1
|
Song J, Li C, Ma H, Han B, Wang Q, Wang X, Wei D, Bu L, Yang R, Yan H, Sun Y. Optimizing Double-Fibril Network Morphology via Solid Additive Strategy Enables Binary All-Polymer Solar Cells with 19.50% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406922. [PMID: 39011798 DOI: 10.1002/adma.202406922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Double-fibril network morphology (DFNM), in which the donor and the acceptor can self-assemble into a double-fibril structure, is beneficial for exciton dissociation and charge transport in organic solar cells. Herein, it is demonstrated that such DFNM can be constructed and optimized in all-polymer solar cells (all-PSCs) with the assistance of 2-alkoxynaphthalene volatile solid additives. It is revealed that the incorporation of 2-alkoxynaphthalene can induce a stepwise regulation in the aggregation of donor and acceptor molecules during film casting and thermal annealing processes. Through altering the alkoxy of 2-alkoxynaphthalene solid additives, both the intermolecular interactions and molecular miscibility with the host materials can be precisely tuned, which allows for the optimization of the molecular aggregation process and facilitation of molecular self-assembly, and thus leading to reinforced molecular packing and optimized DFNM. As a result, an unprecedented efficiency of 19.50% (certified as 19.1%) is obtained for 2-ethoxynaphthalene-processed PM6:PY-DT-X all-PSCs with excellent photostability (T80 = 1750 h). This work reveals that the optimization of DFNM via solid additive strategy is a promising avenue to boosting the performance of all-PSCs.
Collapse
Affiliation(s)
- Jiali Song
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Chao Li
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Haisheng Ma
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Bingyu Han
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Qianqian Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Laju Bu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Yanming Sun
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
2
|
Lin C, Peng R, Shi J, Ge Z. Research progress and application of high efficiency organic solar cells based on benzodithiophene donor materials. EXPLORATION (BEIJING, CHINA) 2024; 4:20230122. [PMID: 39175891 PMCID: PMC11335474 DOI: 10.1002/exp.20230122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/07/2024] [Indexed: 08/24/2024]
Abstract
In recent decades, the demand for clean and renewable energy has grown increasingly urgent due to the irreversible alteration of the global climate change. As a result, organic solar cells (OSCs) have emerged as a promising alternative to address this issue. In this review, we summarize the recent progress in the molecular design strategies of benzodithiophene (BDT)-based polymer and small molecule donor materials since their birth, focusing on the development of main-chain engineering, side-chain engineering and other unique molecular design paths. Up to now, the state-of-the-art power conversion efficiency (PCE) of binary OSCs prepared by BDT-based donor materials has approached 20%. This work discusses the potential relationship between the molecular changes of donor materials and photoelectric performance in corresponding OSC devices in detail, thereby presenting a rational molecular design guidance for stable and efficient donor materials in future.
Collapse
Affiliation(s)
- Congqi Lin
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
- Faculty of Materials and Chemical EngineeringNingbo UniversityNingboPeople's Republic of China
| | - Ruixiang Peng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Jingyu Shi
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and DevicesNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople's Republic of China
| |
Collapse
|
3
|
Xu L, Li S, Zhao W, Xiong Y, Yu J, Qin J, Wang G, Zhang R, Zhang T, Mu Z, Zhao J, Zhang Y, Zhang S, Kuvondikov V, Zakhidov E, Peng Q, Wang N, Xing G, Gao F, Hou J, Huang W, Wang J. The Role of Solution Aggregation Property toward High-Efficiency Non-Fullerene Organic Photovoltaic Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403476. [PMID: 38666554 DOI: 10.1002/adma.202403476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/07/2024]
Abstract
In organic photovoltaic cells, the solution-aggregation effect (SAE) is long considered a critical factor in achieving high power-conversion efficiencies for polymer donor (PD)/non-fullerene acceptor (NFA) blend systems. However, the underlying mechanism has yet to be fully understood. Herein, based on an extensive study of blends consisting of the representative 2D-benzodithiophene-based PDs and acceptor-donor-acceptor-type NFAs, it is demonstrated that SAE shows a strong correlation with the aggregation kinetics during solidification, and the aggregation competition between PD and NFA determines the phase separation of blend film and thus the photovoltaic performance. PDs with strong SAEs enable earlier aggregation evolutions than NFAs, resulting in well-known polymer-templated fibrillar network structures and superior PCEs. With the weakening of PDs' aggregation effects, NFAs, showing stronger tendencies to aggregate, tend to form oversized domains, leading to significantly reduced external quantum efficiencies and fill factors. These trends reveal the importance of matching SAE between PD and NFA. The aggregation abilities of various materials are further evaluated and the aggregation ability/photovoltaic parameter diagrams of 64 PD/NFA combinations are provided. This work proposes a guiding criteria and facile approach to match efficient PD/NFA systems.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Sunsun Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yaomeng Xiong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jinfeng Yu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jinzhao Qin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Gang Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Tao Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Mu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Jingjing Zhao
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Yuyang Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Shaoqing Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Vakhobjon Kuvondikov
- Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences, 33 Durmon yuli, Tashkent, 100125, Uzbekistan
| | - Erkin Zakhidov
- Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences, 33 Durmon yuli, Tashkent, 100125, Uzbekistan
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- Shaanxi Institute of Flexible Electronics (SIFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- School of Materials Science and Engineering & School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| |
Collapse
|
4
|
He Z, Li S, Zeng R, Lin Y, Zhang Y, Hao Z, Zhang S, Liu F, Tang Z, Zhong H. Binary Organic Solar Cells with Exceeding 19% Efficiency via the Synergy of Polyfluoride Polymer and Fluorous Solvent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404824. [PMID: 38733312 DOI: 10.1002/adma.202404824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Rational molecular design and suitable device engineering are two important strategies to boost the efficiencies in organic solar cells (OSCs). Yet these two approaches are independently developed, while their synergy is believed to be more productive. Herein, a branched polyfluoride moiety, heptafluoroisopropoxyl group, is introduced into the side chains of conjugated polymers for the first time. Compared with the conventional alkyl chain, this polyfluoride chain can endow the resulting polymer namely PF7 with highly packing order and strong crystallinity owing to the strong polarization and fluorine-induced interactions, while good solubility and moderate miscibility are retained. As a result, PF7 comprehensively outperforms the state-of-the-art polymer PM6 in photovoltaic properties. More importantly, based on the solubility of heptafluoroisopropoxyl groups in fluorous solvents, a new post-treatment denoted as fluorous solvent vapor annealing (FSVA) is proposed to match PF7. Differing from the existing post-treatments, FSVA can selectively reorganize fluoropolymer molecules but less impact small molecules in blend films. By employing the synergy of fluoropolymer and fluorous solvent, the device achieves a remarkable efficiency of 19.09%, which is among the best efficiencies in binary OSCs. The polymer PF7 and the FSVA treatment exhibit excellent universality in various OSCs with different material combinations or device architectures.
Collapse
Affiliation(s)
- Zhilong He
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siyuan Li
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Zeng
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Lin
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Hao
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shimin Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Hongliang Zhong
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Zhang S, Hou Y, Zhang L, Zhu H, Xiong J, Wang S, Liu T. A Novel Non-Fullerene D-A Interface with Two Asymmetrical Electron Acceptors Facilitates Charge and Energy Transfer for Effective Carbon Dioxide Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311816. [PMID: 38396322 DOI: 10.1002/smll.202311816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Converting carbon dioxide (CO2) into high-value chemicals using solar energy remains a formidable challenge. In this study, the CSC@PM6:IDT6CN-M:IDT8CN-M non-fullerene small-molecule organic semiconductor is designed with highly efficient electron donor-acceptor (D-A) interface for photocatalytic reduction of CO2. Atomic Force Microscope and Transmission Electron Microscope images confirmed the formation of an interpenetrating fibrillar network after combination of donor and acceptor. The CO yield from the CSC@PM6:IDT6CN-M:IDT8CN-M reached 1346 µmol g-1 h-1, surpassing those of numerous reported inorganic photocatalysts. The D-A structure effectively facilitated charge separation to enable electrons transfer from the PM6 to IDT6CN-M:IDT8CN-M. Meanwhile, attributing to the dipole moments of the strong intermolecular interactions between IDT6CN-M and IDT8CN-M, the intermolecular forces are enhanced, and laminar stacking and π-π stacking are strengthened, thereby reinforcing energy transfer between acceptor molecules and significantly enhanced charge separation. Moreover, the strong internal electric field in the D-A interface enhanced the excited state lifetime of PM6:IDT6CN-M:IDT8CN-M. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis demonstrated that carboxylate (COOH*) is the predominant intermediate during CO2 reduction, and possible pathways of CO2 reduction to CO are deduced. This study presents a novel approach for designing materials with D-A interface to achieve high photocatalytic activity.
Collapse
Affiliation(s)
- Shiming Zhang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Yanping Hou
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Libin Zhang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jianhua Xiong
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Shuangfei Wang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Tao Liu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
6
|
Dai T, Tang A, Meng Y, Dong C, Cong P, Lu J, Du J, Zhong Y, Zhou E. Optimizing Molecular Crystallinity and Suppressing Electron-Phonon Coupling in Completely Non-Fused Ring Electron Acceptors for Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202403051. [PMID: 38499468 DOI: 10.1002/anie.202403051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
High open-circuit voltage (Voc) organic solar cells (OSCs) have received increasing attention because of their promising application in tandem devices and indoor photovoltaics. However, the lack of a precise correlation between molecular structure and stacking behaviors of wide band gap electron acceptors has greatly limited its development. Here, we adopted an asymmetric halogenation strategy (AHS) and synthesized two completely non-fused ring electron acceptors (NFREAs), HF-BTA33 and HCl-BTA33. The results show that AHS significantly enhances the molecular dipoles and suppresses electron-phonon coupling, resulting in enhanced intramolecular/intermolecular interactions and decreased nonradiative decay. As a result, PTQ10 : HF-BTA33 realizes a power conversion efficiency (PCE) of 11.42 % with a Voc of 1.232 V, higher than that of symmetric analogue F-BTA33 (PCE=10.02 %, Voc=1.197 V). Notably, PTQ10 : HCl-BTA33 achieves the highest PCE of 12.54 % with a Voc of 1.201 V due to the long-range ordered π-π packing and enhanced surface electrostatic interactions thereby facilitating exciton dissociation and charge transport. This work not only proves that asymmetric halogenation of completely NFREAs is a simple and effective strategy for achieving both high PCE and Voc, but also provides deeper insights for the precise molecular design of low cost completely NFREAs.
Collapse
Affiliation(s)
- Tingting Dai
- National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ailing Tang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuhan Meng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Chuanqi Dong
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Peiqing Cong
- National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahao Lu
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Jimin Du
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan Province, 455002, China
| | - Yufei Zhong
- School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China
| | - Erjun Zhou
- National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Liang Y, Zhang L, Huang C, Xiong J, Liu T, Yao S, Zhu H, Yang Q, Zou B, Wang S. New breakthrough in rapid degradation of lignin derivative compounds · A novel high stable and reusable green organic photocatalyst. J Colloid Interface Sci 2024; 662:426-437. [PMID: 38359506 DOI: 10.1016/j.jcis.2024.02.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The pulp and paper sectors are thriving yet pose significant environmental threats to water bodies, mainly due to the substantial release of pollutants. Lignin-derived compounds are among the most problematic of these contaminants. To address this issue, we present our initial results on utilizing organic semiconductor photocatalysis under visible light for treating lignin-derived compounds. Our investigation has been centered around creating a green and cost-effective organic semiconductor photocatalyst. This catalyst is designed using a structure of bagasse cellulose spheres to support PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene))-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)-benzo[1,2-c:4,5-c']dithiophene-4,8-dione))]: MeIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-cyclopentane-1,3-dione[c]-1-methyl-thiophe))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene)). This photocatalyst demonstrates remarkable efficiency, achieving over 91 % degradation of lignin-derived compounds. The superior photocatalytic performance is attributed to three main factors: (1) The ability of PM6 to broaden MeIC's absorption range from 300 to 800 nm, allowing for effective utilization of visible light; (2) the synergistic interaction between PM6 and MeIC, which ensures compatible energy levels and a vast, evenly spread surface area, promoting charge mobility and extensive donor/acceptor interfaces. This synergy significantly enhances the generation and transport of carriers, resulting in a high production of free radicals that accelerate the decomposition of organic materials; (3) The deployment of PM6:MeIC on biomass-based carriers increases the interaction surface with the organic substances. Notably, PM6: MeIC showcases outstanding durability, with its degradation efficiency remaining between 84 % and 91 % across 100 cycles. This study presents a promising approach for designing advanced photocatalysts aimed at degrading common pollutants in papermaking wastewater.
Collapse
Affiliation(s)
- Yinna Liang
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Libin Zhang
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ciyuan Huang
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jianhua Xiong
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Tao Liu
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Shangfei Yao
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hongxiang Zhu
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qifeng Yang
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| | - Bingsuo Zou
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Shoaee S, Luong HM, Song J, Zou Y, Nguyen TQ, Neher D. What We have Learnt from PM6:Y6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302005. [PMID: 37623325 DOI: 10.1002/adma.202302005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Safa Shoaee
- Optoelectronics of Disordered Semiconductors, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117, Berlin, Germany
| | - Hoang M Luong
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Jiage Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Thuc-Quyen Nguyen
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
9
|
Zhou D, Wang Y, Yang S, Quan J, Deng J, Wang J, Li Y, Tong Y, Wang Q, Chen L. Recent Advances of Benzodithiophene-Based Donor Materials for Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306854. [PMID: 37828639 DOI: 10.1002/smll.202306854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Indexed: 10/14/2023]
Abstract
Recently, the power conversion efficiency (PCE) of organic solar cells (OSCs) has increased dramatically, making a big step toward the industrial application of OSCs. Among numerous OSCs, benzodithiophene (BDT)-based OSCs stand out in achieving efficient PCE. Notably, single-junction OSCs using BDT-based polymers as donor materials have completed a PCE of over 19%, indicating a dramatic potential for preparing high-performance large-scale OSCs. This paper reviews the recent progress of OSCs based on BDT polymer donor materials (PDMs). The development of BDT-based OSCs is concisely summarized. Meanwhile, the relationship between the structure of PDMs and the performance of OSCs is further described in this review. Besides, the development and prospect of single junction OSCs are also discussed.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yanyan Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Shu Yang
- College of Chemical Engineering, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
| | - Jianwei Quan
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Jiawei Deng
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jianru Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yubing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yongfen Tong
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Qian Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
10
|
Ran X, Shi Y, Qiu D, Zhang J, Lu K, Wei Z. The central core size effect in quinoxaline-based non-fullerene acceptors for high VOC organic solar cells. NANOSCALE 2023; 15:18291-18299. [PMID: 37941482 DOI: 10.1039/d3nr05077g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
For organic solar cells (OSCs), obtaining a high open circuit voltage (VOC) is often accompanied by the sacrifice of the circuit current density (JSC) and filling factor (FF), and it is difficult to strike a balance between VOC and JSC × FF. The trade-off of these parameters is often the critical factor limiting the improvement of the power conversion efficiency (PCE). Extended backbone conjugation and side chain engineering of non-fullerene acceptors (NFAs) are effective strategies to optimize the performance of OSCs. Herein, based on the quinoxaline central core and branched alkyl chains at the β position of the thiophene unit, we designed and synthesized three NFAs with different sized cores. Interestingly, Qx-BO-3 with a smaller central core showed better planarity and more appropriate crystallinity. As a result, PM6:Qx-BO-3-based devices obtained more suitable phase separation, more efficient exciton dissociation, and charge transport properties. Therefore, the OSCs based on PM6:Qx-BO-3 yielded an outstanding PCE of 17.03%, significantly higher than the devices based on PM6:Qx-BO-1 (10.57%) and PM6:Qx-BO-2 (11.34%) although the latter two devices have lower VOC losses. These results indicated that fine-tuning the central core size can effectively optimize the molecular geometry of NFAs and the film morphology of OSCs. This work provides an effective method for designing high-performance NFA-OSCs with high VOCs.
Collapse
Affiliation(s)
- Xinya Ran
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- Sino-Danish Center for Education and Research, Sino-Danish College University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanan Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Dingding Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- Sino-Danish Center for Education and Research, Sino-Danish College University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- Sino-Danish Center for Education and Research, Sino-Danish College University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- Sino-Danish Center for Education and Research, Sino-Danish College University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Su M, Lin M, Mo S, Chen J, Shen X, Xiao Y, Wang M, Gao J, Dang L, Huang XC, He F, Wu Q. Manipulating the Alkyl Chains of Naphthodithiophene Imide-Based Polymers to Concurrently Boost the Efficiency and Stability of Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37371-37380. [PMID: 37515570 DOI: 10.1021/acsami.3c05668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Morphology instability holds the major responsibility for efficiency degradation of organic solar cells (OSCs). However, how to develop polymer donors simultaneously with high efficiency and excellent morphology stability remains challenging. Herein, we reported naphtho[2,1-b:3,4-b']dithiophene-5,6-imide (NDTI)-based new polymers PNDT1 and PNDT2. The alkyl chain engineering leads to high crystallinity, high hole mobility (>10-3 cm2 V-1 S-1), and nanofibrous film morphology, which enable PNDT2 to exhibit an efficiency of 18.13% and a remarkable FF value of 0.80. Moreover, the NDTIs have short π-π stacking and abundant short interactions, and their polymers exhibit superior morphological stability. Therefore, the PNDT2-based OSCs exhibit much better device stability than that of PNDT1, PAB-α, and benchmark polymers PM6 and D18. This work suggests the great importance of the large conjugated backbone of the monomer and alkyl chain engineering to develop high-performance and morphology-stable polymers for OSCs.
Collapse
Affiliation(s)
- Mingbin Su
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Man Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Songmin Mo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Jinming Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Xiangyu Shen
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yonghong Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Meijiang Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Jinping Gao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
- Chemistry and Chemical Engineering, Guangdong Laboratory, Shantou 515063, China
| | - Feng He
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Qinghe Wu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou 515063, Guangdong, China
- Chemistry and Chemical Engineering, Guangdong Laboratory, Shantou 515063, China
| |
Collapse
|
12
|
Ding G, Chen T, Wang M, Xia X, He C, Zheng X, Li Y, Zhou D, Lu X, Zuo L, Xu Z, Chen H. Solid Additive-Assisted Layer-by-Layer Processing for 19% Efficiency Binary Organic Solar Cells. NANO-MICRO LETTERS 2023; 15:92. [PMID: 37036549 PMCID: PMC10086087 DOI: 10.1007/s40820-023-01057-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 06/15/2023]
Abstract
Morphology is of great significance to the performance of organic solar cells (OSCs), since appropriate morphology could not only promote the exciton dissociation, but also reduce the charge recombination. In this work, we have developed a solid additive-assisted layer-by-layer (SAA-LBL) processing to fabricate high-efficiency OSCs. By adding the solid additive of fatty acid (FA) into polymer donor PM6 solution, controllable pre-phase separation forms between PM6 and FA. This intermixed morphology facilitates the diffusion of acceptor Y6 into the donor PM6 during the LBL processing, due to the good miscibility and fast-solvation of the FA with chloroform solution dripping. Interestingly, this results in the desired morphology with refined phase-separated domain and vertical phase-separation structure to better balance the charge transport /collection and exciton dissociation. Consequently, the binary single junction OSCs based on PM6:Y6 blend reach champion power conversion efficiency (PCE) of 18.16% with SAA-LBL processing, which can be generally applicable to diverse systems, e.g., the PM6:L8-BO-based devices and thick-film devices. The efficacy of SAA-LBL is confirmed in binary OSCs based on PM6:L8-BO, where record PCEs of 19.02% and 16.44% are realized for devices with 100 and 250 nm active layers, respectively. The work provides a simple but effective way to control the morphology for high-efficiency OSCs and demonstrates the SAA-LBL processing a promising methodology for boosting the industrial manufacturing of OSCs.
Collapse
Affiliation(s)
- Guanyu Ding
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Tianyi Chen
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Mengting Wang
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, People's Republic of China
| | - Chengliang He
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiangjun Zheng
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yaokai Li
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, People's Republic of China
| | - Lijian Zuo
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310014, People's Republic of China.
| | - Zhikang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
13
|
Chen J, Li D, Su M, Xiao Y, Chen H, Lin M, Qiao X, Dang L, Huang XC, He F, Wu Q. A Multifluorination Strategy Toward Wide Bandgap Polymers for Highly Efficient Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202215930. [PMID: 36629745 DOI: 10.1002/anie.202215930] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/12/2023]
Abstract
Creating new electron-deficient unit is highly demanded to develop high-performance polymer donors for non-fullerene organic solar cells (OSCs). Herein, we reported a multifluorinated unit 4,5,6,7-tetrafluoronaphtho[2,1-b : 3,4-b']dithio-phene (FNT) and its polymers PFNT-F and PFNT-Cl. The advantages of multifluorination: (1) it enables the polymers to exhibit low-lying HOMO (≈-5.5 eV) and wide band gap (≈2.0 eV); (2) the short interactions (F⋅⋅⋅H, F⋅⋅⋅F) endow the polymers with properties of high film crystallinity and efficient hole transport; (3) well miscibility with NFAs that leads to a more well-defined nanofibrous morphology and face-on orientation in the blend films. Therefore, the PFNT-F/Cl : N3 based OSCs exhibit impressive FF values of 0.80, and remarkable PCEs of 17.53 % and 18.10 %, which make them ranked the best donor materials in OSCs. This work offers new insights into the rational design of high-performance polymers by multifluorination strategy.
Collapse
Affiliation(s)
- Jinming Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Dongyan Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Mingbin Su
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Yonghong Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology, Shenzhen, 518055, China
| | - Man Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Xiaolan Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qinghe Wu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, Guangdong, 515063, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, China
| |
Collapse
|
14
|
Wei Y, Li Y, Zhou G, Liu G, Leng X, Xia Q. The charge-transfer states and excitation energy transfers of halogen-free organic molecules from first-principles many-body Green's function theory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121925. [PMID: 36244154 DOI: 10.1016/j.saa.2022.121925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The organic solar cells based on halogen-free components, have been the new favorites to develop green and renewable energy. PBDB-T and its derivatives are considered the superior electron donors to construct the solar cells. Although there are plenty of researches about them, the charge-transfer mechanisms and excitation energy transfers of relative organic solar cells are still unclear, the developments of photovoltaic devices are restricted consequently. In this work, we calculate the electronic structures and excited-state properties of PBDB-T, PBT1-C, PBT1-O and PBT1-S donors in the gas phase from the many-body Green's function theory. With BTP-IC and BTP-IS as the acceptors, we consider the Förster, Dexter, and overlap electronic couplings to compute the excitation energy transfers of the dimers. The ionization energies and excited-state energies of the four donors calculated by GW + BSE are in good agreement with experiments, and they are sensitive to the functionals in the computation. We find two charge transfer schemes. The thienyl of PBDB-T molecule makes its charge-transfer state at the lowest energy, and the total electronic coupling of PBDB-T based dimer is the strongest. The Dexter, and overlap types electronic couplings are significant to study the excitation energy transfer of organic heterojunctions. We provide a theoretical guide in the design and synthesis of higher-performance halogen-free donors.
Collapse
Affiliation(s)
- Yaoyao Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Guangli Zhou
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Guokui Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xia Leng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Qiying Xia
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| |
Collapse
|
15
|
Li C, Lu G, Ryu HS, Sun X, Woo HY, Sun Y. Effect of Terminal Electron-Withdrawing Group on the Photovoltaic Performance of Asymmetric Fused-Ring Electron Acceptors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43207-43214. [PMID: 36099472 DOI: 10.1021/acsami.2c10557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The terminal electron-withdrawing group is thought to strongly influence π-π stacking interactions and thereby the charge transport properties of fused-ring electron acceptors (FREAs). In this work, we designed and synthesized three asymmetric/symmetric small molecule FREAs (LC301, LC302, and LC303), in which three electron-withdrawing functional groups with different polarities (phenyl-fused indanone < thienyl-fused indanone < F-modified phenyl-fused indanone) were selected as the terminal groups. Photophysical properties, electrochemistry, charge transport, and crystalline properties of the materials were studied to investigate the effect of electron-withdrawing abilities of the terminal groups on the properties of FREAs. Starting from the symmetric LC302 (two thienyl-fused indanone terminal groups), we have found that by simply replacing only one thienyl-fused indanone terminal group in symmetric LC302 with one difluorinated phenyl-fused indanone terminal group, the asymmetric LC301-based organic solar cells (OSCs) can yield a high power conversion efficiency (PCE) of 17.21% and a promising fill factor (FF) of 78.1%, which are higher than those of symmetric LC302-based OSCs (PCE = 15.18%, FF = 73.3%) and the asymmetric LC303-based OSCs bearing one thienyl-fused indanone terminal group and one nonfluorinated phenyl-fused indanone terminal group (PCE = 14.28%, FF = 70.3%). The results indicate that the rational selection of terminal groups with different electron-withdrawing capabilities is highly desirable for designing high-performance asymmetric FREAs.
Collapse
Affiliation(s)
- Chao Li
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Guangkai Lu
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Hwa Sook Ryu
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Xiaobo Sun
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
16
|
Busireddy MR, Chen TW, Huang SC, Su YJ, Wang YM, Chuang WT, Chen JT, Hsu CS. PBDB-T-Based Binary-OSCs Achieving over 15.83% Efficiency via End-Group Functionalization and Alkyl-Chain Engineering of Quinoxaline-Containing Non-Fullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41264-41274. [PMID: 36041037 DOI: 10.1021/acsami.2c09614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular backbone modification, alkyl-chain engineering, and end-group functionalization are promising strategies for developing efficient high-performance non-fullerene acceptors (NFAs). Herein, two new NFAs, named TPQ-eC7-4F and TPQ-eC7-4Cl, are designed and synthesized. Both molecules have linear octyl chains on fused quinoxaline-containing heterocyclics as the central backbone and difluorinated (2F)/dichlorinated (2Cl) 1,1-dicyanomethylene-3-indanone (IC) as the end-group units. The influences of alkyl-chains on fused quinoxaline backbone and different halogenated end-groups on optical, electrochemical, and photovoltaic performances of organic solar cells (OSCs) are studied. In comparison with TPQ-eC7-4Cl, TPQ-eC7-4F exhibits blue-shifted absorptions with higher molar extinction coefficients in the film state as well as in the donor/acceptor (D/A) blend film state and up-shifting lowest unoccupied molecular orbital (LUMO) energy level. As a result, the OSC devices based on the PBDB-T:TPQ-eC7-4F display an outstanding power conversion efficiency (PCE) of 15.83% with a simultaneously increased open-circuit voltage (Voc) of 0.85 V, a short-circuit current-density (Jsc) of 25.89 mA cm-2, and a fill factor (FF) of 72.20%, whereas the PBDB-T:TPQ-eC7-4Cl-based OSC device shows a decent PCE of 14.48% with a Voc of 0.84 V, a Jsc of 24.56 mA/cm2, and an FF of 69.77%. To the best of our knowledge, this is the highest photovoltaic performance of PBDB-T-based single-junction binary-OSCs. In comparison, ascribed to the high crystallinity and low solubility of BTP-eC7-4Cl, the corresponding PBDB-T:BTP-eC7-4Cl-based OSC device shows poor photovoltaic performance (PCE of 11.87%). The experimental results demonstrate that fine-tuning the fused quinoxaline backbone with alkyl-chain and end-group functionalization are promising strategies to construct high-performance NFAs for PBDB-T-based single-junction binary-OSCs.
Collapse
Affiliation(s)
- Manohar Reddy Busireddy
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Tsung-Wei Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Sheng-Ci Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yi-Jia Su
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yu-Min Wang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chain-Shu Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
17
|
Hou Y, Wang Q, Huang C, Yang T, Shi S, Yao S, Ren D, Liu T, Zhang G, Zou B. Controlling the Treatment Time for Ideal Morphology towards Efficient Organic Solar Cells. Molecules 2022; 27:5713. [PMID: 36080479 PMCID: PMC9457995 DOI: 10.3390/molecules27175713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, we performed a systematic comparison of different duration of solvent vapor annealing (SVA) treatment upon state-of-the-art PM6:SY1 blend film, which is to say for the first time, the insufficient, appropriate, and over-treatment's effect on the active layer is investigated. The power conversion efficiency (PCE) of corresponding organic solar cell (OSC) devices is up to 17.57% for the optimized system, surpassing the two counterparts. The properly tuned phase separation and formed interpenetrating network plays an important role in achieving high efficiency, which is also well-discussed by the morphological characterizations and understanding of device physics. Specifically, these improvements result in enhanced charge generation, transport, and collection. This work is of importance due to correlating post-treatment delicacy, thin-film morphology, and device performance in a decent way.
Collapse
Affiliation(s)
- Yiwen Hou
- Julong College, Shenzhen Technology University, Shenzhen 518118, China
| | - Qiuning Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Ciyuan Huang
- Guangxi Key Lab. of Processing for Nonferrous Metals and Featured Materials and Key Lab. of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Tao Yang
- Julong College, Shenzhen Technology University, Shenzhen 518118, China
| | - Shasha Shi
- Guangxi Key Lab. of Processing for Nonferrous Metals and Featured Materials and Key Lab. of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Shangfei Yao
- Guangxi Key Lab. of Processing for Nonferrous Metals and Featured Materials and Key Lab. of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Donglou Ren
- Guangxi Key Lab. of Processing for Nonferrous Metals and Featured Materials and Key Lab. of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Tao Liu
- Guangxi Key Lab. of Processing for Nonferrous Metals and Featured Materials and Key Lab. of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Bingsuo Zou
- Guangxi Key Lab. of Processing for Nonferrous Metals and Featured Materials and Key Lab. of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
18
|
Over 18% binary organic solar cells enabled by isomerization of non-fullerene acceptors with alkylthiophene side chains. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
The structure-performance correlation of bulk-heterojunction organic solar cells with multi-length-scale morphology. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1268-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Shi Y, Chang Y, Lu K, Chen Z, Zhang J, Yan Y, Qiu D, Liu Y, Adil MA, Ma W, Hao X, Zhu L, Wei Z. Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells. Nat Commun 2022; 13:3256. [PMID: 35672325 PMCID: PMC9174259 DOI: 10.1038/s41467-022-30927-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Minimizing energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells. Interestingly, reorganization energy plays a crucial role in photoelectric conversion processes. However, the understanding of the relationship between reorganization energy and energy losses has rarely been studied. Here, two acceptors, Qx-1 and Qx-2, were developed. The reorganization energies of these two acceptors during photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport, and reducing the energy loss originating from exciton dissociation and non-radiative recombination. So, a high efficiency of 18.2% with high open circuit voltage above 0.93 V in the PM6:Qx-2 blend, accompanies a significantly reduced energy loss of 0.48 eV. This work underlines the importance of the reorganization energy in achieving small energy losses and paves a way to obtain high-performance organic solar cells.
Collapse
Affiliation(s)
- Yanan Shi
- Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin Chang
- Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Lu
- Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhihao Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Jianqi Zhang
- Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yangjun Yan
- Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Dingding Qiu
- Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Liu
- Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Muhammad Abdullah Adil
- Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China.
| | - Lingyun Zhu
- Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Zhixiang Wei
- Chinese Academy of Sciences (CAS) key laboratory of nanosystem and hierarchical fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Bai L, Wang N, Li Y. Controlled Growth and Self-Assembly of Multiscale Organic Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102811. [PMID: 34486181 DOI: 10.1002/adma.202102811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Currently, organic semiconductors (OSs) are widely used as active components in practical devices related to energy storage and conversion, optoelectronics, catalysis, and biological sensors, etc. To satisfy the actual requirements of different types of devices, chemical structure design and self-assembly process control have been synergistically performed. The morphology and other basic properties of multiscale OS components are governed on a broad scale from nanometers to macroscopic micrometers. Herein, the up-to-date design strategies for fabricating multiscale OSs are comprehensively reviewed. Related representative works are introduced, applications in practical devices are discussed, and future research directions are presented. Design strategies combining the advances in organic synthetic chemistry and supramolecular assembly technology perform an integral role in the development of a new generation of multiscale OSs.
Collapse
Affiliation(s)
- Ling Bai
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
| | - Ning Wang
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences, No. 2 # Zhongguancun North First Street, Beijing, 100190, P. R. China
| |
Collapse
|
22
|
Fernández-Castro M, Truer J, Espindola-Rodriguez M, Andreasen JW. Environmentally Friendly and Roll-Processed Flexible Organic Solar Cells Based on PM6:Y6. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.885138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organic Solar Cells (OSCs) have reached the highest efficiencies using lab-scale device manufacturing on active areas far below 0.1 cm2. The most used fabrication technique is spin-coating, which has poor potential for upscaling and substantial material waste. This tends to widen the so-called “lab-to-fab gap”, which is one of the most important challenges to make OSCs competitive. Other techniques such as blade or slot-die coating are much more suitable for roll-to-roll manufacturing, which is one of the advantages the technology presents due to the huge potential for fast and low-cost fabrication of flexible OSCs. However, only a few studies report solar cells using these fabrication techniques, especially applied on a roll-platform. Additionally, for environmentally friendly large area OSCs, inks based on non-hazardous solvent systems are needed. In this work, slot-die coating has been chosen to coat a PM6:Y6 active layer, using o-xylene, a more environmentally friendly alternative than halogenated solvents, and without additives. The optimal coating process is defined through fine-tuning of the coating parameters, such as the drying temperature and solution concentration. Moreover, ternary devices with PCBM, and fully printed devices are also fabricated. Power conversion efficiencies of 6.3% and 7.2% are achieved for binary PM6:Y6 and ternary PM6:Y6:PCBM devices measured with an aperture area of ∼0.4 cm2 (total device area ∼0.8 cm2).
Collapse
|
23
|
Bai L, Han Y, Wei Q, Sun L, Sun N, Wei C, An X, Ni M, Cai J, Zhuo Z, Zheng Y, Wang S, He L, Yang J, Liu B, Lin Z, Xu M, Lin J, Huang W. A Molecular Design Principle for Pure-Blue Light-Emitting Polydiarylfluorene with Suppressed Defect Emission by the Side-Chain Steric Hindrance Effect. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lubing Bai
- Frontiers Science Center for Flexible Electronics & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Yamin Han
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Qi Wei
- Frontiers Science Center for Flexible Electronics & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ning Sun
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Mingjian Ni
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jiangli Cai
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yingying Zheng
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Shengjie Wang
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Liangliang He
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jinghao Yang
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Bin Liu
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Zongqiong Lin
- Frontiers Science Center for Flexible Electronics & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
24
|
Lai H, Chen H, Zhu Y, Wang H, Li Y, He F. Aggregation of Small Molecule and Polymer Acceptors with 2D-Fused Backbones in Organic Solar Cells. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yulin Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hengtao Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
25
|
Li Y, Song J, Dong Y, Jin H, Xin J, Wang S, Cai Y, Jiang L, Ma W, Tang Z, Sun Y. Polymerized Small Molecular Acceptor with Branched Side Chains for All Polymer Solar Cells with Efficiency over 16.7. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110155. [PMID: 35092105 DOI: 10.1002/adma.202110155] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The power conversion efficiencies (PCEs) of small molecule acceptor (SMA)-based organic solar cells have already exceeded 18%. However, the development of polymer acceptors still lags far behind their SMA counterparts mainly due to the lack of efficient polymer acceptors. Herein, a series of polymer acceptors named PY-X (with X being the branched alkyl chain) are designed and synthesized by employing the same central core with the SMA L8-BO but with different branched alkyl chains on the pyrrole motif. It is found that the molecular packing of SMA-HD featuring 2-hexyldecyl side chain used in the synthesis of PY-HD is similar to L8-BO, in which the branched alkyl chains lead to condensed and high-order molecular assembly in SMA-HD molecules. When combined with PM6, PY-HD-based all polymer solar cell (all-PSC) exhibits a high PCE of 16.41%, representing the highest efficiency for the binary all-PSCs. Moreover, the side-chain modification on the pyrrole site position further improves the performance of the all-PSCs, and the PY-DT-based device delivers a new record high efficiency of 16.76% (certified as 16.3%). The work provides new insights for understanding the structure-property relationship of polymer acceptors and paves a feasible avenue to develop efficient conjugated polymer acceptors.
Collapse
Affiliation(s)
- Yun Li
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jiali Song
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yicai Dong
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jingming Xin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yunhao Cai
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Lang Jiang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
26
|
Li X, Li Y, Zhang Y, Sun Y. Recent Progress of Benzodifuran‐Based Polymer Donors for High‐Performance Organic Photovoltaics. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Xiaoming Li
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Yan Li
- School of Chemistry Beihang University Beijing 100191 P. R. China
| | - Yong Zhang
- School of Materials Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Yanming Sun
- School of Chemistry Beihang University Beijing 100191 P. R. China
| |
Collapse
|
27
|
Cui M, Lv A, Ma Z. Optimizing the Photovoltaic Performance of Organic Solar Cells for Indoor Light Harvesting. Chemphyschem 2022; 23:e202200091. [PMID: 35312206 DOI: 10.1002/cphc.202200091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Indexed: 11/09/2022]
Abstract
Organic solar cells (OSCs) harvesting indoor light are highly promising for emerging technologies, such as Internet of Things. Here, the photovoltaic performance of the PTB7-Th:PC 71 BM solar cells, constructed using "optimized" and "non-optimized" processing conditions, are compared for indoor and outdoor applications. We find that compared to the "optimized" solar cell, the "non-optimized" solar cell is less efficient under simulated solar light illumination (100 mW cm -2 , spectral range 350-1100 nm), due to the significant bimolecular charge carrier recombination losses. However, under simulated indoor illumination (3.28 mW cm -2 , spectral range 400-700 nm), bimolecular recombination is effective suppressed, thus the power conversion efficiency of the "non-optimized" solar cell was increased to 14.7%, higher than that of the "optimized" solar cell (14.2%). These results suggest that the "common" strategy used to optimize the OSCs could be undesired for indoor OSCs. Then, we demonstrate that the difficulty in realizing the desired "morphology" of the active layer for the outdoor OSCs, could be eased for the indoor OSCs, allowing us to realize high-efficiency indoor OSCs using a non-halogenated solvent.
Collapse
Affiliation(s)
- Mengmeng Cui
- Shanghai University of Engineering Science, College of Chemistry and Chemical Engineering, CHINA
| | - Aifeng Lv
- Shanghai University of Engineering Science, College of Chemistry and Chemical Engineering, CHINA
| | - Zaifei Ma
- Donghua University, Center for Advanced Low-dimension Materials, North Renming Road. 2999, 201620, Shanghai, CHINA
| |
Collapse
|
28
|
Zhao F, Zheng X, Li S, Yan K, Fu W, Zuo L, Chen H. Non-halogenated solvents processed efficient ITO-free flexible organic solar cells with up-scaled area. Macromol Rapid Commun 2022; 43:e2200049. [PMID: 35298046 DOI: 10.1002/marc.202200049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Indexed: 11/10/2022]
Abstract
dummy This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Feng Zhao
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangjun Zheng
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shuixing Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kangrong Yan
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weifei Fu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lijian Zuo
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
29
|
Yan L, Liang Z, Si J, Gong P, Wang Y, Liu X, Tong J, Li J, Hou X. Ultrafast Kinetics of Chlorinated Polymer Donors: A Faster Excitonic Dissociation Path. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6945-6957. [PMID: 35081710 DOI: 10.1021/acsami.1c24348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Halogen-substituted donor/acceptor materials are widely regarded as a promising strategy toward improved power-conversion efficiencies (PCEs) in polymer solar cells (PSCs). A chlorinated polymer donor, PClBTA-PS, and its non-chlorinated analogue, PBTA-PS, are synthesized. The PClBTA-PS-based devices show significant enhancements in terms of open-circuit voltage (VOC = 0.82 V) and fill factor (FF = 76.20%). In addition, a PCE of 13.20% is obtained, which is significantly higher than that for the PBTA-PS-based devices (PCE = 7.63%). Grazing incident wide-angle X-ray scattering shows that the chlorinated polymer enables better π-π stacking in both pure and blend films. DFT and TD-DFT calculations as well as ultrafast photophysics measurements indicate that chlorinated PClBTA-PS has a smaller bonding energy and a longer spontaneous-emission lifetime. The results also reveal that the charge-transfer-state excitons in PClBTA-PS:IT4Cl blend films split into the charge-separated (CS) state via a faster dissociation path, which produces a higher yield of the CS state. Overall, this study provides a deeper understanding of how a halogen-substituted polymer can improve PSCs in the future.
Collapse
Affiliation(s)
- Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinhai Si
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pingping Gong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yufei Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Xingpeng Liu
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junfeng Tong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jianfeng Li
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
30
|
Cao X, Fan H. Formation of D-A conjugated polymer crystals: Diffusion and conformational transition theory. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Qi F, Jones LO, Jiang K, Jang SH, Kaminsky W, Oh J, Zhang H, Cai Z, Yang C, Kohlstedt KL, Schatz GC, Lin FR, Marks TJ, Jen AKY. Regiospecific N-alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors. MATERIALS HORIZONS 2022; 9:403-410. [PMID: 34666341 DOI: 10.1039/d1mh01127h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rapid development of non-fullerene acceptors (NFAs) with strong near-infrared absorption has led to remarkably enhanced short-circuit current density (Jsc) values in organic solar cells (OSCs). NFAs based on the benzotriazole (Bz) fused-ring π-core have great potential in delivering both high Jsc and decent open-circuit voltage values due to their strong intramolecular charge transfer with reasonably low energy loss. In this work, we have designed and synthesized a series of Bz-based NFAs, PN6SBO-4F, AN6SBO-4F and EHN6SEH-4F, via regiospecific N-alkyl engineering based on the high-performance NFA mBzS-4F that was reported previously. The molecular packing of mBzS-4F, AN6SBO-4F, and EHN6SEH-4F single crystals was analyzed using X-ray crystallography in order to provide a comprehensive understanding of the correlation between the molecular structure, the charge-transporting properties, and the solar cell performance. Compared with the typical honeycomb single-crystal structure of Y6 derivatives, these NFAs exhibit distinctly different molecular packing patterns. The strong interactions of terminal indanone groups in mBzS-4F and the J-aggregate-like packing in EHN6SEH-4F lead to the formation of ordered 3D networks in single-crystals with channels for efficient charge transport. Consequently, OSCs based on mBzS-4F and EHN6SEH-4F show efficient photon-to-current conversions, achieving the highest power conversion efficiency of 17.48% with a Jsc of 28.83 mA cm-2.
Collapse
Affiliation(s)
- Feng Qi
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
| | - Leighton O Jones
- Department of Chemistry and the Materials Research Center (MRC), Northwestern University, Evanston, Illinois 60208, USA.
| | - Kui Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Sei-Hum Jang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195-2120, USA
| | - Jiyeon Oh
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Kevin L Kohlstedt
- Department of Chemistry and the Materials Research Center (MRC), Northwestern University, Evanston, Illinois 60208, USA.
| | - George C Schatz
- Department of Chemistry and the Materials Research Center (MRC), Northwestern University, Evanston, Illinois 60208, USA.
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center (MRC), Northwestern University, Evanston, Illinois 60208, USA.
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, USA
- Department of Chemistry, University of Washington, Seattle, Washington 98195-2120, USA
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
32
|
Liu Y, Xian K, Gui R, Zhou K, Liu J, Gao M, Zhao W, Jiao X, Deng Y, Yin H, Geng Y, Ye L. Simple Polythiophene Solar Cells Approaching 10% Efficiency via Carbon Chain Length Modulation of Poly(3-alkylthiophene). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Kaihu Xian
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Ruohua Gui
- School of Physics, Shandong University, Jinan 250100, China
| | - Kangkang Zhou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Junwei Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuechen Jiao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yunfeng Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
| | - Hang Yin
- School of Physics, Shandong University, Jinan 250100, China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
33
|
Dai T, Nie Q, Lei P, Zhang B, Zhou J, Tang A, Wang H, Zeng Q, Zhou E. Effects of Halogenation on the Benzotriazole Unit of Non-Fullerene Acceptors in Organic Solar Cells with High Voltages. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58994-59005. [PMID: 34851613 DOI: 10.1021/acsami.1c14317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Non-fullerene acceptors (NFAs) can be simply divided into three categories: A-D-A, A-DA'D-A, and A2-A1-D-A1-A2 according to their chemical structures. Benefiting from the easily modified 1,1-dicyanomethylene-3-indanone end groups, the halogenation on the first two types of materials has been proved to be very effective to modulate their optoelectronic properties and improve their photovoltaic performance. Hence, in this work, we systematically investigate the effect of halogenation on the classic NFA molecule of BTA3, which has the linear A2-A1-D-A1-A2-type backbone. After fluorination and chlorination, F-BTA3 and Cl-BTA3 have similar optical band gaps but lower energy levels than BTA3. When blending with a linear copolymer PE25 composed of benzodifuran and chlorinated benzotriazole (BTA) according to "Same-A-Strategy", the corresponding VOC of the halogenated NFAs gradually decreases (1.13 V for F-BTA3 and 1.09 V for Cl-BTA3), compared with that of the BTA3-based device (VOC = 1.22 V). This tendency mainly comes from the lower lowest unoccupied molecular orbital energy levels due to the strong electron-withdrawing ability of halogen atoms and the larger nonradiative energy loss. However, the power conversion efficiencies of the halogenated materials are slightly improved, from 9.08% for PE25: BTA3 to 10.45% for PE25: F-BTA3 and 10.75% for PE25: Cl-BTA, with the nonhalogenated solvent tetrahydrofuran as the processing solvent. The improved photovoltaic performance of F-BTA3 and Cl-BTA3 should come from the higher carrier mobility, weaker bimolecular recombination, and higher fluorescence quenching rate. This study illustrates that halogenation on the A1 unit is a promising strategy for developing novel and effective A2-A1-D-A1-A2-type NFAs.
Collapse
Affiliation(s)
- Tingting Dai
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingling Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lei
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Jialing Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Tang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Helin Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingdao Zeng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Liang Z, Yan L, Si J, Gong P, Li X, Liu D, Li J, Hou X. Rational Design and Characterization of Symmetry-Breaking Organic Semiconductors in Polymer Solar Cells: A Theory Insight of the Asymmetric Advantage. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6723. [PMID: 34772245 PMCID: PMC8587437 DOI: 10.3390/ma14216723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/01/2023]
Abstract
Asymmetric molecule strategy is considered an effective method to achieve high power conversion efficiency (PCE) of polymer solar cells (PSCs). In this paper, nine oligomers are designed by combining three new electron-deficient units (unitA)-n1, n2, and n3-and three electron-donating units (unitD)-D, E, and F-with their π-conjugation area extended. The relationships between symmetric/asymmetric molecule structure and the performance of the oligomers are investigated using the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. The results indicate that asymmetry molecule PEn2 has the minimum dihedral angle in the angle between two planes of unitD and unitA among all the molecules, which exhibited the advantages of asymmetric structures in molecular stacking. The relationship of the values of ionization potentials (IP) and electron affinities (EA) along with the unitD/unitA π-extend are revealed. The calculated reorganization energy results also demonstrate that the asymmetric molecules PDn2 and PEn2 could better charge the extraction of the PSCs than other molecules for their lower reorganization energy of 0.180 eV and 0.181 eV, respectively.
Collapse
Affiliation(s)
- Zezhou Liang
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (J.S.); (P.G.); (X.H.)
| | - Lihe Yan
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (J.S.); (P.G.); (X.H.)
| | - Jinhai Si
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (J.S.); (P.G.); (X.H.)
| | - Pingping Gong
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (J.S.); (P.G.); (X.H.)
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Xiaoming Li
- School of Chemistry, Beihang University, Beijing 100191, China;
| | - Deyu Liu
- Department of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China;
| | - Jianfeng Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Xun Hou
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Z.L.); (J.S.); (P.G.); (X.H.)
| |
Collapse
|
35
|
Huang B, Cheng Y, Jin H, Liu J, Huang X, Cui Y, Liao X, Yang C, Ma Z, Chen L. Alkylsilyl Fused Ring-Based Polymer Donor for Non-Fullerene Solar Cells with Record Open Circuit Voltage and Energy Loss. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104451. [PMID: 34643026 DOI: 10.1002/smll.202104451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The energy loss (Eloss ), especially the nonradiative recombination loss and energetic disorder, needs to be minimized to improve the device performance with a small voltage (VOC ) loss. Urbach energy (EU ) of organic photovoltaic materials is related to energetic disorder, which can predict the Eloss of the corresponding device. Herein, a polymer donor (PBDS-TCl) with Si and Cl functional atoms for organic solar cells (OSCs) is synthesized. It can be found that the VOC and Eloss can be well manipulated by regulation of the energy level of the polymer donor and EU , which is dominated by the morphology. A low energetic disorder with an EU of 23.7 meV, a low driving force of 0.08 eV, and a low Eloss of 0.41 eV are achieved for the PBDS-TCl:Y6-based OSCs. Consequently, an impressive open circuit voltage (VOC ) of 0.92 V is obtained. To the best of knowledge, the VOC value and Eloss are both the record values for the Y6-based device. These results demonstrate that fine-tuning the polymer donor by functional atom modification on the side chain is a promising way to reduce EU and energy loss, as well as obtain small driving force and high VOC for highly efficient OSCs.
Collapse
Affiliation(s)
- Bin Huang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 156 Ke Jia Avenue, Ganzhou, 341000, China
| | - Yujun Cheng
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Hui Jin
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiabin Liu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Xuexiang Huang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Yongjie Cui
- Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Xunfan Liao
- Institute of Advanced Scientific Research (iASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Zaifei Ma
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
36
|
Xie Y, Ryu HS, Han L, Cai Y, Duan X, Wei D, Woo HY, Sun Y. High-efficiency organic solar cells enabled by an alcohol-washable solid additive. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1121-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Wang N, Yu YJ, Zhao RY, Zhang JD, Liu J, Wang LX. Active Layer Morphology Engineering of All-polymer Solar Cells by Systematically Tuning Molecular Weights of Polymer Donors/Acceptors. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2609-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Dai T, Lei P, Zhang B, Zhou J, Tang A, Geng Y, Zeng Q, Zhou E. Tricyclic or Pentacyclic D Units: Design of D-π-A-Type Copolymers for High VOC Organic Photovoltaic Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30756-30765. [PMID: 34180228 DOI: 10.1021/acsami.1c08487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although there are several electron-donating (D) units, only the classic benzo[1,2-b:4,5-b']dithiophenes (BDT) unit was utilized to develop D-π-A-type copolymers for high-voltage organic photovoltaic (OPV) cells. Hence, in this work, we chose two tricyclic D units, BDT and benzo[1,2-b:4,5-b']difurans (BDF), together with one pentacyclic ring, dithieno[2,3-d;2',3'-d']benzo[1,2-b;4,5-b']dithiophenes (DTBDT), to comprehensively study the effect of different D units on the optoelectronic properties and photovoltaic performance. By copolymerized with the benzo[1,2,3]triazole (BTA) electron-accepting unit, the final copolymers J52-Cl, F11, and PE52 were combined with a nonfullerene acceptor (NFA) F-BTA3 according to the "Same-A-Strategy." As we preconceived, all the three single-junction OPV cells can obtain high open-circuit voltage (VOC) over 1.10 V. Although the tricyclic D unit of BDF exhibits a slightly lower VOC of 1.12 V because of its mildly larger energy loss of 0.698 eV, its higher carrier mobilities and exciton dissociation efficiency strikingly boost the short-circuit current (JSC) and fill factor, which contribute to a comparable PCE of 10.04% with J52-Cl (10.10%). However, the DTBDT-based polymer PE52 shows the worst performance with a PCE of 6.78% and a VOC of 1.14 V, owing to the higher bimolecular recombination and disordered molecular stacking. Our results indicate that tricyclic D units should be a better choice for constructing D-π-A-type polymers for high-voltage photovoltaic materials than the pentacyclic analogues.
Collapse
Affiliation(s)
- Tingting Dai
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lei
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Jialing Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Tang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanfang Geng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingdao Zeng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Pan J, Shi Y, Yu J, Zhang H, Liu Y, Zhang J, Gao F, Yu X, Lu K, Wei Z. π-Extended Nonfullerene Acceptors for Efficient Organic Solar Cells with a High Open-Circuit Voltage of 0.94 V and a Low Energy Loss of 0.49 eV. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22531-22539. [PMID: 33955726 DOI: 10.1021/acsami.1c04273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A combination of high open-circuit voltage (Voc) and short-circuit current density (Jsc) typically creates effective organic solar cells (OSCs). Y5, a member of the Y-series acceptors, can achieve high Voc of 0.94 V with PM6 but low Jsc of 12.8 mA cm-2. To maintain the high Voc while increasing the Jsc of devices, we developed a new nonfullerene acceptor, namely, BTP-C2C4-N, by extending the conjugation of a Y5 molecule with a naphthalene-based end acceptor. In comparison with Y5-based devices, PM6:BTP-C2C4-N-based devices exhibited significantly higher Jsc of 18.2 mA cm-2 followed by a high Voc. To further increase the photovoltaic properties of BTP-C2C4-N analogues, BTP-C4C6-N and BTP-C6C8-N molecules with better processability and film morphology are obtained by adjusting the alkyl branched chain length. The optimized OSCs based on BTP-C4C6-N with a moderate alkyl branched chain length exhibited the best PCE of 12.4% with a high Voc of 0.94 V and Jsc of 20.7 mA cm-2. Notably, the devices achieved a low energy loss of 0.49 eV (0.51 eV for Y5 system) accompanied by a small nonradiative energy loss. The results indicate that nonfullerene acceptors with extended terminal motifs and optimized branched chain lengths can effectively enhance the performance of OSCs and reduce energy loss.
Collapse
Affiliation(s)
- Junxiu Pan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanan Shi
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianwei Yu
- Department of Physics Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| | - Hao Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianqi Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Feng Gao
- Department of Physics Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Kun Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhixiang Wei
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
40
|
Dai T, Lei P, Zhang B, Tang A, Geng Y, Zeng Q, Zhou E. Fabrication of High VOC Organic Solar Cells with a Non-Halogenated Solvent and the Effect of Substituted Groups for "Same-A-Strategy" Material Combinations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21556-21564. [PMID: 33908246 DOI: 10.1021/acsami.1c03757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a class of high-voltage organic solar cells (OSCs) processed by the environmentally friendly solvent tetrahydrofuran (THF), where four benzotriazole (BTA)-based p-type polymers (PE31, PE32, PE33, and J52-Cl) and a BTA-based small molecule BTA5 are applied as p-type and n-type materials, respectively, according to "Same-A-Strategy" (SAS). The single-junction OSCs based on all four material blends exhibit a high open-circuit voltage (VOC) above 1.10 V. We systematically study the impact of the three different substituents (-OCH3, -F, -Cl) on the BTA unit of the polymer donors. Interestingly, PE31 containing the unsubstituted BTA unit shows the efficient hole transfer and more balanced charge mobilities, thus leading to the highest power conversion efficiency (PCE) of 10.08% with a VOC of 1.11 V and a JSC of 13.68 mA cm-2. Due to the upshifted highest electron-occupied molecular orbital (HOMO) level and the weak crystallinity of the methoxy-substituted polymer PE32, the resulting device shows the lowest PCE of 7.40% with a slightly decreased VOC of 1.10 V. In addition, after the chlorination and fluorination, the HOMO levels of the donor materials PE33 and J52-Cl are gradually downshifted, contributing to increased VOC values of 1.16 and 1.21 V, respectively. Our results prove that an unsubstituted p-type polymer can also afford high voltage and promising performance via non-halogenated solvent processing, which is of great significance for simplifying the synthesis steps and realizing the commercialization of OSCs.
Collapse
Affiliation(s)
- Tingting Dai
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lei
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Ailing Tang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanfang Geng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingdao Zeng
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Zhan J, Wang L, Zhang M, Zhu L, Hao T, Zhou G, Zhou Z, Chen J, Zhong W, Qiu C, Leng S, Zou Y, Shi Z, Zhu H, Feng W, Zhang M, Li Y, Zhang Y, Liu F. Manipulating Crystallization Kinetics of Conjugated Polymers in Nonfullerene Photovoltaic Blends toward Refined Morphologies and Higher Performances. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02872] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Junzhe Zhan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lei Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianyu Hao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guanqing Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zichun Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiajun Chen
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenkai Zhong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chaoqun Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shifeng Leng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yecheng Zou
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, P. R. China
| | - Zhiwen Shi
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo, Shandong 256401, P. R. China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Feng Liu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
42
|
Non-equivalent D-A copolymerization strategy towards highly efficient polymer donor for polymer solar cells. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9988-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Cao X, Hu Y, Wang R, Lu Y, Ou B, Liao B, Fan H, Guo Y, Liu Q. Understanding the crystallization process of a diketopyrrolopyrrole‐based conjugated polymer in blend films. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinxiu Cao
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Yibo Hu
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
| | - Ruiyuan Wang
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
| | - Yi Lu
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
| | - Baoli Ou
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Bo Liao
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Hui Fan
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Yan Guo
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Qingquan Liu
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| |
Collapse
|
44
|
Liu X, Ma R, Wang Y, Du S, Tong J, Shi X, Li J, Bao X, Xia Y, Liu T, Yan H. Significantly Boosting Efficiency of Polymer Solar Cells by Employing a Nontoxic Halogen-Free Additive. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11117-11124. [PMID: 33635064 DOI: 10.1021/acsami.0c22014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traditional additives like 1,8-diiodooctane and 1-chloronaphthalene were successfully utilized morphology optimization of various polymer solar cells (PSCs) in an active layer, but their toxicity brought by halogen atoms limits their corresponding large-scale manufacturing. Herein, a new nontoxic halogen-free additive named benzyl benzoate (BB) was introduced into the classic PSCs (PTB7-Th:PC71BM), and an optimal power conversion efficiency (PCE) of 9.43% was realized, while there was a poor PCE for additive free devices (4.83%). It was shown that BB additives could inhibit PC71BM's overaggregation, which increased the interface contact area and formed a better penetration path of an active layer. In addition, BB additives could not only boost the distribution of a PTB7-Th donor at the surface, beneficial to suppressing exciton recombination in inverted devices but also boost the crystallinity of a blend layer, which is conducive to exciton dissociation and charge transport. Our work effectively improved a device performance by using a halogen-free additive, which can be referential for industrialization.
Collapse
Affiliation(s)
- Xingpeng Liu
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ruijie Ma
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yufei Wang
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Sanshan Du
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junfeng Tong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaoyan Shi
- College of Science, Henan University of Technology, Zhengzhou 450001, China
| | - Jianfeng Li
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xichang Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yangjun Xia
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tao Liu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
45
|
Kini GP, Lee EJ, Jeon SJ, Moon DK. Understanding the Critical Role of Sequential Fluorination of Phenylene Units on the Properties of Dicarboxylate Bithiophene-Based Wide-Bandgap Polymer Donors for Non-Fullerene Organic Solar Cells. Macromol Rapid Commun 2021; 42:e2000743. [PMID: 33644922 DOI: 10.1002/marc.202000743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Indexed: 11/06/2022]
Abstract
Design and development of wide bandgap (WBG) polymer donors with low-lying highest occupied molecular orbitals (HOMOs) are increasingly gaining attention in non-fullerene organic photovoltaics since such donors can synergistically enhance power conversion efficiency (PCE) by simultaneously minimizing photon energy loss (Eloss ) and enhancing the spectral response. In this contribution, three new WBG polymer donors, P1, P2, and P3, are prepared by adding phenylene cores with a different number of fluorine (F) substituents (n = 0, 2, and 4, respectively) to dicarboxylate bithiophene-based acceptor units. As predicted, fluorination effectively aides in the lowering of HOMO energy levels, tailoring of the coplanarity and molecular ordering in the polymers. Thus, fluorinated P2 and P3 polymers show higher coplanarity and more intense interchain aggregation than P1, leading to higher charge carrier mobilities and superior phase-separated morphology in the optimized blend films with IT-4F. As a result, both P2:IT-4F and P3:IT-4F realize the best PCEs of 6.89% and 7.03% (vs 0.16% for P1:IT-4F) with lower Eloss values of 0.65 and 0.55 eV, respectively. These results signify the importance of using phenylene units with sequential fluorination in polymer backbone for modifying the optoelectronic properties and realizing low Eloss values by synergistically lowering the HOMO energy levels.
Collapse
Affiliation(s)
- Gururaj P Kini
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| | - Eui Jin Lee
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| | - Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| |
Collapse
|
46
|
Zhan L, Li S, Xia X, Li Y, Lu X, Zuo L, Shi M, Chen H. Layer-by-Layer Processed Ternary Organic Photovoltaics with Efficiency over 18. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007231. [PMID: 33598972 DOI: 10.1002/adma.202007231] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/12/2021] [Indexed: 05/20/2023]
Abstract
Obtaining a finely tuned morphology of the active layer to facilitate both charge generation and charge extraction has long been the goal in the field of organic photovoltaics (OPVs). Here, a solution to resolve the above challenge via synergistically combining the layer-by-layer (LbL) procedure and the ternary strategy is proposed and demonstrated. By adding an asymmetric electron acceptor, BTP-S2, with lower miscibility to the binary donor:acceptor host of PM6:BO-4Cl, vertical phase distribution can be formed with donor-enrichment at the anode and acceptor-enrichment at the cathode in OPV devices during the LbL processing. In contrast, LbL-type binary OPVs based on PM6:BO-4Cl still show bulk-heterojunction like morphology. The formation of the vertical phase distribution can not only reduce charge recombination but also promote charge collection, thus enhancing the photocurrent and fill factor in LbL-type ternary OPVs. Consequently, LbL-type ternary OPVs exhibit the best efficiency of 18.16% (certified: 17.8%), which is among the highest values reported to date for OPVs. The work provides a facile and effective approach for achieving high-efficiency OPVs with expected morphologies, and demonstrates the LbL-type ternary strategy as being a promising procedure in fabricating OPV devices from the present laboratory study to future industrial production.
Collapse
Affiliation(s)
- Lingling Zhan
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shuixing Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinxin Xia
- Department of Physics, Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yaokai Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinhui Lu
- Department of Physics, Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Minmin Shi
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
47
|
Subbiah J, Lee CJ, Mitchell VD, Jones DJ. Effect of Side-Chain Modification on the Active Layer Morphology and Photovoltaic Performance of Liquid Crystalline Molecular Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1086-1093. [PMID: 33347751 DOI: 10.1021/acsami.0c20389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlling the nanoscale morphology of the photoactive layer by fine-tuning the molecular structure of semiconducting organic materials is one of the most effective ways to improve the power conversion efficiency of organic solar cells. In this contribution, we investigate the photovoltaic performance of benzodithiophene (BDT)-based p-type small molecules with three different side chains, namely alkyl-thio (BTR-TE), dialkylthienyl (BTR), and trialkylsilyl (BTR-TIPS) moieties substituted on the BDT core, when used alongside a nonfullerene acceptor. The side-chain changes on the BDT core are shown to have a profound effect on energy levels, charge generation, recombination, morphology, and photovoltaic performance of solid-state molecules. Compared with BTR and BTR-TIPS, BTR-TE-based single-junction binary blend solar cells show the best power conversion efficiency (PCE) of 13.2% due to improved morphology and charge transport with suppressed recombination. In addition, we also achieved relatively good performances for ternary blend solar cells with a PCE of 16.1% using BTR-TE as a third component. Our results show that side-chain modification has a significant effect on modulating active layer morphology, and in particular that thioether side-chain modification is an effective way to achieve optimum morphology and performance for organic photovoltaic (OPV) devices.
Collapse
Affiliation(s)
- Jegadesan Subbiah
- School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Calvin J Lee
- School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Valerie D Mitchell
- School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - David J Jones
- School of Chemistry, Bio21 Institute, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
48
|
Liu Y, Song J, Bo Z. Designing high performance conjugated materials for photovoltaic cells with the aid of intramolecular noncovalent interactions. Chem Commun (Camb) 2021; 57:302-314. [DOI: 10.1039/d0cc07086f] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review summarizes the recent progress in high performance photovoltaic materials with the aid of intramolecular noncovalent interactions.
Collapse
Affiliation(s)
- Yahui Liu
- College of Textiles & Clothing, Qingdao University
- Qingdao 266071
- China
| | - Jinsheng Song
- Engineering Research Center for Nanomaterials
- Henan University
- Kaifeng 475004
- China
| | - Zhishan Bo
- College of Textiles & Clothing, Qingdao University
- Qingdao 266071
- China
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry
- Beijing Normal University
| |
Collapse
|
49
|
Liang J, Pan M, Chai G, Peng Z, Zhang J, Luo S, Han Q, Chen Y, Shang A, Bai F, Xu Y, Yu H, Lai JYL, Chen Q, Zhang M, Ade H, Yan H. Random Polymerization Strategy Leads to a Family of Donor Polymers Enabling Well-Controlled Morphology and Multiple Cases of High-Performance Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003500. [PMID: 33185952 DOI: 10.1002/adma.202003500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Developing high-performance donor polymers is important for nonfullerene organic solar cells (NF-OSCs), as state-of-the-art nonfullerene acceptors can only perform well if they are coupled with a matching donor with suitable energy levels. However, there are very limited choices of donor polymers for NF-OSCs, and the most commonly used ones are polymers named PM6 and PM7, which suffer from several problems. First, the performance of these polymers (particularly PM7) relies on precise control of their molecular weights. Also, their optimal morphology is extremely sensitive to any structural modification. In this work, a family of donor polymers is developed based on a random polymerization strategy. These polymers can achieve well-controlled morphology and high-performance with a variety of chemical structures and molecular weights. The polymer donors are D-A1-D-A2-type random copolymers in which the D and A1 units are monomers originating from PM6 or PM7, while the A2 unit comprises an electron-deficient core flanked by two thiophene rings with branched alkyl chains. Consequently, multiple cases of highly efficient NF-OSCs are achieved with efficiencies between 16.0% and 17.1%. As the electron-deficient cores can be changed to many other structural units, the strategy can easily expand the choices of high-performance donor polymers for NF-OSCs.
Collapse
Affiliation(s)
- Jiaen Liang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Mingao Pan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Gaoda Chai
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Zhengxing Peng
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Jianquan Zhang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Siwei Luo
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Qi Han
- eFlexPV Limited, Jinxiu Science Park, Shenzhen, 518000, China
| | - Yuzhong Chen
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Ao Shang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Fujin Bai
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Yuan Xu
- HKUST Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, SAR, Kowloon, 999077, China
| | - Han Yu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Joshua Yuk Lin Lai
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
| | - Qing Chen
- HKUST Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, SAR, Kowloon, 999077, China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, 999077, China
- eFlexPV Limited, Jinxiu Science Park, Shenzhen, 518000, China
- Hong Kong University of Science and Technology-Shenzhen Research Institute, No. 9, Yuexing 1st RD, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| |
Collapse
|
50
|
Ye L, Weng K, Xu J, Du X, Chandrabose S, Chen K, Zhou J, Han G, Tan S, Xie Z, Yi Y, Li N, Liu F, Hodgkiss JM, Brabec CJ, Sun Y. Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Nat Commun 2020; 11:6005. [PMID: 33243982 PMCID: PMC7693324 DOI: 10.1038/s41467-020-19853-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/30/2020] [Indexed: 12/02/2022] Open
Abstract
In non-fullerene organic solar cells, the long-range structure ordering induced by end-group π-π stacking of fused-ring non-fullerene acceptors is considered as the critical factor in realizing efficient charge transport and high power conversion efficiency. Here, we demonstrate that side-chain engineering of non-fullerene acceptors could drive the fused-ring backbone assembly from a π-π stacking mode to an intermixed packing mode, and to a non-stacking mode to refine its solid-state properties. Different from the above-mentioned understanding, we find that close atom contacts in a non-stacking mode can form efficient charge transport pathway through close side atom interactions. The intermixed solid-state packing motif in active layers could enable organic solar cells with superior efficiency and reduced non-radiative recombination loss compared with devices based on molecules with the classic end-group π-π stacking mode. Our observations open a new avenue in material design that endows better photovoltaic performance.
Collapse
Affiliation(s)
- Linglong Ye
- School of Chemistry, Beihang University, 100191, Beijing, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, 411105, Xiangtan, China
| | - Kangkang Weng
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jinqiu Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaoyan Du
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Immerwahrstr. 2, 91058, Erlangen, Germany
| | - Sreelakshmi Chandrabose
- MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Kai Chen
- MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Songting Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, 411105, Xiangtan, China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Immerwahrstr. 2, 91058, Erlangen, Germany.
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, 450002, Zhengzhou, China.
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Justin M Hodgkiss
- MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Immerwahrstr. 2, 91058, Erlangen, Germany
| | - Yanming Sun
- School of Chemistry, Beihang University, 100191, Beijing, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, 100191, Beijing, China.
| |
Collapse
|