1
|
Wang XZ, Cai BC, Zhou YJ, Zhou CW, Wu MM, Zhou XC, Wang FL, Zhou XP, Li D. Mesoporous metal-organic framework NH 2-MIL-101(Cr) as an efficient photocatalyst for the epoxidation of styrene. Dalton Trans 2024; 53:15297-15304. [PMID: 39223940 DOI: 10.1039/d4dt01701c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Oxidation of styrene is a key reaction in the synthesis of pharmaceuticals and fine chemicals, and therefore oxidizing styrene with selective, efficient, and recyclable heterogeneous catalysts is significant from an environmental and economic standpoint. In this study, we report the transition Cr-based metal-organic framework [NH2-MIL-101(Cr)] as a heterogeneous photocatalyst, which efficiently promotes styrene epoxidation using H2O2 as a green oxidant, achieving high conversion efficiency (98%) and excellent selectivity (82%) under ambient conditions. Radical detection and quenching experiments reveal that the superoxide radical anion (O2˙-) acts as an active oxygen species, selectively promoting the oxidation of styrene to its oxidized form. This work provides insight into the development of a sustainable and cost-effective method for producing styrene oxide.
Collapse
Affiliation(s)
- Xue-Zhi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China.
- Department of Radiology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Bing-Chen Cai
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China.
| | - Yi-Jie Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China.
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China.
| | - Ming-Min Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China.
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China.
| | - Fu-Li Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China.
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Zheng DY, Zhang T, Bai R, Li M, Gu Y. Modulating confinement space in metal-organic frameworks enables highly selective indole C3-formylation. Chem Commun (Camb) 2024; 60:5715-5718. [PMID: 38739371 DOI: 10.1039/d4cc01629g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Here, Selective C3-formylation of indole was achieved under mild conditions using a metal-organic framework (MOF) catalyst. The confined reaction space within the MOF pores effectively suppressed undesired side reactions and promoted the formation of the targeted product by controlling the reaction pathway. Density functional theory (DFT) calculations corroborated the experimental observations.
Collapse
Affiliation(s)
- Deng-Yue Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tianjian Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rongxian Bai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minghao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
3
|
Prasoon A, Yu X, Hambsch M, Bodesheim D, Liu K, Zacarias A, Nguyen NN, Seki T, Dianat A, Croy A, Cuniberti G, Fontaine P, Nagata Y, Mannsfeld SCB, Dong R, Bonn M, Feng X. Site-selective chemical reactions by on-water surface sequential assembly. Nat Commun 2023; 14:8313. [PMID: 38097633 PMCID: PMC10721922 DOI: 10.1038/s41467-023-44129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Controlling site-selectivity and reactivity in chemical reactions continues to be a key challenge in modern synthetic chemistry. Here, we demonstrate the discovery of site-selective chemical reactions on the water surface via a sequential assembly approach. A negatively charged surfactant monolayer on the water surface guides the electrostatically driven, epitaxial, and aligned assembly of reagent amino-substituted porphyrin molecules, resulting in a well-defined J-aggregated structure. This constrained geometry of the porphyrin molecules prompts the subsequent directional alignment of the perylenetetracarboxylic dianhydride reagent, enabling the selective formation of a one-sided imide bond between porphyrin and reagent. Surface-specific in-situ spectroscopies reveal the underlying mechanism of the dynamic interface that promotes multilayer growth of the site-selective imide product. The site-selective reaction on the water surface is further demonstrated by three reversible and irreversible chemical reactions, such as imide-, imine-, and 1, 3-diazole (imidazole)- bonds involving porphyrin molecules. This unique sequential assembly approach enables site-selective chemical reactions that can bring on-water surface synthesis to the forefront of modern organic chemistry.
Collapse
Affiliation(s)
- Anupam Prasoon
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| | - David Bodesheim
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany
| | - Kejun Liu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Angelica Zacarias
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany
| | - Nguyen Ngan Nguyen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Aerzoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany
| | - Alexander Croy
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737, Jena, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062, Dresden, Germany
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190, Saint-Aubin, France
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany.
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany.
| |
Collapse
|
4
|
Acharya A, Mete TB, Kumari N, Yoon Y, Jeong H, Jang T, Song B, Choi HC, Han JW, Pang Y, Yun Y, Kumar A, Lee IS. Ultrathin covalent organic overlayers on metal nanocrystals for highly selective plasmonic photocatalysis. Nat Commun 2023; 14:7667. [PMID: 37996475 PMCID: PMC10667221 DOI: 10.1038/s41467-023-43482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Metal nanoparticle-organic interfaces are common but remain elusive for controlling reactions due to the complex interactions of randomly formed ligand-layers. This paper presents an approach for enhancing the selectivity of catalytic reactions by constructing a skin-like few-nanometre ultrathin crystalline porous covalent organic overlayer on a plasmonic nanoparticle surface. This organic overlayer features a highly ordered layout of pore openings that facilitates molecule entry without any surface poisoning effects and simultaneously endows favourable electronic effects to control molecular adsorption-desorption. Conformal organic overlayers are synthesised through the plasmonic oxidative activation and intermolecular covalent crosslinking of molecular units. We develop a light-operated multicomponent interfaced plasmonic catalytic platform comprising Pd-modified gold nanoparticles inside hollow silica to achieve the highly efficient and selective semihydrogenation of alkynes. This approach demonstrates a way to control molecular adsorption behaviours on metal surfaces, breaking the linear scaling relationship and simultaneously enhancing activity and selectivity.
Collapse
Affiliation(s)
- Anubhab Acharya
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Trimbak Baliram Mete
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Youngkwan Yoon
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hayoung Jeong
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Taehyung Jang
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Byeongju Song
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hee Cheul Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Yongju Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
5
|
Zhou L, An Y, Ma J, Hao G, Li Z, Chen J, Chou LY. A highly efficient synthetic strategy for de novo NP encapsulation into metal-organic frameworks: enabling further modulated control of catalytic properties. Chem Sci 2023; 14:13126-13133. [PMID: 38023511 PMCID: PMC10664540 DOI: 10.1039/d3sc05179j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
De novo encapsulation is a prevalent method to prepare composite materials where the structure-tunable metal nanoparticles (NPs) are holistically coated with metal-organic frameworks (MOFs). This method has been demonstrated to have promise in various fields but the extensive application of this approach is still challenging. This study proposed, for the first time, leveraging a specific surface-energy-dominated (SED) mechanism to achieve a highly efficient synthetic strategy for de novo NP encapsulation. The generality of this strategy is proved in applying to various MOFs, reaction conditions and the use of capping agents. By applying the strategy, Pd NPs with different morphologies are encapsulated in UiO-67, which is prone to self-assembly without coating, and an interesting enhancement is investigated in the selective semihydrogenation of alkynes on different Pd surfaces. These results demonstrate that the control of surface energy is a feasible method for efficient NP encapsulation which sheds light on the rational design of MOF-based composites for future applications.
Collapse
Affiliation(s)
- Li Zhou
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yuanyuan An
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Jialong Ma
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Guoxiu Hao
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Zhehui Li
- Department of Chemistry Merkert Chemistry, Boston College, Chestnut Hill Massachusetts 02467 USA
| | - Junchen Chen
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
6
|
Pal N, Chakraborty D, Cho EB, Seo JG. Recent Developments on the Catalytic and Biosensing Applications of Porous Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2184. [PMID: 37570502 PMCID: PMC10420944 DOI: 10.3390/nano13152184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Nanoscopic materials have demonstrated a versatile role in almost every emerging field of research. Nanomaterials have come to be one of the most important fields of advanced research today due to its controllable particle size in the nanoscale range, capacity to adopt diverse forms and morphologies, high surface area, and involvement of transition and non-transition metals. With the introduction of porosity, nanomaterials have become a more promising candidate than their bulk counterparts in catalysis, biomedicine, drug delivery, and other areas. This review intends to compile a self-contained set of papers related to new synthesis methods and versatile applications of porous nanomaterials that can give a realistic picture of current state-of-the-art research, especially for catalysis and sensor area. Especially, we cover various surface functionalization strategies by improving accessibility and mass transfer limitation of catalytic applications for wide variety of materials, including organic and inorganic materials (metals/metal oxides) with covalent porous organic (COFs) and inorganic (silica/carbon) frameworks, constituting solid backgrounds on porous materials.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Debabrata Chakraborty
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Jeong Gil Seo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
7
|
In situ chemical oxidation-grafted amidoxime-based collagen fibers for rapid uranium extraction from radioactive wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Li L, Li Y, Jiao L, Liu X, Ma Z, Zeng YJ, Zheng X, Jiang HL. Light-Induced Selective Hydrogenation over PdAg Nanocages in Hollow MOF Microenvironment. J Am Chem Soc 2022; 144:17075-17085. [PMID: 36069726 DOI: 10.1021/jacs.2c06720] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selective hydrogenation with high efficiency under ambient conditions remains a long-standing challenge. Here, a yolk-shell nanostructured catalyst, PdAg@ZIF-8, featuring plasmonic PdAg nanocages encompassed by a metal-organic framework (MOF, namely, ZIF-8) shell, has been rationally fabricated. PdAg@ZIF-8 achieves selective (97.5%) hydrogenation of nitrostyrene to vinylaniline with complete conversion at ambient temperature under visible light irradiation. The photothermal effect of Ag, together with the substrate enrichment effect of the catalyst, improves the Pd activity. The near-field enhancement effect from plasmonic Ag and optimized Pd electronic state by Ag alloying promote selective adsorption of the -NO2 group and therefore catalytic selectivity. Remarkably, the unique yolk-shell nanostructure not only facilitates access to PdAg cores and protects them from aggregation but also benefits substrate enrichment and preferential -NO2 adsorption under light irradiation, the latter two of which surpass the core-shell counterpart, giving rise to enhanced activity, selectivity, and recyclability.
Collapse
Affiliation(s)
- Luyan Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yanxiao Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Long Jiao
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaoshuo Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Zhentao Ma
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
10
|
Guo T, Bao S, Guo J, Chen W, Wen L. Bimetallic Au-Pd NPs Embedded in MOF Ultrathin Nanosheets with Tuned Surface Electronic Properties for High-performance Benzyl Alcohol Oxidation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Effect of functional group and structure on hydrophobic properties of environment-friendly lignin-based composite coatings. Int J Biol Macromol 2022; 215:132-140. [PMID: 35714873 DOI: 10.1016/j.ijbiomac.2022.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023]
Abstract
Hydrophobic coatings are widely used in a variety of materials surfaces. However, it remains a great challenge for the non-toxic and environmentally-friendly production of hydrophobic coatings. Herein, two nano-scale spherical lignin/SiO2 composite particles are synthesized based on the electrostatic interaction and the steric hindrance effect inspired by the self-protection of straw. Introduction of positively charged quaternary ammonium enhances the possibility of electrostatic self-assembly between lignin and SiO2 for QAL/SiO2, and access of super-long hydrophobic chains induces the formation of nano-sized particles for QALC12/SiO2. The coatings were fabricated by simply spraying on substrates and hydrophilic/hydrophobic properties were detected. The results show that the long hydrophobic chain can enhance the hydrophobic properties of lignin polymers (CA = 129°) and the spherical micro-nano structure is beneficial to improve the hydrophobic properties of the lignin/SiO2 composite (CA = 137°). Meanwhile, the hydrophobic coating has good self-cleaning performance. The excellent hydrophobic and self-cleaning properties are mainly benefited from the nano effect, reasonable hydrophilic/hydrophobic structure, and good dispersibility of spherical structure. This work not only provides a kind of lignin-based nano-scale waterproof coatings holding excellent properties in terms of cost, scalability, and robustness, but also has important significance for the high-value utilization of biomass resources.
Collapse
|
12
|
Zhang X, Li T, Cao QL, Wang YJ, Hou WL, Wei J, Tian GH, Hu H, Sheng J, Geng L, Zhang DS, Zhang YZ, Li Q. Constructing [Co6(μ3-OH)6]-based pillar-layered MOF with open metal sites via steric-hindrance effect on ligand for CO2 adsorption and fixation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Xu M, Meng SS, Cai P, Gu YH, Yan TA, Yan TH, Zhang QH, Gu L, Liu DH, Zhou HC, Gu ZY. Homogeneously Mixing Different Metal-Organic Framework Structures in Single Nanocrystals through Forming Solid Solutions. ACS CENTRAL SCIENCE 2022; 8:184-191. [PMID: 35233451 PMCID: PMC8874727 DOI: 10.1021/acscentsci.1c01344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 06/01/2023]
Abstract
Pore engineering plays a significant role in the applications of porous materials, especially in the area of separation and catalysis. Here, we demonstrated a metal-organic framework (MOF) solid solution (MOSS) strategy to homogeneously and controllably mix NU-1000 and NU-901 structures inside single MOF nanocrystals. The key for the homogeneous mixing and forming of MOSS was the bidentate modulator, which was designed to have a slightly longer distance between two carboxylate groups than the original tetratopic ligand. All of the MOSS nanocrystals showed a uniform pore size distribution with a well-tuned ratio of mesopores to micropores. Because of the appropriate pore ratio, MOSS nanocrystals can balance the thermodynamic interactions and kinetic diffusion of the substrates, thus showing exceedingly higher separation abilities and a unique elution sequence. Our work proposes a rational strategy to design mixed-porous MOFs with controlled pore ratios and provides a new direction to design homogeneously mixed MOFs with a high separation ability and unique separation selectivity.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Sha-Sha Meng
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Peiyu Cai
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Yu-Hao Gu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tong-An Yan
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian-Hao Yan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Qing-Hua Zhang
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Da-Huan Liu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77842, United States
| | - Zhi-Yuan Gu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
14
|
Encapsulating UiO-66-NH2@Pt with Defective PCN-222 as an Active Armor to Fabricate a Sandwich-Type Nanocatalyst for the Tandem Synthesis via Hydrogenation of Nitroarenes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Shen H, Zhao H, Yang J, Zhao J, Yan L, Chou L, Song H. The structure and electronic effects of ZIF-8 and ZIF-67 supported Pt catalysts for crotonaldehyde selective hydrogenation. NEW J CHEM 2022. [DOI: 10.1039/d1nj05487b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structure and electronic effects of ZIF-8 and ZIF-67 supported Pt catalysts for crotonaldehyde selective hydrogenation.
Collapse
Affiliation(s)
- Haiyu Shen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huahua Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Jian Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Jun Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Liang Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Lingjun Chou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Huanling Song
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
16
|
Shen Y, Pan T, Wang L, Ren Z, Zhang W, Huo F. Programmable Logic in Metal-Organic Frameworks for Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007442. [PMID: 34050572 DOI: 10.1002/adma.202007442] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as one of the most widely investigated materials in catalysis mainly due to their excellent component tunability, high surface area, adjustable pore size, and uniform active sites. However, the overwhelming number of MOF materials and complex structures has brought difficulties for researchers to select and construct suitable MOF-based catalysts. Herein, a programmable design strategy is presented based on metal ions/clusters, organic ligands, modifiers, functional materials, and post-treatment modules, which can be used to design the components, structures, and morphologies of MOF catalysts for different reactions. By establishing the corresponding relationship between these modules and functions, researchers can accurately and efficiently construct heterometallic MOFs, chiral MOFs, conductive MOFs, hierarchically porous MOFs, defective MOFs, MOF composites, and MOF-derivative catalysts. Further, this programmable design approach can also be used to regulate the physical/chemical microenvironments of pristine MOFs, MOF composites, and MOF-derivative materials for heterogeneous catalysis, electrocatalysis, and photocatalysis. Finally, the challenging issues and opportunities for the future research of MOF-based catalysts are discussed. Overall, the modular design concept of this review can be applied as a potent tool for exploring the structure-activity relationships and accelerating the on-demand design of multicomponent catalysts.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Liu Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhen Ren
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
17
|
Dai J, Zhang H. Recent Advances in Catalytic Confinement Effect within Micro/Meso-Porous Crystalline Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005334. [PMID: 33728734 DOI: 10.1002/smll.202005334] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Micro/meso-porous crystalline materials with a well-defined pore structure, such as zeolites, carbon nanotubes, and metal-organic frameworks, are of great significance in the development of catalytic systems for scientific and industrial demands. The confinement effect aroused by pore features of porous crystalline materials has triggered great interest in heterogeneous catalysis. Catalytic reactions in confined spaces exhibit unique behaviors compared to those observed on bulk materials. More interestingly, chemical reactivity can be modulated in different ways by the confinement effect, despite the fact that the mechanism on how the confinement effect changes the reaction remains unclear. In this review, a systematic discussion and fundamental understanding is provided concerning the concept of confinement effect, highlighting the impact of confinement effects on diffusion, adsorption/desorption, and catalytic reaction in typical micro/meso-porous crystalline materials, including zeolites, carbon nanotubes, and metal-organic frameworks. Relevant studies demonstrate that confinement effect affords not only shape selectivity against reactants/products, but also modulates surface electron distribution of active species confined within porous environments, thereby successively affecting the catalytic reactivity, selectivity, and stability. This review provides a useful guide for researchers attempting to design excellent porous crystalline catalysts based on the concept of confinement effect in heterogeneous catalysis.
Collapse
Affiliation(s)
- Jingjing Dai
- School of Materials Science and Engineering and National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
| | - Hongbo Zhang
- School of Materials Science and Engineering and National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China
| |
Collapse
|
18
|
Guo J, Qin Y, Zhu Y, Zhang X, Long C, Zhao M, Tang Z. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chem Soc Rev 2021; 50:5366-5396. [PMID: 33870965 DOI: 10.1039/d0cs01538e] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective organic transformations using metal-organic frameworks (MOFs) and MOF-based heterogeneous catalysts have been an intriguing but challenging research topic in both the chemistry and materials communities. Analogous to the reaction specificity achieved in enzyme pockets, MOFs are also powerful platforms for regulating the catalytic selectivity via engineering their catalytic microenvironments, such as metal node alternation, ligand functionalization, pore decoration, topology variation and others. In this review, we provide a comprehensive introduction and discussion about the role of MOFs played in regulating and even boosting the size-, shape-, chemo-, regio- and more appealing stereo-selectivity in organic transformations. We hope that it will be instructive for researchers in this field to rationally design, conveniently prepare and elaborately functionalize MOFs or MOF-based composites for the synthesis of high value-added organic chemicals with significantly improved selectivity.
Collapse
Affiliation(s)
- Jun Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Fang C, Liu L, Weng J, Zhang S, Zhang X, Ren Z, Shen Y, Meng F, Zheng B, Li S, Wu J, Shi W, Lee S, Zhang W, Huo F. Modifiers versus Channels: Creating Shape‐Selective Catalysis of Metal Nanoparticles/Porous Nanomaterials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chuanzhen Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Liwei Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Jiena Weng
- Shaanxi Institute of Flexible Electronics (SIFE) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Zhen Ren
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Fanchen Meng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Bing Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Jiansheng Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Wenxiong Shi
- Separation Membranes and Membrane Processes School of Materials Science and Engineering Tianjin Polytechnical University (TJPU) 399 Binshuixi Road Tianjin 300387 China
| | - Sungsik Lee
- X-ray Sciences Division Argonne National Laboratory Lemont IL 60439 USA
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
20
|
Li D, Cen B, Fang C, Leng X, Wang W, Wang Y, Chen J, Luo M. High performance cobalt nanoparticle catalysts supported by carbon for ozone decomposition: the effects of the cobalt particle size and hydrophobic carbon support. NEW J CHEM 2021. [DOI: 10.1039/d0nj04876c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic gaseous ozone decomposition under high humidity is not only an urgent need but also a significant challenge because of the low stability over the available catalysts.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Bingheng Cen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Chentao Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Xingyue Leng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Weiyue Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Yuejuan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| | - Mengfei Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces
- Institute of Physical Chemistry
- Zhejiang Normal University
- Jinhua 321004
| |
Collapse
|
21
|
Sanati S, Abazari R, Albero J, Morsali A, García H, Liang Z, Zou R. Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angew Chem Int Ed Engl 2020; 60:11048-11067. [DOI: 10.1002/anie.202010093] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/09/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Soheila Sanati
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Reza Abazari
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Josep Albero
- Dep. Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València València 46022 Spain
| | - Ali Morsali
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Hermenegildo García
- Dep. Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València València 46022 Spain
| | - Zibin Liang
- Beijing Key Lab of Theory and Technology for Advanced Battery Materials Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| | - Ruqiang Zou
- Beijing Key Lab of Theory and Technology for Advanced Battery Materials Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
22
|
Sanati S, Abazari R, Albero J, Morsali A, García H, Liang Z, Zou R. Metal–Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Soheila Sanati
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Reza Abazari
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Josep Albero
- Dep. Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València València 46022 Spain
| | - Ali Morsali
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14115-175 Iran
| | - Hermenegildo García
- Dep. Instituto Universitario de Tecnología Química (CSIC-UPV) Universitat Politècnica de València València 46022 Spain
| | - Zibin Liang
- Beijing Key Lab of Theory and Technology for Advanced Battery Materials Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| | - Ruqiang Zou
- Beijing Key Lab of Theory and Technology for Advanced Battery Materials Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
| |
Collapse
|
23
|
Zhang W, Ji W, Li L, Qin P, Khalil IE, Gu Z, Wang P, Li H, Fan Y, Ren Z, Shen Y, Zhang W, Fu Y, Huo F. Exploring the Fundamental Roles of Functionalized Ligands in Platinum@Metal-Organic Framework Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52660-52667. [PMID: 33169972 DOI: 10.1021/acsami.0c15340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The metal nodes, functionalized ligands, and uniform channels of metal-organic frameworks (MOFs) are typically utilized to regulate the catalytic properties of metal nanoparticles (MNPs). However, though the ligand functionalization could impact the properties of the metal nodes and channels, which might further regulate the catalytic activity and selectivity of MNPs, related research in the design of MNP/MOF catalysts was usually neglected. Herein, we synthesized a series of Pt@UiO-66 composites (Pt@UiO-66-NH2, Pt@UiO-66-SO3H, and Pt@UiO-66) with slightly different organic ligands, which enhanced steric hindrance and contributed to multipathway electron transfer in selective hydrogenation of linear citronellal. The selectivity toward citronellol was gradually improved along with the increased size of functional groups (hydrogen, amino groups, and sulfo groups) on organic ligands, which enhanced steric hindrance provided by channels. In addition, the X-ray photoelectron spectroscopy measurements also revealed that the electronic state of Pt NPs was regulated through multipathway electron transfer from Pt NPs to metal nodes, between organic ligands and Pt NPs/metal nodes. Our research proved that the ligand functionalization altered physiochemical properties of the channels and metal nodes, further together managing the catalytic performance of Pt NPs through enhanced steric hindrance and multi-pathway electron transfer.
Collapse
Affiliation(s)
- Wenlei Zhang
- College of Science, Northeastern University, Shenyang 100819, China
| | - Wenlan Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Linjie Li
- College of Science, Northeastern University, Shenyang 100819, China
| | - Peishan Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Islam E Khalil
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhida Gu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Peng Wang
- College of Science, Northeastern University, Shenyang 100819, China
| | - Hongfeng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yun Fan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhen Ren
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yu Fu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
24
|
Fang C, Liu L, Weng J, Zhang S, Zhang X, Ren Z, Shen Y, Meng F, Zheng B, Li S, Wu J, Shi W, Lee S, Zhang W, Huo F. Modifiers versus Channels: Creating Shape‐Selective Catalysis of Metal Nanoparticles/Porous Nanomaterials. Angew Chem Int Ed Engl 2020; 60:976-982. [DOI: 10.1002/anie.202011866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Chuanzhen Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Liwei Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Jiena Weng
- Shaanxi Institute of Flexible Electronics (SIFE) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Zhen Ren
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Fanchen Meng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Bing Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Jiansheng Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Wenxiong Shi
- Separation Membranes and Membrane Processes School of Materials Science and Engineering Tianjin Polytechnical University (TJPU) 399 Binshuixi Road Tianjin 300387 China
| | - Sungsik Lee
- X-ray Sciences Division Argonne National Laboratory Lemont IL 60439 USA
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (Nanjing Tech) 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
25
|
Beldjoudi Y, Atilgan A, Weber JA, Roy I, Young RM, Yu J, Deria P, Enciso AE, Wasielewski MR, Hupp JT, Stoddart JF. Supramolecular Porous Organic Nanocomposites for Heterogeneous Photocatalysis of a Sulfur Mustard Simulant. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001592. [PMID: 32602131 DOI: 10.1002/adma.202001592] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Efficient heterogeneous photosensitizing materials require both large accessible surface areas and excitons of suitable energies and with well-defined spin structures. Confinement of the tetracationic cyclophane (ExBox4+ ) within a nonporous anionic polystyrene sulfonate (PSS) matrix leads to a surface area increase of up to 225 m2 g-1 in ExBox•PSS. Efficient intersystem crossing is achieved by combining the spin-orbit coupling associated to Br heavy atoms in 1,3,5,8-tetrabromopyrene (TBP), and the photoinduced electron transfer in a TBP⊂ExBox4+ supramolecular dyad. The TBP⊂ExBox4+ complex displays a charge transfer band at 450 nm and an exciplex emission at 520 nm, indicating the formation of new mixed-electronic states. The lowest triplet state (T1 , 1.89 eV) is localized on the TBP and is close in energy with the charge separated state (CT, 2.14 eV). The homogeneous and heterogeneous photocatalytic activities of the TBP⊂ExBox4+ , for the elimination of a sulfur mustard simulant, has proved to be significantly more efficient than TBP and ExBox+4 , confirming the importance of the newly formed excited-state manifold in TBP⊂ExBox4+ for the population of the low-lying T1 state. The high stability, facile preparation, and high performance of the TBP⊂ExBox•PSS nanocomposites augur well for the future development of new supramolecular heterogeneous photosensitizers using host-guest chemistry.
Collapse
Affiliation(s)
- Yassine Beldjoudi
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Ahmet Atilgan
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Jacob A Weber
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Indranil Roy
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Ryan M Young
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Institute for Sustainability and Energy, Northwestern University, Evanston, IL, 60208, USA
| | - Jierui Yu
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
| | - Pravas Deria
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
| | - Alan E Enciso
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Institute for Sustainability and Energy, Northwestern University, Evanston, IL, 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
26
|
Chen L, Zhang X, Cheng X, Xie Z, Kuang Q, Zheng L. The function of metal-organic frameworks in the application of MOF-based composites. NANOSCALE ADVANCES 2020; 2:2628-2647. [PMID: 36132385 PMCID: PMC9417945 DOI: 10.1039/d0na00184h] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 05/25/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs), as a class of porous crystalline materials formed by organic linkers coordinated-metal ions, have attracted increasing attention due to their unique structures and wide applications. Compared to single components, various well-designed MOF-based composites combining MOFs with other functional materials, such as nanoparticles, quantum dots, natural enzymes and polymers with remarkably enhanced or novel properties have recently been reported. To efficiently and directionally synthesize high-performance MOF-based composites for specific applications, it is vital to understand the structural-functional relationships and role of MOFs. In this review, preparation methods of MOF-based composites are first summarized and then the relationship between the structure and performance is determined. The functions of MOFs in practical use are classified and discussed through various examples, which may help chemists to understand the structural-functional relationship in MOF-based composites from a new perspective.
Collapse
Affiliation(s)
- Luning Chen
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Xibo Zhang
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Xiqing Cheng
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Zhaoxiong Xie
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Qin Kuang
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Lansun Zheng
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| |
Collapse
|
27
|
Li L, Yang W, Yang Q, Guan Q, Lu J, Yu SH, Jiang HL. Accelerating Chemo- and Regioselective Hydrogenation of Alkynes over Bimetallic Nanoparticles in a Metal–Organic Framework. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00177] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Luyan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei 071003, P. R. China
| | - Qihao Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiaoqiao Guan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junling Lu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
28
|
Qin Y, Han X, Li Y, Han A, Liu W, Xu H, Liu J. Hollow Mesoporous Metal–Organic Frameworks with Enhanced Diffusion for Highly Efficient Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01432] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yongji Qin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xu Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aijuan Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haijun Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
29
|
Liu Y, Lin SX, Niu RJ, Liu Q, Zhang WH, Young DJ. Zinc and Cadmium Complexes of Pyridinemethanol Carboxylates: Metal Carboxylate Zwitterions and Metal-Organic Frameworks. Chempluschem 2020; 85:832-837. [PMID: 32364322 DOI: 10.1002/cplu.202000175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Indexed: 11/08/2022]
Abstract
The heterofunctional lactone furo[3,4-b]pyridin-5(7H)-one (L1 ) undergoes a coordination-induced ring-opening reaction with Zn(NO3 )2 ⋅ 6H2 O to yield the zwitterionic [Zn(L1 ')2 (H2 O)2 ] (1, L1 '=2-(hydroxymethyl)nicotinate) with an uncoordinated carboxylate. The same reaction with Cd(NO3 )2 ⋅ 4H2 O provides a two-dimensional (2D) network of [Cd(L1 ')2 ]n (3) with the carboxylates coordinated to cadmium(II) propagating the assembly. The corresponding reactions of Zn(NO3 )2 ⋅ 6H2 O and Cd(NO3 )2 ⋅ 4H2 O with 2-(hydroxymethyl)isonicotinic acid (HL2 ) generated zwitterionic [Zn(L2 )2 (H2 O)2 ] (2) and a 2D network [Cd(L2 )2 ]n ⋅nDMF (4, DMF=N,N'-dimethylformamide), respectively. Complexes 1-4 are weakly emissive, giving ligand-centered emissions at 409 nm (1), 412/436 nm (2), 404 nm (3), and 412/436 nm (4) in CHCl3 solutions upon excitation at 330 nm. This work points to the potential of using 'hidden' functionalities widely found in small organic molecules and natural products for the construction of coordination complexes with new functionality and potential applications.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Shi-Xin Lin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ru-Jie Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Quan Liu
- College of Chemistry and Chemical Engineering, Nantong University Nantong 226019 (P. R. China)
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - David J Young
- College of Engineering, Information Technology & Environment, Charles Darwin University, Darwin, Northern Territory, 0909, Australia
| |
Collapse
|
30
|
Zhang W, Shi W, Ji W, Wu H, Gu Z, Wang P, Li X, Qin P, Zhang J, Fan Y, Wu T, Fu Y, Zhang W, Huo F. Microenvironment of MOF Channel Coordination with Pt NPs for Selective Hydrogenation of Unsaturated Aldehydes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00682] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenlei Zhang
- College of Science, Northeastern University, Shenyang 100819, China
| | - Wenxiong Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, People’s Republic of China
| | - Wenlan Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Haibo Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Zhida Gu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Peng Wang
- College of Science, Northeastern University, Shenyang 100819, China
| | - Xiaohan Li
- College of Science, Northeastern University, Shenyang 100819, China
| | - Peishan Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Jia Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Yun Fan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Tianyu Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Yu Fu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
31
|
Qin L, Liu QH, Wang L, Ma XR, Shen H, Li YY, Shi XX, Wu Y, Li J. A Pr3+-coordination polymer as an adsorbent for neutral red. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1687889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ling Qin
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, P. R. China
| | - Qing-He Liu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Li Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Xin-Ru Ma
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Hao Shen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Yun-Yun Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Xi-Xiu Shi
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Yang Wu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Juan Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| |
Collapse
|
32
|
Zhou S, Kong X, Zheng B, Huo F, Strømme M, Xu C. Cellulose Nanofiber @ Conductive Metal-Organic Frameworks for High-Performance Flexible Supercapacitors. ACS NANO 2019; 13:9578-9586. [PMID: 31294960 DOI: 10.1021/acsnano.9b04670] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Conductive metal-organic frameworks (c-MOFs) show great potential in electrochemical energy storage thanks to their high electrical conductivity and highly accessible surface areas. However, there are significant challenges in processing c-MOFs for practical applications. Here, we report on the fabrication of c-MOF nanolayers on cellulose nanofibers (CNFs) with formation of nanofibrillar CNF@c-MOF by interfacial synthesis, in which CNFs serve as substrates for growth of c-MOF nanolayers. The obtained hybrid nanofibers of CNF@c-MOF can be easily assembled into freestanding nanopapers, demonstrating high electrical conductivity of up to 100 S cm-1, hierarchical micromesoporosity, and excellent mechanical properties. Given these advantages, the nanopapers are tested as electrodes in a flexible and foldable supercapacitor. The high conductivity and hierarchical porous structure of the electrodes endow fast charge transfer and efficient electrolyte transport, respectively. Furthermore, the assembled supercapacitor shows extremely high cycle stability with capacitance retentions of >99% after 10000 continuous charge-discharge cycles. This work provides a pathway to develop flexible energy storage devices based on sustainable cellulose and MOFs.
Collapse
Affiliation(s)
- Shengyang Zhou
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Ångström Laboratory , Uppsala University , 751 21 Uppsala , Sweden
| | - Xueying Kong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 211816 Nanjing , China
| | - Bing Zheng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 211816 Nanjing , China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 211816 Nanjing , China
| | - Maria Strømme
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Ångström Laboratory , Uppsala University , 751 21 Uppsala , Sweden
| | - Chao Xu
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Ångström Laboratory , Uppsala University , 751 21 Uppsala , Sweden
| |
Collapse
|
33
|
Liu W, Yin R, Xu X, Zhang L, Shi W, Cao X. Structural Engineering of Low-Dimensional Metal-Organic Frameworks: Synthesis, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802373. [PMID: 31380160 PMCID: PMC6662104 DOI: 10.1002/advs.201802373] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/13/2019] [Indexed: 05/22/2023]
Abstract
Low-dimensional metal-organic frameworks (LD MOFs) have attracted increasing attention in recent years, which successfully combine the unique properties of MOFs, e.g., large surface area, tailorable structure, and uniform cavity, with the distinctive physical and chemical properties of LD nanomaterials, e.g., high aspect ratio, abundant accessible active sites, and flexibility. Significant progress has been made in the morphological and structural regulation of LD MOFs in recent years. It is still of great significance to further explore the synthetic principles and dimensional-dependent properties of LD MOFs. In this review, recent progress in the synthesis of LD MOF-based materials and their applications are summarized, with an emphasis on the distinctive advantages of LD MOFs over their bulk counterparties. First, the unique physical and chemical properties of LD MOF-based materials are briefly introduced. Synthetic strategies of various LD MOFs, including 1D MOFs, 2D MOFs, and LD MOF-based composites, as well as their derivatives, are then summarized. Furthermore, the potential applications of LD MOF-based materials in catalysis, energy storage, gas adsorption and separation, and sensing are introduced. Finally, challenges and opportunities of this fascinating research field are proposed.
Collapse
Affiliation(s)
- Wenxian Liu
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
| | - Ruilian Yin
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
| | - Xilian Xu
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
| | - Lin Zhang
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
| | - Wenhui Shi
- Center for Membrane Separation and Water Science & TechnologyOcean CollegeZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water TreatmentZhejiang University of TechnologyHuzhouZhejiang313000P. R. China
| | - Xiehong Cao
- College of Materials Science and EngineeringZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310014P. R. China
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyZhejiang University of Technology18 Chaowang RoadHangzhouZhejiang310032P. R. China
| |
Collapse
|
34
|
Xu C, Fang R, Luque R, Chen L, Li Y. Functional metal–organic frameworks for catalytic applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Chen L, Zhang X, Zhou J, Xie Z, Kuang Q, Zheng L. A nano-reactor based on PtNi@metal-organic framework composites loaded with polyoxometalates for hydrogenation-esterification tandem reactions. NANOSCALE 2019; 11:3292-3299. [PMID: 30720824 DOI: 10.1039/c8nr08734b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tandem catalysis (i.e., a process in which a desirable product is synthesized by a one-step process consisting of sequential reactions) has attracted intensive attention owing to its sustainable green and atom-economical characteristics. In this process, the utilization of a high-efficiency multifunctional catalyst is key. However, different functional sites integrated within the catalyst are required to be rationally designed and precisely engineered to guarantee the synergy between the catalytic reactions. Herein, a novel kind of hydrogenation-esterification tandem catalyst with metal/acid (alloy/polyoxometalates) active sites integrated within the metal-organic frameworks (MOFs) was prepared by a facile self-sacrificial template route. In this tandem catalyst, the MOF cavities served as tandem reactors, the PtNi alloy sites encapsulated within the MOF material acted as hydrogenation sites, and the solid phosphotungstic acid embedded in the MOF cavities provided esterification sites. This well-designed tandem catalyst showed outstanding activity and selectivity towards the one-step synthesis of amino-ester-type anesthetics (e.g., benzocaine) owing to the synergistic catalysis of the metal and acid sites. Clearly, this novel tandem catalyst simplifies the traditional industry process and provides a new method to rationally construct new tandem catalysts.
Collapse
Affiliation(s)
- Luning Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces & Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | | | | | | | | | | |
Collapse
|
36
|
Zhou S, Strømme M, Xu C. Highly Transparent, Flexible, and Mechanically Strong Nanopapers of Cellulose Nanofibers @Metal-Organic Frameworks. Chemistry 2019; 25:3515-3520. [PMID: 30688380 DOI: 10.1002/chem.201806417] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/17/2019] [Indexed: 12/31/2022]
Abstract
Freestanding nanopapers were fabricated by the assembly of metal-organic frameworks (MOFs) onto cellulose nanofibers (CNFs). The CNFs are wrapped by continuously nucleated MOF layers (CNF@MOF) by interfacial synthesis, with the charge density on the surface of the CNFs and the dosage of the surfactant polyvinylpyrrolidone (PVP) being carefully adjusted. The obtained CNF@MOF nanofibers with long-range, continuous, hybrid nanostructures were very different to the composites formed by aggregation of MOF nanoparticles on the substrates. Four typical MOFs (HKUST-1, Al-MIL-53, Zn-MOF-74, ZIF-CO3 -1) were successfully grown onto CNFs in aqueous solutions and further fabricated into freestanding nanopapers. Because of their unique nanostructures and morphologies, the corresponding flexible nanopapers exhibit hierarchical meso-micropores, high optical transparency, high thermal stability, and high mechanical strength. A proof-of-concept study shows that the CNF@MOF nanopapers can be used as efficient filters to separate volatile organic compounds (VOCs) from the air. This work provides a new path for structuring MOF materials that may boost their practical application.
Collapse
Affiliation(s)
- Shengyang Zhou
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden
| | - Maria Strømme
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden
| | - Chao Xu
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden
| |
Collapse
|
37
|
Li G, Zhao S, Zhang Y, Tang Z. Metal-Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800702. [PMID: 30247789 DOI: 10.1002/adma.201800702] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/10/2018] [Indexed: 05/21/2023]
Abstract
Beyond conventional porous materials, metal-organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MOFs as the encapsulating matrix are multifold: uniform and long-range ordered cavities can effectively promote the mass transfer and diffusion of substrates and products, while the diverse metal nodes and tunable organic linkers may enable outstanding synergy functions with the encapsulated active NPs. Herein, some key issues related to MOFs for catalysis are discussed. Then, state-of-the art progress in the encapsulation of catalytically active NPs by MOFs as well as their synergy functions for enhanced catalytic performance in the fields of thermo-, photo-, and electrocatalysis are summarized. Notably, encapsulation-structured nanocatalysts exhibit distinct advantages over conventional supported catalysts, especially in terms of the catalytic selectivity and stability. Finally, challenges and future developments in MOF-based encapsulation-structured nanocatalysts are proposed. The aim is to deliver better insight into the design of well-defined nanocatalysts with atomically accurate structures and high performance in challenging reactions.
Collapse
Affiliation(s)
- Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yin Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, Center for Nanochemistry, Peking University, Beijing, 100871, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
38
|
Zhang J, Wang J, Long S, Peh SB, Dong J, Wang Y, Karmakar A, Yuan YD, Cheng Y, Zhao D. Luminescent Metal–Organic Frameworks for the Detection and Discrimination of o-Xylene from Xylene Isomers. Inorg Chem 2018; 57:13631-13639. [DOI: 10.1021/acs.inorgchem.8b02230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jian Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Jian Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Sichang Long
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Jinqiao Dong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Avishek Karmakar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Yi Di Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Youdong Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| |
Collapse
|