1
|
Farahmandazad H, Asperti S, Kortlever R, Goetheer E, de Jong W. Effect of Halide Anions on Electrochemical CO 2 Reduction in Non-Aqueous Choline Solutions using Ag and Au Electrodes. ChemistryOpen 2024:e202400166. [PMID: 39254258 DOI: 10.1002/open.202400166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 09/11/2024] Open
Abstract
In this study, the effect of halide anions on the selectivity of the CO2 reduction reaction to CO was investigated in choline-based ethylene glycol solutions containing different halides (ChCl : EG, ChBr : EG, ChI : EG). The CO2RR was studied using silver (Ag) and gold (Au) electrodes in a compact H-cell. Our findings reveal that chloride effectively suppresses the hydrogen evolution reaction and enhances the selectivity of carbon monoxide production on both Ag and Au electrodes, with relatively high selectivity values of 84 % and 62 %, respectively. Additionally, the effect of varying ethylene glycol content in the choline chloride-containing electrolyte (ChCl : EG 1 : X, X=2, 3, 4) was investigated to improve the current density during CO2RR on the Ag electrode. We observed that a mole ratio of 1 : 4 exhibited the highest current density with a comparable faradaic efficiency toward CO. Notably, an evident surface reconstruction process took place on the Ag surface in the presence of Cl- ions, whereas on Au, this phenomenon was less pronounced. Overall, this study provides new insights into anion-induced surface restructuring of Ag and Au electrodes during CO2RR, and its consequences on the reduction performance on such surfaces in non-aqueous electrolytes.
Collapse
Affiliation(s)
- Hengameh Farahmandazad
- Section of Large Scale Energy Storage, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Simone Asperti
- Section of Large Scale Energy Storage, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Ruud Kortlever
- Section of Large Scale Energy Storage, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Earl Goetheer
- Section of Large Scale Energy Storage, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Wiebren de Jong
- Section of Large Scale Energy Storage, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| |
Collapse
|
2
|
Deacon-Price C, Changeur L, Santana CS, Garcia AC. The Effect of the Tetraalkylammonium Cation in the Electrochemical CO 2 Reduction Reaction on Copper Electrode. ACS Catal 2024; 14:12928-12939. [PMID: 39263546 PMCID: PMC11385355 DOI: 10.1021/acscatal.4c02297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Aprotic organic solvents such as acetonitrile offer a potential solution to promote electrochemical CO2 reduction over the competing hydrogen evolution reaction. Tetraalkylammonium cations (TAA+) are widely used as supporting electrolytes in organic media due to their high solubility and conductivity. The alkyl chain length of TAA+ cations is known to influence electron transfer processes in electrochemical systems by the adsorption of TAA+, causing modifications of the double layer. In this work, we elucidate the influence of the cation chain length on the mechanism and selectivity of the CO2RR reaction under controlled dry and wet acetonitrile conditions on copper cathodes. We find that the hydrophobic hydration character of the cation, which can be tuned by the chain length, has an effect on product distribution, altering the reaction pathway. Under dry conditions, smaller cations (TEA+) preferentially promote oxalate production via dimerization of the CO2 ·- intermediate, whereas formate is favored in the presence of water via protonation reaction. Larger cations (TBA+ > TPA+ > TEA+) favor the generation of CO regardless of water content. In situ FTIR analysis showed that TBA+ cations are able to stabilize adsorbed CO more effectively than TEA+, explaining why larger cations generate a higher proportion of CO. Our findings also suggest that higher cation concentrations suppress hydrogen evolution, particularly with larger cations, highlighting the role of cation chain length size and hydrophobic hydration shell.
Collapse
Affiliation(s)
- Connor Deacon-Price
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Louis Changeur
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Cássia S Santana
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Amanda C Garcia
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
3
|
Guo J, Zhi X, Wang D, Qu L, Zavabeti A, Fan Q, Zhang Y, Butson JD, Yang J, Wu C, Liu JZ, Hu G, Fan X, Li GK. Surface-Enriched Room-Temperature Liquid Bismuth for Catalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401777. [PMID: 38747025 DOI: 10.1002/smll.202401777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/20/2024] [Indexed: 10/01/2024]
Abstract
Bismuth-based electrocatalysts are effective for carbon dioxide (CO2) reduction to formate. However, at room temperature, these materials are only available in solid state, which inevitably suffers from surface deactivation, declining current densities, and Faradaic efficiencies. Here, the formation of a liquid bismuth catalyst on the liquid gallium surface at ambient conditions is shown as its exceptional performance in the electrochemical reduction of CO2 (i.e., CO2RR). By doping a trace amount of bismuth (740 ppm atomic) in gallium liquid metal, a surface enrichment of bismuth by over 400 times (30 at%) in liquid state is obtained without atomic aggregation, achieving 98% Faradic efficiency for CO2 conversion to formate over 80 h. Ab initio molecular simulations and density functional theory calculations reveal that bismuth atoms in the liquid state are the most energetically favorable sites for the CO2RR intermediates, superior to solid Bi-sites, as well as joint GaBi-sites. This study opens an avenue for fabricating high-performing liquid-state metallic catalysts that cannot be reached by elementary metals under electrocatalytic conditions.
Collapse
Affiliation(s)
- Jining Guo
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Xing Zhi
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dingqi Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Longbing Qu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Qining Fan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yuecheng Zhang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joshua D Butson
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jianing Yang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Chao Wu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Guoping Hu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341119, China
| | - Xiaolei Fan
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, 315100, China
- Institute of Wenzhou, Zhejiang University, Fengnan Road, Wenzhou, 325006, China
| | - Gang Kevin Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
4
|
Chen H, Xiao T, Xia Y, Song H, Xi X, Huang X, Yang D, Li T, Sun Z, Dong A. Quantifying Interface-Performance Relationships in Electrochemical CO 2 Reduction through Mixed-Dimensional Assembly of Nanocrystal-on-Nanowire Superstructures. Angew Chem Int Ed Engl 2024:e202410039. [PMID: 39205394 DOI: 10.1002/anie.202410039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fine-tuning the interfacial sites within heterogeneous catalysts is pivotal for unravelling the intricate structure-property relationship and optimizing their catalytic performance. Herein, a simple and versatile mixed-dimensional assembly approach is proposed to create nanocrystal-on-nanowire superstructures with precisely adjustable numbers of biphasic interfaces. This method leverages an efficient self-assembly process in which colloidal nanocrystals spontaneously organize onto Ag nanowires, driven by the solvophobic effect. Importantly, varying the ratio of the two components during assembly allows for accurate control over both the quantity and contact perimeter of biphasic interfaces. As a proof-of-concept demonstration, a series of Au-on-Ag superstructures with varying numbers of Au/Ag interfaces are constructed and employed as electrocatalysts for electrochemical CO2-to-CO conversion. Experimental results reveal a logarithmic linear relationship between catalytic activity and the number of Au/Ag interfaces per unit mass of Au-on-Ag superstructures. This work presents a straightforward approach for precise interface engineering, paving the way for systematic exploration of interface-dependent catalytic behaviors in heterogeneous catalysts.
Collapse
Affiliation(s)
- Hushui Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438, China
| | - Taishi Xiao
- School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200438, China
| | - Yan Xia
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hengyao Song
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xianwu Huang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Tongtao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438, China
| | - Zhengzong Sun
- School of Microelectronics and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200438, China
| | - Angang Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and iChEM, Fudan University, Shanghai, 200438, China
| |
Collapse
|
5
|
Jiang L, Zhao M, Yu Q. Rational design of graphdiyne-based single-atom catalysts for electrochemical CO 2 reduction reaction. RSC Adv 2024; 14:27365-27371. [PMID: 39205931 PMCID: PMC11350510 DOI: 10.1039/d4ra04643a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Graphdiyne (GDY) has achieved great success in the application of two-dimensional carbon materials in recent years due to its excellent electrochemical catalytic capacity. Considering the unique electronic structure of GDY, transition metal (TM1) (TM = Fe, Ru, Os, Co, Rh, Ir) single-atom catalysts (SACs) with isolated loading on GDY were designed for electrochemical CO2 reduction reaction (CO2RR) with density functional theoretical (DFT) calculations. The charge density difference and projected densities of states have been systematically calculated. The mechanism of electrochemical catalysis and the reaction pathway of CO2RR over Os1/GDY catalysts have also been investigated and high catalytic activity was found for the generation of methane. The calculated results provide a theoretical basis for the design of efficient GDY-based SACs for electrochemical CO2RR.
Collapse
Affiliation(s)
- Liyun Jiang
- School of Physics and Telecommunication Engineering, Shaanxi University of Technology Hanzhong 723001 China
| | - Mengdie Zhao
- School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qi Yu
- School of Materials Science and Engineering, and Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| |
Collapse
|
6
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Gupta D, Mao J, Guo Z. Bifunctional Catalysts for CO 2 Reduction and O 2 Evolution: A Pivotal for Aqueous Rechargeable Zn-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407099. [PMID: 38924576 DOI: 10.1002/adma.202407099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/16/2024] [Indexed: 06/28/2024]
Abstract
The quest for the advancement of green energy storage technologies and reduction of carbon footprint is determinedly rising toward carbon neutrality. Aqueous rechargeable Zn-CO2 batteries (ARZCBs) hold the great potential to encounter both the targets simultaneously, i.e., green energy storage and CO2 conversion to value-added chemicals/fuels. The major descriptor of ARZCBs efficiency is allied with the reactions occurring at cathode during discharging (CO2 reduction) and charging (O2 evolution) which own different fundamental mechanisms and hence mandate the employment of two different catalysts. This presents an overall complex and expensive battery system which requires a concrete solution, while the development and application of a bifunctional cathode catalyst toward both reactions could reduce the complexity and cost and thus can be a pivotal for ARZCBs. However, despite the increasing research interest and ongoing research, a systematic evaluation of bifunctional catalysts is rarely reported. In this review, the need of bifunctional cathode catalysts for ARZCBs and associated challenges with strategies have been critically assessed. A detailed progress examination and understanding toward designing of bifunctional catalyst for ARZCBs have been provided. This review will enlighten the future research approaching boosted performance of ARZCBs through the development of efficient bifunctional cathode catalysts.
Collapse
Affiliation(s)
- Divyani Gupta
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jianfeng Mao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
8
|
Guo H, Raj J, Wang Z, Zhang T, Wang K, Lin L, Hou W, Zhang J, Wu M, Wu J, Wang L. Synergistic Effects of Amine Functional Groups and Enriched-Atomic-Iron Sites in Carbon Dots for Industrial-Current-Density CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311132. [PMID: 38511553 DOI: 10.1002/smll.202311132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Metal phthalocyanine molecules with Me-N4 centers have shown promise in electrocatalytic CO2 reduction (eCO2R) for CO generation. However, iron phthalocyanine (FePc) is an exception, exhibiting negligible eCO2R activity due to a higher CO2 to *COOH conversion barrier and stronger *CO binding energy. Here, amine functional groups onto atomic-Fe-rich carbon dots (Af-Fe-CDs) are introduced via a one-step solvothermal molecule fusion approach. Af-Fe-CDs feature well-defined Fe-N4 active sites and an impressive Fe loading (up to 8.5 wt%). The synergistic effect between Fe-N4 active centers and electron-donating amine functional groups in Af-Fe-CDs yielded outstanding CO2-to-CO conversion performance. At industrial-relevant current densities exceeding 400 mA cm-2 in a flow cell, Af-Fe-CDs achieved >92% selectivity, surpassing state-of-the-art CO2-to-CO electrocatalysts. The in situ electrochemical FTIR characterization combined with theoretical calculations elucidated that Fe-N4 integration with amine functional groups in Af-Fe-CDs significantly reduced energy barriers for *COOH intermediate formation and *CO desorption, enhancing eCO2R efficiency. The proposed synergistic effect offers a promising avenue for high-efficiency catalysts with elevated atomic-metal loadings.
Collapse
Affiliation(s)
- Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jithu Raj
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianyu Zhang
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Kang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Weidong Hou
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiye Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
9
|
Xue J, Dong X, Liu C, Li J, Dai Y, Xue W, Luo L, Ji Y, Zhang X, Li X, Jiang Q, Zheng T, Xiao J, Xia C. Turning copper into an efficient and stable CO evolution catalyst beyond noble metals. Nat Commun 2024; 15:5998. [PMID: 39013916 PMCID: PMC11252372 DOI: 10.1038/s41467-024-50436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Using renewable electricity to convert CO2 into CO offers a sustainable route to produce a versatile intermediate to synthesize various chemicals and fuels. For economic CO2-to-CO conversion at scale, however, there exists a trade-off between selectivity and activity, necessitating the delicate design of efficient catalysts to hit the sweet spot. We demonstrate here that copper co-alloyed with isolated antimony and palladium atoms can efficiently activate and convert CO2 molecules into CO. This trimetallic single-atom alloy catalyst (Cu92Sb5Pd3) achieves an outstanding CO selectivity of 100% (±1.5%) at -402 mA cm-2 and a high activity up to -1 A cm-2 in a neutral electrolyte, surpassing numerous state-of-the-art noble metal catalysts. Moreover, it exhibits long-term stability over 528 h at -100 mA cm-2 with an FECO above 95%. Operando spectroscopy and theoretical simulation provide explicit evidence for the charge redistribution between Sb/Pd additions and Cu base, demonstrating that Sb and Pd single atoms synergistically shift the electronic structure of Cu for CO production and suppress hydrogen evolution. Additionally, the collaborative interactions enhance the overall stability of the catalyst. These results showcase that Sb/Pd-doped Cu can steadily carry out efficient CO2 electrolysis under mild conditions, challenging the monopoly of noble metals in large-scale CO2-to-CO conversion.
Collapse
Affiliation(s)
- Jing Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xue Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jiawei Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yizhou Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Weiqing Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Laihao Luo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Xiao Zhang
- Department of Mechanical Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Xu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| |
Collapse
|
10
|
Li X, Wu XT, Xu Q, Zhu QL. Hierarchically Ordered Pore Engineering of Metal-Organic Framework-Based Materials for Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401926. [PMID: 38631691 DOI: 10.1002/adma.202401926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Ordered pore engineering that embeds uniform pores with periodic alignment in electrocatalysts opens up a new avenue for achieving further performance promotion. Hierarchically ordered porous metal-organic frameworks (HOP-MOFs) possessing multilevel pores with ordered distribution are the promising precursors for the exploration of ordered porous electrocatalysts, while the scalable acquisition of HOP-MOFs with editable components and adjustable pore size regimes is critical. This review presents recent progress on hierarchically ordered pore engineering of MOF-based materials for enhanced electrocatalysis. The synthetic strategies of HOP-MOFs with different pore size regimes, including the self-assembly guided by reticular chemistry, surfactant, nanoemulsion, and nanocasting, are first introduced. Then the applications of HOP-MOFs as the precursors for exploring hierarchically ordered porous electrocatalysts are summarized, selecting representatives to highlight the boosted performance. Especially, the intensification of molecule and ion transport integrated with optimized electron transfer and site exposure over the hierarchically ordered porous derivatives are emphasized to clarify the directional transfer and integration effect endowed by ordered pore engineering. Finally, the remaining scientific challenges and an outlook of this field are proposed. It is hoped that this review will guide the hierarchically ordered pore engineering of nanocatalysts for boosting the catalytic performance and promoting the practical applications.
Collapse
Affiliation(s)
- Xiaofang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
11
|
Martini A, Timoshenko J, Rüscher M, Hursán D, Monteiro MCO, Liberra E, Roldan Cuenya B. Revealing the structure of the active sites for the electrocatalytic CO 2 reduction to CO over Co single atom catalysts using operando XANES and machine learning. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:741-750. [PMID: 38917021 PMCID: PMC11226159 DOI: 10.1107/s1600577524004739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Transition-metal nitrogen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co-N-C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co-N-C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co-N-C catalysts, and further optimization of this class of electrocatalytic systems.
Collapse
Affiliation(s)
- Andrea Martini
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Janis Timoshenko
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Martina Rüscher
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Dorottya Hursán
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Mariana C. O. Monteiro
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Eric Liberra
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| | - Beatriz Roldan Cuenya
- Department of Interface ScienceFritz Haber Institute of the Max Planck Society14195BerlinGermany
| |
Collapse
|
12
|
Dean WS, Soucy TL, Rivera-Cruz KE, Filien LL, Terry BD, McCrory CCL. Mitigating Cobalt Phthalocyanine Aggregation in Electrocatalyst Films through Codeposition with an Axially Coordinating Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402293. [PMID: 38923726 DOI: 10.1002/smll.202402293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Cobalt phthalocyanine (CoPc) is a promising molecular catalyst for aqueous electroreduction of CO2, but its catalytic activity is limited by aggregation at high loadings. Codeposition of CoPc onto electrode surfaces with the coordinating polymer poly(4-vinylpyridine) (P4VP) mitigates aggregation in addition to providing other catalytic enhancements. Transmission and diffuse reflectance UV-vis measurements demonstrate that a combination of axial coordination and π-stacking effects from pyridyl moieties in P4VP serve to disperse cobalt phthalocyanine in deposition solutions and help prevent reaggregation in deposited films. Polymers lacking axial coordination, such as Nafion, are significantly less effective at cobalt phthalocyanine dispersion in both the deposition solution and in the deposited films. SEM images corroborate these findings through particle counts and morphological analysis. Electrochemical measurements show that CoPc codeposited with P4VPonto carbon electrode surfaces reduces CO2 with higher activity and selectivity compared to the catalyst codeposited with Nafion.
Collapse
Affiliation(s)
- William S Dean
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Taylor L Soucy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Kevin E Rivera-Cruz
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Leila L Filien
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Bradley D Terry
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Charles C L McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
13
|
Wu JH, Wang JW, Aramburu-Trošelj BM, Niu FJ, Guo LJ, Ouyang G. Recent progress on nickel phthalocyanine-based electrocatalysts for CO 2 reduction. NANOSCALE 2024; 16:11496-11512. [PMID: 38828611 DOI: 10.1039/d4nr01269k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The electrocatalytic reduction of CO2 to high-value fuels by renewable electricity is a sustainable strategy, which can substitute for fossil fuels and circumvent climate changes induced by elevated CO2 emission levels, making the rational design of versatile electrocatalysts highly desirable. Among all the electrocatalytic materials used in the CO2 reduction reaction, nickel phthalocyanine (NiPc)-based electrocatalysts have attracted considerable attention recently because of their high CO selectivity and catalytic activity. Herein, we review the latest advances in CO2 electroreduction to CO catalyzed by immobilized NiPc and its derivatives on diverse surfaces. Specific strategies, the structure-performance relationship and the CO2-to-CO reaction mechanism of these NiPc-based electrocatalysts are analyzed. Future opportunities and challenges for this series of powerful heterogeneous electrocatalysts are also highlighted.
Collapse
Affiliation(s)
- Jian-Hao Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Bruno M Aramburu-Trošelj
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Fu-Jun Niu
- School of Advanced Energy, Sun Yat-sen University (Shenzhen), Shenzhen 518107, China.
| | - Lie-Jin Guo
- School of Advanced Energy, Sun Yat-sen University (Shenzhen), Shenzhen 518107, China.
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
14
|
Wang J, Wa Q, Diao Q, Liu F, Hao F, Xiong Y, Wang Y, Zhou J, Meng X, Guo L, Fan Z. Atomic Design of Copper Active Sites in Pristine Metal-Organic Coordination Compounds for Electrocatalytic Carbon Dioxide Reduction. SMALL METHODS 2024:e2400432. [PMID: 38767183 DOI: 10.1002/smtd.202400432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/16/2024] [Indexed: 05/22/2024]
Abstract
Electrocatalytic carbon dioxide reduction reaction (CO2RR) has emerged as a promising and sustainable approach to cut carbon emissions by converting greenhouse gas CO2 to value-added chemicals and fuels. Metal-organic coordination compounds, especially the copper (Cu)-based coordination compounds, which feature well-defined crystalline structures and designable metal active sites, have attracted much research attention in electrocatalytic CO2RR. Herein, the recent advances of electrochemical CO2RR on pristine Cu-based coordination compounds with different types of Cu active sites are reviewed. First, the general reaction pathways of electrocatalytic CO2RR on Cu-based coordination compounds are briefly introduced. Then the highly efficient conversion of CO2 on various kinds of Cu active sites (e.g., single-Cu site, dimeric-Cu site, multi-Cu site, and heterometallic site) is systematically discussed, along with the corresponding catalytic reaction mechanisms. Finally, some existing challenges and potential opportunities for this research direction are provided to guide the rational design of metal-organic coordination compounds for their practical application in electrochemical CO2RR.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Qi Diao
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
15
|
Gao F, Wu YP, Wu XQ, Li DS, Yang G, Wang YY. Transition-Metal Porphyrin-Based MOFs In Situ-Derived Hybrid Catalysts for Electrocatalytic CO 2 Reduction. Inorg Chem 2024; 63:8948-8957. [PMID: 38687980 DOI: 10.1021/acs.inorgchem.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Excellent electrocatalytic CO2 reduction reaction activity has been demonstrated by transition metals and nitrogen-codoped carbon (M-N-C) catalysts, especially for transition-metal porphyrin (MTPP)-based catalysts. In this work, we propose to use one-step low-temperature pyrolysis of the isostructural MTPP-based metal-organic frameworks (MOFs) and electrochemical in situ reduction strategies to obtain a series of hybrid catalysts of Co nanoparticles (Co NPs) and MTPP, named Co NPs/MTPP (M = Fe, Co, and Ni). The in situ introduction of Co NPs can efficiently enhance the electrocatalytic ability of MTPP (M = Fe, Co, and Ni) to convert CO2 to CO, particularly for FeTPP. Co NPs/FeTPP endowed a high CO faradaic efficiency (FECOmax = 95.5%) in the H cell, and the FECO > 90.0% is in the broad potential range of -0.72 to -1.22 VRHE. In addition, the Co NPs/FeTPP achieved 145.4 mA cm-2 at a lower potential of -0.70 VRHE with an FECO of 94.7%, and the CO partial currents increased quickly to reach 202.2 mA cm-2 at -0.80 VRHE with an FECO of 91.6% in the flow cell. It is confirmed that Co NPs are necessary for hybrid catalysts to get superior electrocatalytic activity; Co NPs also can accelerate H2O dissociation and boost the proton supply capacity to hasten the proton-coupled electron-transfer process, effectively adjusting the adsorption strength of the reaction intermediates.
Collapse
Affiliation(s)
- Fei Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ya-Pan Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| | - Xue-Qian Wu
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| | - Dong-Sheng Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
16
|
Guo L, Zhou J, Liu F, Meng X, Ma Y, Hao F, Xiong Y, Fan Z. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction. ACS NANO 2024; 18:9823-9851. [PMID: 38546130 DOI: 10.1021/acsnano.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
With the increasingly serious greenhouse effect, the electrochemical carbon dioxide reduction reaction (CO2RR) has garnered widespread attention as it is capable of leveraging renewable energy to convert CO2 into value-added chemicals and fuels. However, the performance of CO2RR can hardly meet expectations because of the diverse intermediates and complicated reaction processes, necessitating the exploitation of highly efficient catalysts. In recent years, with advanced characterization technologies and theoretical simulations, the exploration of catalytic mechanisms has gradually deepened into the electronic structure of catalysts and their interactions with intermediates, which serve as a bridge to facilitate the deeper comprehension of structure-performance relationships. Transition metal-based catalysts (TMCs), extensively applied in electrochemical CO2RR, demonstrate substantial potential for further electronic structure modulation, given their abundance of d electrons. Herein, we discuss the representative feasible strategies to modulate the electronic structure of catalysts, including doping, vacancy, alloying, heterostructure, strain, and phase engineering. These approaches profoundly alter the inherent properties of TMCs and their interaction with intermediates, thereby greatly affecting the reaction rate and pathway of CO2RR. It is believed that the rational electronic structure design and modulation can fundamentally provide viable directions and strategies for the development of advanced catalysts toward efficient electrochemical conversion of CO2 and many other small molecules.
Collapse
Affiliation(s)
- Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
17
|
Chen X, Gao Y, Wang L, Cui W, Huang J, Du Y, Wang B. Large language model enhanced corpus of CO 2 reduction electrocatalysts and synthesis procedures. Sci Data 2024; 11:347. [PMID: 38582751 PMCID: PMC10998834 DOI: 10.1038/s41597-024-03180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/22/2024] [Indexed: 04/08/2024] Open
Abstract
CO2 electroreduction has garnered significant attention from both the academic and industrial communities. Extracting crucial information related to catalysts from domain literature can help scientists find new and effective electrocatalysts. Herein, we used various advanced machine learning, natural language processing techniques and large language models (LLMs) approaches to extract relevant information about the CO2 electrocatalytic reduction process from scientific literature. By applying the extraction pipeline, we present an open-source corpus for electrocatalytic CO2 reduction. The database contains two types of corpus: (1) the benchmark corpus, which is a collection of 6,985 records extracted from 1,081 publications by catalysis postgraduates; and (2) the extended corpus, which consists of content extracted from 5,941 documents using traditional NLP techniques and LLMs techniques. The Extended Corpus I and II contain 77,016 and 30,283 records, respectively. Furthermore, several domain literature fine-tuned LLMs were developed. Overall, this work will contribute to the exploration of new and effective electrocatalysts by leveraging information from domain literature using cutting-edge computer techniques.
Collapse
Affiliation(s)
- Xueqing Chen
- Laboratory of Big Data Knowledge, Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100083, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ludi Wang
- Laboratory of Big Data Knowledge, Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100083, China
| | - Wenjuan Cui
- Laboratory of Big Data Knowledge, Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100083, China
| | - Jiamin Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Yi Du
- Laboratory of Big Data Knowledge, Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100083, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, China.
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| |
Collapse
|
18
|
Karatayeva U, Al Siyabi SA, Brahma Narzary B, Baker BC, Faul CFJ. Conjugated Microporous Polymers for Catalytic CO 2 Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308228. [PMID: 38326090 PMCID: PMC11005716 DOI: 10.1002/advs.202308228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 02/09/2024]
Abstract
Rising carbon dioxide (CO2) levels in the atmosphere are recognized as a threat to atmospheric stability and life. Although this greenhouse gas is being produced on a large scale, there are solutions to reduction and indeed utilization of the gas. Many of these solutions involve costly or unstable technologies, such as air-sensitive metal-organic frameworks (MOFs) for CO2 capture or "non-green" systems such as amine scrubbing. Conjugated microporous polymers (CMPs) represent a simpler, cheaper, and greener solution to CO2 capture and utilization. They are often easy to synthesize at scale (a one pot reaction in many cases), chemically and thermally stable (especially in comparison with their MOF and covalent organic framework (COF) counterparts, owing to their amorphous nature), and, as a result, cheap to manufacture. Furthermore, their large surface areas, tunable porous frameworks and chemical structures mean they are reported as highly efficient CO2 capture motifs. In addition, they provide a dual pathway to utilize captured CO2 via chemical conversion or electrochemical reduction into industrially valuable products. Recent studies show that all these attractive properties can be realized in metal-free CMPs, presenting a truly green option. The promising results in these two fields of CMP applications are reviewed and explored here.
Collapse
|
19
|
Al-Sakkari EG, Ragab A, Dagdougui H, Boffito DC, Amazouz M. Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170085. [PMID: 38224888 DOI: 10.1016/j.scitotenv.2024.170085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Carbon capture, utilization, and sequestration (CCUS) is a promising solution to decarbonize the energy and industrial sectors to mitigate climate change. An integrated assessment of technological options is required for the effective deployment of CCUS large-scale infrastructure between CO2 production and utilization/sequestration nodes. However, developing cost-effective strategies from engineering and operation perspectives to implement CCUS is challenging. This is due to the diversity of upstream emitting processes located in different geographical areas, available downstream utilization technologies, storage sites capacity/location, and current/future energy/emissions/economic conditions. This paper identifies the need to achieve a robust hybrid assessment tool for CCUS modeling, simulation, and optimization based mainly on artificial intelligence (AI) combined with mechanistic methods. Thus, a critical literature review is conducted to assess CCUS technologies and their related process modeling/simulation/optimization techniques, while evaluating the needs for improvements or new developments to reduce overall CCUS systems design and operation costs. These techniques include first principles- based and data-driven ones, i.e. AI and related machine learning (ML) methods. Besides, the paper gives an overview on the role of life cycle assessment (LCA) to evaluate CCUS systems where the combined LCA-AI approach is assessed. Other advanced methods based on the AI/ML capabilities/algorithms can be developed to optimize the whole CCUS value chain. Interpretable ML combined with explainable AI can accelerate optimum materials selection by giving strong rules which accelerates the design of capture/utilization plants afterwards. Besides, deep reinforcement learning (DRL) coupled with process simulations will accelerate process design/operation optimization through considering simultaneous optimization of equipment sizing and operating conditions. Moreover, generative deep learning (GDL) is a key solution to optimum capture/utilization materials design/discovery. The developed AI methods can be generalizable where the extracted knowledge can be transferred to future works to help cutting the costs of CCUS value chain.
Collapse
Affiliation(s)
- Eslam G Al-Sakkari
- Department of Mathematics and Industrial Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada; CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada.
| | - Ahmed Ragab
- Department of Mathematics and Industrial Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada; CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada
| | - Hanane Dagdougui
- Department of Mathematics and Industrial Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Daria C Boffito
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada; Canada Research Chair in Engineering Process Intensification and Catalysis (EPIC), Canada
| | - Mouloud Amazouz
- CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada
| |
Collapse
|
20
|
Gallagher C, Siddiqui W, Arnold T, Cheng C, Su E, Zhao Q. Benchmarking a Molecular Flake Model on the Road to Programmable Graphene-Based Single-Atom Catalysts. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2876-2883. [PMID: 38414836 PMCID: PMC10895666 DOI: 10.1021/acs.jpcc.3c07681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
Single-atom catalysts (SACs) of embedding an active metal in nitrogen-doped graphene are emergent catalytic materials in various applications. The rational design of efficient SACs necessitates an electronic and mechanistic understanding of those materials with reliable quantum mechanical simulations. Conventional computational methods of modeling SACs involve using an infinite slab model with periodic boundary condition, limiting to the selection of generalized gradient approximations as the exchange correlation (XC) functional within density functional theory (DFT). However, these DFT approximations suffer from electron self-interaction error and delocalization error, leading to errors in predicted charge-transfer energetics. An alternative strategy is using a molecular flake model, which carved out the important catalytic center by cleaving C-C bonds and employing a hydrogen capping scheme to saturate the innocent dangling bonds at the molecular boundary. By doing so, we can afford more accurate hybrid XC functionals, or even high-level correlated wavefunction theory, to study those materials. In this work, we compared the structural, electronic, and catalytic properties of SACs simulated using molecular flake models and periodic slab models with first-row transition metals as the active sites. Molecular flake models successfully reproduced structural properties, including both global distortion and local metal-coordination environment, as well as electronic properties, including spin magnetic moments and metal partial charges, for all transition metals studied. In addition, we calculated CO binding strength as a descriptor for electrochemical CO2 reduction reactivity and noted qualitatively similar trends between two models. Using the computationally efficient molecular flake models, we investigated the effect of tuning Hartree-Fock exchange in a global hybrid functional on the CO binding strength and observed system-dependent sensitivities. Overall, our calculations provide valuable insights into the development of accurate and efficient computational tools to simulate SACs.
Collapse
Affiliation(s)
- Colin Gallagher
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Wali Siddiqui
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Tyler Arnold
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Carmen Cheng
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Eric Su
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Qing Zhao
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
Tan Y, Sun G, Jiang T, Liu D, Li Q, Yang S, Chai J, Gao S, Yu H, Zhu M. Symmetry Breaking Enhancing the Activity of Electrocatalytic CO 2 Reduction on an Icosahedron-Kernel Cluster by Cu Atoms Regulation. Angew Chem Int Ed Engl 2024; 63:e202317471. [PMID: 38072830 DOI: 10.1002/anie.202317471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Recently, CO2 hydrogenation had a new breakthrough resulting from the design of catalysts to effectively activate linear CO2 with symmetry-breaking sites. However, understanding the relationship between symmetry-breaking sites and catalytic activity at the atomic level is still a great challenge. In this study, a set of gold-copper alloy Au13 Cux (x=0-4) nanoclusters were used as research objects to show the symmetry-controlled breaking structure on the surface of nanoclusters with the help of manipulability of the Cu atoms. Among them, Au13 Cu3 nanocluster displays the highest degree of symmetry-breaking on its crystal structure compared with the other nanoclusters in the family. Where the three copper atoms occupying the surface of the icosahedral kernel unevenly with one copper atom is coordinately unsaturated (CuS2 motif relative to CuS3 motif). As expected, Au13 Cu3 has an excellent hydrogenation activity of CO2 , in which the current density is as high as 70 mA cm-2 (-0.97 V) and the maximum FECO reaches 99 % at -0.58 V. Through the combination of crystal structures and theoretical calculations, the excellent catalytic activity of Au13 Cu3 is revealed to be indeed closely related to its asymmetric structure.
Collapse
Affiliation(s)
- Yesen Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Guilin Sun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Tingting Jiang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Dong Liu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Shan Gao
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, 230601, Hefei, China
| |
Collapse
|
22
|
Wang M, Cao W, Yu J, Yang D, Qi K, Zhao Y, Hua Z, Li H, Lu S. Electrocatalytic activity of CO 2 reduction to CO on cadmium sulfide enhanced by chloride anion doping. Chemistry 2024:e202303422. [PMID: 38240191 DOI: 10.1002/chem.202303422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 01/31/2024]
Abstract
The electrocatalytic CO2 reduction (ECR) to produce valuable fuel is a promising process for addressing atmospheric CO2 emissions and energy shortages. In this study, Cl-anion doped cadmium sulfide structures were directly fabricated on a nickel foam surface (Cl/CdS-NF) using an in situ hydrothermal method. The Cl-anion doping could significantly improve ECR activity for CO production in ionic liquid and acetonitrile mixed solution, compared to pristine CdS. The highest Faradaic efficiency of CO is 98.1 % on a Cl/CdS-NF-2 cathode with an excellent current density of 137.0 mA cm-2 at -2.25 V versus ferrocene/ferrocenium (Fc/Fc+ , all potentials are versus Fc/Fc+ in this study). In particular, CO Faradaic efficiencies remained above 80 % in a wide potential range of -2.05 V to -2.45 V and a maximum partial current density (192.6 mA cm-2 ) was achieved at -2.35 V. The Cl/CdS-NF-2, with appropriate Cl anions, displayed abundant active sites and a suitable electronic structure, resulting in outstanding ECR activity. Density functional theory calculations further demonstrated that Cl/CdS is beneficial for increasing the adsorption capacities of *COOH and *H, which can enhance the activity of the ECR toward CO and suppress the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Mingyan Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Weiqi Cao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingkun Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dexin Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kongsheng Qi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuhua Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhixin Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongping Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
23
|
Pei J, Shang H, Mao J, Chen Z, Sui R, Zhang X, Zhou D, Wang Y, Zhang F, Zhu W, Wang T, Chen W, Zhuang Z. A replacement strategy for regulating local environment of single-atom Co-S xN 4-x catalysts to facilitate CO 2 electroreduction. Nat Commun 2024; 15:416. [PMID: 38195701 PMCID: PMC10776860 DOI: 10.1038/s41467-023-44652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
The performances of single-atom catalysts are governed by their local coordination environments. Here, a thermal replacement strategy is developed for the synthesis of single-atom catalysts with precisely controlled and adjustable local coordination environments. A series of Co-SxN4-x (x = 0, 1, 2, 3) single-atom catalysts are successfully synthesized by thermally replacing coordinated N with S at elevated temperature, and a volcano relationship between coordinations and catalytic performances toward electrochemical CO2 reduction is observed. The Co-S1N3 catalyst has the balanced COOH*and CO* bindings, and thus locates at the apex of the volcano with the highest performance toward electrochemical CO2 reduction to CO, with the maximum CO Faradaic efficiency of 98 ± 1.8% and high turnover frequency of 4564 h-1 at an overpotential of 410 mV tested in H-cell with CO2-saturated 0.5 M KHCO3, surpassing most of the reported single-atom catalysts. This work provides a rational approach to control the local coordination environment of the single-atom catalysts, which is important for further fine-tuning the catalytic performance.
Collapse
Affiliation(s)
- Jiajing Pei
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huishan Shang
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Junjie Mao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Zhe Chen
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China
| | - Rui Sui
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuejiang Zhang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Danni Zhou
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, China
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China.
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
24
|
Wan S, Zhang H, Ye K, Li J, He Y, Ge X, Xu T, Cai WB, Lin M, Jiang K. Improving the Efficiencies of Water Splitting and CO 2 Electrolysis by Anodic O 2 Bubble Management. J Phys Chem Lett 2023:11217-11223. [PMID: 38055915 DOI: 10.1021/acs.jpclett.3c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
This study systematically explores the impact of the anodic flow field design on the transport of O2 bubble and subsequent energy efficiency in electrolysis devices. Two distinct configurations, namely a conventional serpentine flow panel and an interdigitated flow panel, are integrated at the anode side of the electrolyzer. The interdigitated flow field exhibits superior performance in both alkaline water splitting and CO2 reduction despite the experience of an increased pressure drop. Numerical simulations reveal that the enhanced convective flow of the O2 bubbles induced by a forced anolyte flow through the porous electrode within the interdigitated panel design resulted in a 3 orders of magnitude increase in the level of the O2 bubble transport compared to the serpentine configuration. These findings not only underscore the significance of flow field design on bubble management but also provide a basis for advancing the electrolysis efficiency at industrial-level current densities.
Collapse
Affiliation(s)
- Shusheng Wan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Huanlei Zhang
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ke Ye
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jieyang Li
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yucheng He
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolin Ge
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Meng Lin
- Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kun Jiang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Jin Z, Yang M, Dong Y, Ma X, Wang Y, Wu J, Fan J, Wang D, Xi R, Zhao X, Xu T, Zhao J, Zhang L, Singh DJ, Zheng W, Cui X. Atomic Dispersed Hetero-Pairs for Enhanced Electrocatalytic CO 2 Reduction. NANO-MICRO LETTERS 2023; 16:4. [PMID: 37930457 PMCID: PMC10628116 DOI: 10.1007/s40820-023-01214-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/10/2023] [Indexed: 11/07/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) involves a variety of intermediates with highly correlated reaction and ad-desorption energies, hindering optimization of the catalytic activity. For example, increasing the binding of the *COOH to the active site will generally increase the *CO desorption energy. Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO2RR, but remains an unsolved challenge. Herein, we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier. This system shows an unprecedented CO2RR intrinsic activity with TOF of 3336 h-1, high selectivity toward CO production, Faradaic efficiency of 95.96% at - 0.60 V and excellent stability. Theoretical calculations show that the Mo-Fe diatomic sites increased the *COOH intermediate adsorption energy by bridging adsorption of *COOH intermediates. At the same time, d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of *CO intermediates. Thus, the undesirable correlation between these steps is broken. This work provides a promising approach, specifically the use of di-atoms, for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.
Collapse
Affiliation(s)
- Zhaoyong Jin
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Meiqi Yang
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Yilong Dong
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Xingcheng Ma
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Ying Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Jiandong Wu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Jinchang Fan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Dewen Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Rongshen Xi
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Xiao Zhao
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Tianyi Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China
| | - Jingxiang Zhao
- Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China.
| | - Lei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| | - David J Singh
- Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China.
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
26
|
Zhang MD, Huang JR, Shi W, Liao PQ, Chen XM. Self-Accelerating Effect in a Covalent-Organic Framework with Imidazole Groups Boosts Electroreduction of CO 2 to CO. Angew Chem Int Ed Engl 2023; 62:e202308195. [PMID: 37656139 DOI: 10.1002/anie.202308195] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
Solvent effect plays an important role in catalytic reaction, but there is little research and attention on it in electrochemical CO2 reduction reaction (eCO2 RR). Herein, we report a stable covalent-organic framework (denoted as PcNi-im) with imidazole groups as a new electrocatalyst for eCO2 RR to CO. Interestingly, compared with neutral conditions, PcNi-im not only showed high Faraday efficiency of CO product (≈100 %) under acidic conditions (pH ≈ 1), but also the partial current density was increased from 258 to 320 mA cm-2 . No obvious degradation was observed over 10 hours of continuous operation at the current density of 250 mA cm-2 . The mechanism study shows that the imidazole group on the framework can be protonated to form an imidazole cation in acidic media, hence reducing the surface work function and charge density of the active metal center. As a result, CO poisoning effect is weakened and the key intermediate *COOH is also stabilized, thus accelerating the catalytic reaction rate.
Collapse
Affiliation(s)
- Meng-Di Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wen Shi
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
27
|
Huang X, Kong D, Ma Y, Luo B, Wang B, Zhi L. An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO 2 to ethanol. FUNDAMENTAL RESEARCH 2023; 3:786-795. [PMID: 38933297 PMCID: PMC11197807 DOI: 10.1016/j.fmre.2021.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 10/19/2022] Open
Abstract
Electrochemically reducing CO2 to ethanol is attractive but suffers from poor selectivity. Tandem catalysis that integrates the activation of CO2 to an intermediate using one active site and the subsequent formation of hydrocarbons on the other site offers a promising approach, where the control of the intermediate transfer between different catalytic sites is challenging. We propose an internally self-feeding mechanism that relies on the orientation of the mass transfer in a hierarchical structure and demonstrate it using a one-dimensional (1D) tandem core-shell catalyst. Specifically, the carbon-coated Ni-core (Ni/C) catalyzes the transformation of CO2-to-CO, after which the CO intermediates are guided to diffuse to the carbon-coated Cu-shell (Cu/C) and experience the selective reduction to ethanol, realizing the orientated key intermediate transfer. Results show that the Faradaic efficiency for ethanol was 18.2% at -1 V vs. RHE (VRHE) for up to 100 h. The following mechanism study supports the hypothesis that the CO2 reduction on Ni/C generates CO, which is further reduced to ethanol on Cu/C sites. Density functional theory calculations suggest a combined effect of the availability of CO intermediate in Ni/C core and the dimerization of key *CO intermediates, as well as the subsequent proton-electron transfer process on the Cu/C shell.
Collapse
Affiliation(s)
- Xiaoxiong Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Debin Kong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Yingjie Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bin Luo
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
28
|
Chen S, Liu W, Mei Z, Li H, Zhao W, Zhao J, Tao H. The synthesis of copper-modified biochar from Elsholtzia Harchowensis and its electrochemical activity towards the reduction of carbon dioxide. Front Chem 2023; 11:1238424. [PMID: 37711316 PMCID: PMC10499400 DOI: 10.3389/fchem.2023.1238424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
Phytoremediation techniques have been widely used in the treatment of heavy metal contaminated soils in recent years, but there is no effective post-treatment method for plant tissues containing heavy metals after remediation. Elsholtzia Harchowensis is a copper hyperaccumulator, commonly distributed in copper mining areas and often used for soil remediation of mine tailings. Moreover, copper-based catalysts are widely used in electrocatalytic reduction of carbon dioxide, which aims to convert carbon dioxide into useful fuels or chemicals. In this study, copper-modified biochar was prepared from Elsholtzia Harchowensis. Its specific surface area can reach as high as 1202.9 m2/g, with a certain porous structure and even distribution of copper on the amorphous carbon. Various products (such as carbon monoxide, methane, ethanol, and formic acid) could be obtained from the electrolytic reduction of carbon dioxide by using the as-prepared catalyst. Instantaneous current density of up to 15.3 mA/cm2 were achieved in 1.0 M KHCO3 solution at a potential of -0.82 V (vs. RHE). Electrolysis at a potential of -0.32 V (vs. RHE) for 8 h resulted in a stable current of about 0.25 mA/cm2, and the Faraday efficiency (FE) of carbon monoxide can reach as high as 74.6%. In addition, electrolysis at a potential of -0.52 V (vs. RHE) for 8 h led to a stable current of about 2.2 mA/cm2 and a FE of 8.7% for the C2 product. The rich variety of elements in plants leads to catalysts with complex structural and elemental characteristics as well, which facilitates the electrolytic reduction of carbon dioxide with a variety of useful products.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Tao
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
29
|
Obeso JL, Flores JG, Flores CV, Huxley MT, de Los Reyes JA, Peralta RA, Ibarra IA, Leyva C. MOF-based catalysts: insights into the chemical transformation of greenhouse and toxic gases. Chem Commun (Camb) 2023; 59:10226-10242. [PMID: 37554029 DOI: 10.1039/d3cc03148a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Metal-organic framework (MOF)-based catalysts are outstanding alternative materials for the chemical transformation of greenhouse and toxic gases into high-add-value products. MOF catalysts exhibit remarkable properties to host different active sites. The combination of catalytic properties of MOFs is mentioned in order to understand their application. Furthermore, the main catalytic reactions, which involve the chemical transformation of CH4, CO2, NOx, fluorinated gases, O3, CO, VOCs, and H2S, are highlighted. The main active centers and reaction conditions for these reactions are presented and discussed to understand the reaction mechanisms. Interestingly, implementing MOF materials as catalysts for toxic gas-phase reactions is a great opportunity to provide new alternatives to enhance the air quality of our planet.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - J Gabriel Flores
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Michael T Huxley
- School of Physics, Chemistry and Earth Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - José Antonio de Los Reyes
- Departamento de Ingeniería de Procesos e Hidráulica, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Ciudad de México, Mexico
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Col. Irrigación, Miguel Hidalgo, 11500, CDMX, Mexico.
| |
Collapse
|
30
|
Chen Z, Wang C, Zhong X, Lei H, Li J, Ji Y, Liu C, Ding M, Dai Y, Li X, Zheng T, Jiang Q, Peng HJ, Xia C. Achieving Efficient CO 2 Electrolysis to CO by Local Coordination Manipulation of Nickel Single-Atom Catalysts. NANO LETTERS 2023; 23:7046-7053. [PMID: 37470490 DOI: 10.1021/acs.nanolett.3c01808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Selective electroreduction of CO2 to C1 feed gas provides an attractive avenue to store intermittent renewable energy. However, most of the CO2-to-CO catalysts are designed from the perspective of structural reconstruction, and it is challenging to precisely design a meaningful confining microenvironment for active sites on the support. Herein, we report a local sulfur doping method to precisely tune the electronic structure of an isolated asymmetric nickel-nitrogen-sulfur motif (Ni1-NSC). Our Ni1-NSC catalyst presents >99% faradaic efficiency for CO2-to-CO under a high current density of -320 mA cm-2. In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy and differential electrochemical mass spectrometry indicated that the asymmetric sites show a significantly weaker binding strength of *CO and a lower kinetic overpotential for CO2-to-CO. Further theoretical analysis revealed that the enhanced CO2 reduction reaction performance of Ni1-NSC was mainly due to the effectively decreased intermediate activation energy.
Collapse
Affiliation(s)
- Zhaoyang Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Chuanhao Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Xian Zhong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Hao Lei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, P. R. China
| | - Jiawei Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Mao Ding
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Yizhou Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Xu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, P. R. China
| | - Hong-Jie Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, P. R. China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang 313001, P. R. China
| |
Collapse
|
31
|
Deacon-Price C, da Silva AHM, Santana CS, Koper MTM, Garcia AC. Solvent Effect on Electrochemical CO 2 Reduction Reaction on Nanostructured Copper Electrodes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14518-14527. [PMID: 37529666 PMCID: PMC10388345 DOI: 10.1021/acs.jpcc.3c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Indexed: 08/03/2023]
Abstract
The electrochemical reduction of CO2 (CO2RR) is a sustainable alternative for producing fuels and chemicals, although the production of highly desired hydrocarbons is still a challenge due to the higher overpotential requirement in combination with the competitive hydrogen evolution reaction (HER). Tailoring the electrolyte composition is a possible strategy to favor the CO2RR over the HER. In this work we studied the solvent effect on the CO2RR on a nanostructured Cu electrode in acetonitrile solvent with different amounts of water. Similar to what has been observed for aqueous media, our online gas chromatography results showed that CO2RR in acetonitrile solvent is also structure-dependent, since nanocube-covered copper (CuNC) was the only surface (in comparison to polycrystalline Cu) capable of producing a detectable amount of ethylene (10% FE), provided there is enough water present in the electrolyte (>500 mM). In situ Fourier Transform Infrared (FTIR) spectroscopy showed that in acetonitrile solvent the presence of CO2 strongly inhibits HER by driving away water from the interface. CO is by far the main product of CO2RR in acetonitrile (>85% Faradaic efficiency), but adsorbed CO is not detected. This suggests that in acetonitrile media CO adsorption is inhibited compared to aqueous media. Remarkably, the addition of water to acetonitrile has little quantitative and almost no qualitative effect on the activity and selectivity of the CO2RR. This indicates that water is not strongly involved in the rate-determining step of the CO2RR in acetonitrile. Only at the highest water concentrations and at the CuNC surface, the CO coverage becomes high enough that a small amount of C2+ product is formed.
Collapse
Affiliation(s)
- Connor Deacon-Price
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Alisson H. M. da Silva
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Cássia S. Santana
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Amanda C. Garcia
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Kong X, Zhao J, Xu Z, Wang Z, Wu Y, Shi Y, Li H, Ma C, Zeng J, Geng Z. Dynamic Metal-Ligand Coordination Boosts CO 2 Electroreduction. J Am Chem Soc 2023. [PMID: 37312284 DOI: 10.1021/jacs.3c04143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interfacial structure of heterogeneous catalysts determines the reaction rate by adjusting the adsorption behavior of reaction intermediates. Unfortunately, the catalytic performance of conventionally static active sites has always been limited by the adsorbate linear scaling relationship. Herein, we develop a triazole-modified Ag crystal (Ag crystal-triazole) with dynamic and reversible interfacial structures to break such a relationship for boosting the catalytic activity of CO2 electroreduction into CO. On the basis of surface science measurements and theoretical calculations, we demonstrated the dynamic transformation between adsorbed triazole and adsorbed triazolyl on the Ag(111) facet induced by metal-ligand conjugation. During CO2 electroreduction, Ag crystal-triazole with the dynamically reversible transformation of ligands exhibited a faradic efficiency for CO of 98% with a partial current density for CO as high as -802.5 mA cm-2. The dynamic metal-ligand coordination not only reduced the activation barriers of CO2 protonation but also switched the rate-determining step from CO2 protonation to the breakage of C-OH in the adsorbed COOH intermediate. This work provided an atomic-level insight into the interfacial engineering of the heterogeneous catalysts toward highly efficient CO2 electroreduction.
Collapse
Affiliation(s)
- Xiangdong Kong
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zifan Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhengya Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yingying Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yaohui Shi
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanxu Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
33
|
Li M, Hu Y, Dong G, Wu T, Geng D. Achieving Tunable Selectivity and Activity of CO 2 Electroreduction to CO via Bimetallic Silver-Copper Electronic Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207242. [PMID: 36631289 DOI: 10.1002/smll.202207242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Limited comprehension of the reaction mechanism has hindered the development of catalysts for CO2 reduction reactions (CO2 RR). Here, the bimetallic AgCu nanocatalyst platform is employed to understand the effect of the electronic structure of catalysts on the selectivity and activity for CO2 electroreduction to CO. The atomic arrangement and electronic state structure vary with the atomic ratio of Ag and Cu, enabling tunable d-band centers to optimize the binding strength of key intermediates. Density functional theory calculations confirm that the variation of Cu content greatly affects the free energy of *COOH, *CO (intermediate of CO), and *H (intermediates of H2 ), which leads to the change of the rate-determining step. Specifically, Ag96 Cu4 reduces the free energy of the formation of *COOH while maintaining a relatively high theoretical overpotential for hydrogen evolution reaction(HER), thus achieving the best CO selectivity. While Ag70 Cu30 shows relatively low formation energy of both *COOH and *H, the compromised thermodynamic barrier and product selectivity allows Ag70 Cu30 the best CO partial current density. This study realizes the regulation of the selectivity and activity of electrocatalytic CO2 to CO, which provides a promising way to improve the intrinsic performance of CO2 RR on bimetallic AgCu.
Collapse
Affiliation(s)
- Meng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gang Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Tianci Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Dongsheng Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
34
|
Zhang F, Chen W, Li W. Recent advances in the catalytic conversion of CO2 to chemicals and demonstration projects in China. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
35
|
Tu Z, Zhang G, Liao L, Wang H. Theoretical Screening and experimental validation of M3(2,3,6,7,10,11-hexahydroxytriphenylene)2 for electrocatalytic CO2 reduction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
36
|
Li J, Zhang B, Dong B, Feng L. MOF-derived transition metal-based catalysts for the electrochemical reduction of CO 2 to CO: a mini review. Chem Commun (Camb) 2023; 59:3523-3535. [PMID: 36847576 DOI: 10.1039/d3cc00451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The excessive emission of CO2 derived from the consumption of fossil fuels has caused severe energy and environmental crises. The electrochemical reduction of CO2 into value-added products such as CO not only reduces the CO2 concentration in the atmosphere but also promotes sustainable development in chemical engineering. Thus, tremendous work has been devoted to developing highly efficient catalysts for the selective CO2 reduction reaction (CO2RR). Recently, MOF-derived transition metal-based catalysts have shown great potential for the CO2RR due to their various compositions, adjustable structures, competitive ability, and acceptable cost. Herein, based on our work, a mini-review is proposed for an MOF-derived transition metal-based catalyst for the electrochemical reduction of CO2 to CO. The catalytic mechanism of the CO2RR was first introduced, and then we summarized and analyzed the MOF-derived transition metal-based catalysts in terms of MOF-derived single atomic metal-based catalysts and MOF-derived metal nanoparticle-based catalysts. Finally, we present the challenges and perspectives for the subject topic. Hopefully, this review could be helpful and instructive for the design and application of MOF-derived transition metal-based catalysts for the selective CO2RR to CO.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Baoxia Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| |
Collapse
|
37
|
Tan X, Zhuang Z, Zhang Y, Sun K, Chen C. Rational design of atomic site catalysts for electrochemical CO 2 reduction. Chem Commun (Camb) 2023; 59:2682-2696. [PMID: 36749619 DOI: 10.1039/d2cc06503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Renewable-energy-powered electrochemical CO2 reduction (ECR) is a promising way of transforming CO2 to value-added products and achieving sustainable carbon recycling. By virtue of the extremely high exposure rate of active sites and excellent catalytic performance, atomic site catalysts (ASCs), including single-atomic site catalysts and diatomic site catalysts, have attracted considerable attention. In this feature article, we focus on the rational design strategies of ASCs developed in recent years for the ECR reaction. The influence of these strategies on the activity and selectivity of ASCs for ECR is further discussed in terms of electronic regulation, synergistic activation, microenvironmental regulation and tandem catalytic system construction. Finally, the challenges and future directions are indicated. We hope that this feature article will be helpful in the development of novel ASCs for ECR.
Collapse
Affiliation(s)
- Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zewen Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China. .,College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yu Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Kaian Sun
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
38
|
Yan L, Wu Z, Li C, Wang J. Sb-doped SnS2 Nanosheets Enhance Electrochemical Reduction of Carbon dioxide to Formate. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
39
|
Jiang L, Yang Q, Xia Z, Yu X, Zhao M, Shi Q, Yu Q. Recent progress of theoretical studies on electro- and photo-chemical conversion of CO 2 with single-atom catalysts. RSC Adv 2023; 13:5833-5850. [PMID: 36816079 PMCID: PMC9932639 DOI: 10.1039/d2ra08021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The CO2 reduction reaction (CO2RR) into chemical products is a promising and efficient way to combat the global warming issue and greenhouse effect. The viability of the CO2RR critically rests with finding highly active and selective catalysts that can accomplish the desired chemical transformation. Single-atom catalysts (SACs) are ideal in fulfilling this goal due to the well-defined active sites and support-tunable electronic structure, and exhibit enhanced activity and high selectivity for the CO2RR. In this review, we present the recent progress of quantum-theoretical studies on electro- and photo-chemical conversion of CO2 with SACs and frameworks. Various calculated products of CO2RR with SACs have been discussed, including CO, acids, alcohols, hydrocarbons and other organics. Meanwhile, the critical challenges and the pathway towards improving the efficiency of the CO2RR have also been discussed.
Collapse
Affiliation(s)
- Liyun Jiang
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qingqing Yang
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Zhaoming Xia
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University Beijing China
| | - Xiaohu Yu
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Mengdie Zhao
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qiping Shi
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
| | - Qi Yu
- School of Physics and Telecommunication Engineering, School of Materials Science and Engineering, Shaanxi Laboratory of Catalysis, Shaanxi University of Technology Hanzhong 723001 China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
40
|
Zhu Y, Zhou W, Dong Z, Zhang X, Chen Z, Liu Z, Li F, Fan J, Jiao M, Liu L. Nanosized LaInO3 perovskite for efficient electrocatalytic reduction of CO2 to formate. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Zhang MD, Huang JR, Shi W, Liao PQ, Chen XM. Synergistic Effect in a Metal-Organic Framework Boosting the Electrochemical CO 2 Overall Splitting. J Am Chem Soc 2023; 145:2439-2447. [PMID: 36657974 DOI: 10.1021/jacs.2c11597] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is a very important but still challenging task to develop bifunctional electrocatalysts for highly efficient CO2 overall splitting. Herein, we report a stable metal-organic framework (denoted as PcNi-Co-O), composed of (2,3,9,10,16,17,23,24-octahydroxyphthalocyaninato)nickel(II) (PcNi-(O-)8) ligands and the planar CoO4 nodes, for CO2 overall splitting. When working as both cathode and anode catalysts (i.e., PcNi-Co-O||PcNi-Co-O), PcNi-Co-O achieved a commercial-scale current density of 123 mA cm-2 (much higher than the reported values (0.2-12 mA cm-2)) with a Faradic efficiency (CO) of 98% at a low cell voltage of 4.4 V. Mechanism studies suggested the synergistic effects between two active sites, namely, (i) electron transfer from CoO4 to PcNi sites under electric fields, resulting in the raised oxidizability/reducibility of CoO4/PcNi sites, respectively; (ii) the energy-level matching of cathode and anode catalysts can reduce the energy barrier of electron transfer between them and improve the performance of CO2 overall splitting.
Collapse
Affiliation(s)
- Meng-Di Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wen Shi
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
42
|
Shao W, Zhang X, Xie Y. Engineering active sites and recognizing mechanisms for CO2 fixation to dimethyl carbonate. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
43
|
Li J, Zeng H, Dong X, Ding Y, Hu S, Zhang R, Dai Y, Cui P, Xiao Z, Zhao D, Zhou L, Zheng T, Xiao J, Zeng J, Xia C. Selective CO 2 electrolysis to CO using isolated antimony alloyed copper. Nat Commun 2023; 14:340. [PMID: 36670129 PMCID: PMC9860050 DOI: 10.1038/s41467-023-35960-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Renewable electricity-powered CO evolution from CO2 emissions is a promising first step in the sustainable production of commodity chemicals, but performing electrochemical CO2 reduction economically at scale is challenging since only noble metals, for example, gold and silver, have shown high performance for CO2-to-CO. Cu is a potential catalyst to achieve CO2 reduction to CO at the industrial scale, but the C-C coupling process on Cu significantly depletes CO* intermediates, thus limiting the CO evolution rate and producing many hydrocarbon and oxygenate mixtures. Herein, we tune the CO selectivity of Cu by alloying a second metal Sb into Cu, and report an antimony-copper single-atom alloy catalyst (Sb1Cu) of isolated Sb-Cu interfaces that catalyzes the efficient conversion of CO2-to-CO with a Faradaic efficiency over 95%. The partial current density reaches 452 mA cm-2 with approximately 91% CO Faradaic efficiency, and negligible C2+ products are observed. In situ spectroscopic measurements and theoretical simulations reason that the atomic Sb-Cu interface in Cu promotes CO2 adsorption/activation and weakens the binding strength of CO*, which ends up with enhanced CO selectivity and production rates.
Collapse
Affiliation(s)
- Jiawei Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Hongliang Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xue Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China
| | - Yimin Ding
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China
| | - Sunpei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Runhao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yizhou Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Zhou Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Donghao Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Liujiang Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China.
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China.
| |
Collapse
|
44
|
Li WJ, Lou ZX, Zhao JY, Liu PF, Yuan HY, Yang HG. Positive Valent Metal Sites in Electrochemical CO 2 Reduction Reaction. Chemphyschem 2023; 24:e202200657. [PMID: 36646629 DOI: 10.1002/cphc.202200657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/08/2022] [Indexed: 01/18/2023]
Abstract
The discovery of high-performance catalysts for the electrochemical CO2 reduction reaction (CO2 RR) has faced an enormous challenge for years. The lack of cognition about the surface active structures or centers of catalysts in complex conditions limits the development of advanced catalysts for CO2 RR. Recently, the positive valent metal sites (PVMS) are demonstrated as a kind of potential active sites, which can facilitate carbon dioxide (CO2 ) activation and conversation but are always unstable under reduction potentials. Many advanced technologies in theory and experiment have been utilized to understand and develop excellent catalysts with PVMS for CO2 RR. Here, we present an introduction of some typical catalysts with PVMS in CO2 RR and give some understanding of the activity and stability for these related catalysts.
Collapse
Affiliation(s)
- Wen Jing Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Yue Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
45
|
Liu J, Zhang G, Ye K, Xu K, Sheng Y, Yu C, Zhang H, Li Q, Liang Z, Jiang K. Top-down manufacturing of efficient CO 2 reduction catalysts from the gasification residue carbon. Chem Commun (Camb) 2023; 59:611-614. [PMID: 36533577 DOI: 10.1039/d2cc05081a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gram scale preparation of carbon-supported single-atom catalysts was achieved via a top-down approach starting from metallic and metalloid constituent-enriched gasification residual carbon, exhibiting superior electrocatalytic performance for CO2-to-CO conversion in both H-type and membrane electrode assembly electrolyzers.
Collapse
Affiliation(s)
- Jun Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China. .,Interdisciplinary Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Guiru Zhang
- Interdisciplinary Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ke Ye
- Interdisciplinary Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ke Xu
- Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China
| | - Yeliang Sheng
- Laboratory of Energy Chemical Engineering, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Can Yu
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | - Hai Zhang
- Interdisciplinary Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Zheng Liang
- Laboratory of Energy Chemical Engineering, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kun Jiang
- Interdisciplinary Research Centre, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
46
|
Li P, Bi J, Liu J, Zhu Q, Chen C, Sun X, Zhang J, Liu Z, Han B. A crystal growth kinetics guided Cu aerogel for highly efficient CO 2 electrolysis to C 2+ alcohols. Chem Sci 2023; 14:310-316. [PMID: 36687354 PMCID: PMC9811509 DOI: 10.1039/d2sc04961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
To realize commercial CO2 electrochemical reduction to C2+ alcohols, the selectivity and production rate should be further improved. Establishing controllable surface sites with a favorable local environment is an interesting route to guide the C2+ pathway. Herein, we report a room-temperature one-step synthetic strategy to fabricate a highly stable Cu aerogel as an efficient CO2 reduction electrocatalyst. Controlling crystal growth kinetics using different reductants is an efficient strategy to modulate the nucleation and growth rate of Cu aerogels, enabling the creation of efficient surface sites for the C2+ pathway. Over the Cu aerogel obtained by reducing Cu2+ using a weak reductant (NH3·BH3), the faradaic efficiency of C2+ products could reach 85.8% with the current density of 800 mA cm-2 at the potential of -0.91 V vs. reversible hydrogen electrode, and the C2+ alcohol selectivity was 49.7% with a partial current density of 397.6 mA cm-2, while the Cu aerogel prepared using a strong reductant (NaBH4) was favorable to generating CO. Experimental and theoretical studies showed that the selectivity of the reaction depended strongly on the desorption and dimerization of *CO intermediates on the catalysts. The strong reductant induced a defective Cu surface that could facilitate the desorption of the *CO intermediate, subsequently producing CO, whereas the low defect Cu produced using a weak reductant could significantly enhance the selectivity for the C2+ product by improving *CO adsorption and the C-C coupling on the catalyst. This work opens a new way for constructing efficient electrocatalysts for CO2 electroreduction to C2+ alcohols.
Collapse
Affiliation(s)
- Pengsong Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190P. R. China
| | - Jiahui Bi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190P. R. China,University of Chinese Academy of SciencesBeijing 100049P. R. China
| | - Jiyuan Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190P. R. China,University of Chinese Academy of SciencesBeijing 100049P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190P. R. China,University of Chinese Academy of SciencesBeijing 100049P. R. China
| | - Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190P. R. China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190P. R. China,University of Chinese Academy of SciencesBeijing 100049P. R. China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190P. R. China,University of Chinese Academy of SciencesBeijing 100049P. R. China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190P. R. China,University of Chinese Academy of SciencesBeijing 100049P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190P. R. China,University of Chinese Academy of SciencesBeijing 100049P. R. China,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062P. R. China,Institute of Eco-Chongming20 Cuiniao Road, Chenjia Town, Chongming DistrictShanghai202162P. R. China
| |
Collapse
|
47
|
Hu Y, Kang Y. Surface and Interface Engineering for the Catalysts of Electrocatalytic CO 2 Reduction. Chem Asian J 2023; 18:e202201001. [PMID: 36461703 DOI: 10.1002/asia.202201001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Indexed: 12/04/2022]
Abstract
The massive use of fossil fuels releases a great amount of CO2 , which substantially contributes to the global warming. For the global goal of putting CO2 emission under control, effective utilization of CO2 is particularly meaningful. Electrocatalytic CO2 reduction reaction (eCO2 RR) has great potential in CO2 utilization, because it can convert CO2 into valuable carbon-containing chemicals and feedstock using renewable electricity. The catalyst design for eCO2 RR is a key challenge to achieving efficient conversion of CO2 to fuels and useful chemicals. For a typical heterogeneous catalyst, surface and interface engineering is an effective approach to enhance reaction activity. Herein, the development and research progress in CO2 catalysts with focus on surface and interface engineering are reviewed. First, the fundaments of eCO2 RR is briefly discussed from the reaction mechanism to performance evaluation methods, introducing the role of the surface and interface engineering of electrocatalyst in eCO2 RR. Then, several routes to optimize the surface and interface of CO2 electrocatalysts, including morphology, dopants, atomic vacancies, grain boundaries, surface modification, etc., are reviewed and representative examples are given. At the end of this review, we share our personal views in future research of eCO2 RR.
Collapse
Affiliation(s)
- Yiping Hu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
48
|
Qiu Y, Xie Z, Gao S, Cao H, Zhang S, Liu Q, Liu X, Luo J. Nitrogen Defects in Porous Carbons with Adjacent Silver Nanoclusters for Efficient CO
2
Reduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuan Qiu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education) Tianjin Key Laboratory for Photoelectric Materials and Devices National Demonstration Center for Experimental Function Materials Education School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Zhongyuan Xie
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials Institute for New Energy Materials and Low-Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Sanshuang Gao
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials Institute for New Energy Materials and Low-Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Huanqi Cao
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education) Tianjin Key Laboratory for Photoelectric Materials and Devices National Demonstration Center for Experimental Function Materials Education School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Shusheng Zhang
- College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Qian Liu
- Institute for Advanced Study Chengdu University Chengdu 610106 Sichuan China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials School of Resource Environments and Materials Guangxi University Nanning 530004 China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials Institute for New Energy Materials and Low-Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
49
|
Harmon NJ, Wang H. Electrochemical CO 2 Reduction in the Presence of Impurities: Influences and Mitigation Strategies. Angew Chem Int Ed Engl 2022; 61:e202213782. [PMID: 36223129 DOI: 10.1002/anie.202213782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Indexed: 11/05/2022]
Abstract
The electrochemical conversion of waste CO2 into useful fuels and chemical products is a promising approach to reduce CO2 emissions; however, several challenges still remain to be addressed. Thus far, most CO2 reduction studies use pure CO2 as the gas reactant, but CO2 emissions typically contain a number of gas impurities, such as nitrogen oxides, oxygen gas, and sulfur oxides. Gas impurities in CO2 can pose a significant obstacle for efficient CO2 electrolysis because they can influence the reaction and catalyst. This Minireview highlights early examples of CO2 reduction studies using mixed-gas feeds, explores strategies to sustain CO2 reduction in the presence of gas impurities, and discusses their implications for future progress in this emerging field.
Collapse
Affiliation(s)
- Nia J Harmon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
50
|
Gong YN, Cao CY, Shi WJ, Zhang JH, Deng JH, Lu TB, Zhong DC. Modulating the Electronic Structures of Dual-Atom Catalysts via Coordination Environment Engineering for Boosting CO 2 Electroreduction. Angew Chem Int Ed Engl 2022; 61:e202215187. [PMID: 36316808 DOI: 10.1002/anie.202215187] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Indexed: 11/24/2022]
Abstract
Dual-atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2 -N7 , Ni2 -N5 C2 and Ni2 -N3 C4 ) by the regulation of the coordination environments around the dual-atom Ni2 centres. As a result, Ni2 -N3 C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single-atom Ni catalyst (Ni-N2 C2 ), but also higher than Ni2 -N7 and Ni2 -N5 C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2 -N3 C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates.
Collapse
Affiliation(s)
- Yun-Nan Gong
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Chang-Yu Cao
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Wen-Jie Shi
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Ji-Hong Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Ji-Hua Deng
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Di-Chang Zhong
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| |
Collapse
|