETL/CQD interfaces, thereby reducing the bimolecular recombination. An optimal EIL effectively expands the depletion region that facilitates charge extraction between the ETL and CQD layer while preventing the formation of shallow traps. Representative devices with an EIL exhibit a maximum power conversion efficiency of 14.01% and retain over 80% of initial performances after 300 h under continuous maximum power point operation.
Collapse
Affiliation(s)
- Jihyung Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byeongsu Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Changjo Kim
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min-Ho Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Irem Kozakci
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sungjun Cho
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Beomil Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Yeon Lee
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Junho Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jihun Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jung-Yong Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Mustafa SM, Barzinjy AA, Hamad AH, Hamad SM. Biosynthesis of quantum dots and their usage in solar cells: insight from the novel researches. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00359-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Han S, Seo KW, Kim W, Kim TS, Lee JY. Enhanced stretchability of metal/interlayer/metal hybrid electrode. NANOSCALE 2021; 13:4543-4550. [PMID: 33599649 DOI: 10.1039/d0nr08909e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite the excellent electrical conductivity of metal thin film electrodes, their poor mechanical stretchability makes it extremely difficult to apply them as stretchable interconnect electrodes. Thus, we propose a novel stretchable hybrid electrode (SHE) by adopting two strategies to overcome the metal thin film electrode limitations: grain size engineering and hybridization with conductive interlayers. The grain size engineering technique improves the inherent metal thin film stretchability according to the Hall-Petch theory, and the hybridization of the conductive interlayer materials, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and carbon nanotube (CNT), suppresses crack propagation. Especially, the CNT-inserted SHE exhibits a decreased resistance change of approximately 32% in tensile test and 75% in a 10 000 cycle fatigue test because of the rough surface of the designed electrode, which relieves maximum stress by redistributing it more evenly to prevent penetrating crack propagation.
Collapse
Affiliation(s)
- Seungseok Han
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Ki-Won Seo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Wansun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jung-Yong Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Kim C, Baek SW, Kim J, Kim B, Lee C, Park JY, Lee JY. Role of Oxygen in Two-Step Thermal Annealing Processes for Enhancing the Performance of Colloidal Quantum Dot Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57840-57846. [PMID: 33320537 DOI: 10.1021/acsami.0c14903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal quantum dots (CQDs) have large surface-to-volume ratios; thus, surface control is critical, especially when CQDs are utilized in optoelectronic devices. Layer-by-layer solid-state ligand exchange is a facile and applicable process for the formation of conductive CQD solids through various ligands; however, achieving complete ligand exchange on the CQD surface without dangling bonds is challenging. Herein, we demonstrate that CQDs can be further passivated through two-step annealing; air annealing forms sulfonate bonding at (111) Pb-rich surfaces, and subsequent N2 annealing removes insulating oxygen layers from the (100) surfaces of CQDs. By subsequently conducting annealing treatment in two different environments, traps on the surface of CQDs could be significantly reduced. We achieved a 40.8% enhancement of the power conversion efficiency by optimizing each two-step annealing process.
Collapse
Affiliation(s)
- Changjo Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se-Woong Baek
- Department of Chemical and Biological Engineering, Korea University, Seoul 02481, Republic of Korea
| | - Junho Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Byeongsu Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changhwan Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jung-Yong Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Photocapacitive CdS/WO x nanostructures for solar energy storage. Sci Rep 2019; 9:11573. [PMID: 31399632 PMCID: PMC6688992 DOI: 10.1038/s41598-019-48069-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Through a facile solvothermal procedure, a CdS/WOx nanocomposite has been synthesised which exhibits photocapacitive behaviour under white light illumination at a radiant flux density of 99.3 mW cm−2. Photoelectrochemical experiments were undertaken to examine the self-charging properties of the material and to develop an understanding of the underlying electronic band structure responsible for the phenomenon. By employing XPS, UPS and UV-Vis diffuse reflectance spectroscopy for further characterisation, the ability of the composite to generate current following the removal of incident light was related to the trapping of photoexcited electrons by the WOx component. The presence of WOx yielded an order of magnitude increase in the transient photocurrent response relative to CdS alone, an effect attributed to the suppression of electron-hole recombination in CdS due to hole transfer across the CdS/WOx interface. Moreover, current discharge from the material persisted for more than twenty minutes after final illumination, an order of magnitude improvement over many existing binary composites. As a seminal investigation into the photocapacitive characteristics of CdS/WOx composites, the work offers insight into how the constituent materials might be utilised as part of a future self-charging solar device.
Collapse
|
8
|
Baek SW, Molet P, Choi MJ, Biondi M, Ouellette O, Fan J, Hoogland S, García de Arquer FP, Mihi A, Sargent EH. Nanostructured Back Reflectors for Efficient Colloidal Quantum-Dot Infrared Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901745. [PMID: 31222877 DOI: 10.1002/adma.201901745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/10/2019] [Indexed: 05/17/2023]
Abstract
Colloidal quantum dots (CQDs) can be used to extend the response of solar cells, enabling the utilization of solar power that lies to the red of the bandgap of c-Si and perovskites. To achieve largely complete absorption of infrared (IR) photons in CQD solids requires thicknesses on the micrometer range; however, this exceeds the typical diffusion lengths (≈300 nm) of photoexcited charges in these materials. Nanostructured metal back electrodes that grant the cell efficient IR light trapping in thin active layers with no deterioration of the electrical properties are demonstrated. Specifically, a new hole-transport layer (HTL) is developed and directly nanostructured. Firstly, a material set to replace conventional rigid HTLs in CQD devices is developed with a moldable HTL that combines the mechanical and chemical requisites for nanoimprint lithography with the optoelectronic properties necessary to retain efficient charge extraction through an optically thick layer. The new HTL is nanostructured in a 2D lattice and conformally coated with MoO3 /Ag. The photonic structure in the back electrode provides a record photoelectric conversion efficiency of 86%, beyond the Si bandgap, and a 22% higher IR power conversion efficiency compared to the best previous reports.
Collapse
Affiliation(s)
- Se-Woong Baek
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Pau Molet
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Bellaterra, Catalonia, Spain
| | - Min-Jae Choi
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Margherita Biondi
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Olivier Ouellette
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - James Fan
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - F Pelayo García de Arquer
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Agustín Mihi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Bellaterra, Catalonia, Spain
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| |
Collapse
|
9
|
Wang W, Zhao M, Zhang C, Qian H. Recent Advances in Controlled Synthesis of Upconversion Nanoparticles and Semiconductor Heterostructures. CHEM REC 2019; 20:2-9. [DOI: 10.1002/tcr.201900006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Wanni Wang
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 P. R. China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of Technology Hefei 230009 P. R. China
| | - Mengli Zhao
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 P. R. China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of Technology Hefei 230009 P. R. China
| | - Chenyang Zhang
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 P. R. China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of Technology Hefei 230009 P. R. China
| | - Haisheng Qian
- School of Food and Biological EngineeringHefei University of Technology Hefei 230009 P. R. China
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education InstitutesHefei University of Technology Hefei 230009 P. R. China
- Biomedical and Environmental Interdisciplinary Research Centre Hefei 230010 P. R. China
| |
Collapse
|