1
|
Lamon S, Yu H, Zhang Q, Gu M. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. LIGHT, SCIENCE & APPLICATIONS 2024; 13:252. [PMID: 39277593 PMCID: PMC11401911 DOI: 10.1038/s41377-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.
Collapse
Affiliation(s)
- Simone Lamon
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| | - Haoyi Yu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Qiming Zhang
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
2
|
Gao H, Wang Z, Cao J, Lin YC, Ling X. Advancing Nanoelectronics Applications: Progress in Non-van der Waals 2D Materials. ACS NANO 2024; 18:16343-16358. [PMID: 38899467 DOI: 10.1021/acsnano.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Extending the inventory of two-dimensional (2D) materials remains highly desirable, given their excellent properties and wide applications. Current studies on 2D materials mainly focus on the van der Waals (vdW) materials since the discovery of graphene, where properties of atomically thin layers have been found to be distinct from their bulk counterparts. Beyond vdW materials, there are abundant non-vdW materials that can also be thinned down to 2D forms, which are still in their early stage of exploration. In this review, we focus on the downscaling of non-vdW materials into 2D forms to enrich the 2D materials family. This underexplored group of 2D materials could show potential promise in many areas such as electronics, optics, and magnetics, as has happened in the vdW 2D materials. Hereby, we will focus our discussion on their electronic properties and applications of them. We aim to motivate and inspire fellow researchers in the 2D materials community to contribute to the development of 2D materials beyond the widely studied vdW layered materials for electronic device applications. We also give our insights into the challenges and opportunities to guide researchers who are desirous of working in this promising research area.
Collapse
Affiliation(s)
- Hongze Gao
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Zifan Wang
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Jun Cao
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yuxuan Cosmi Lin
- Department of Materials Science and Engineering, Texas A&M University 575 Ross Street, College Station, Texas 77843, United States
| | - Xi Ling
- Department of Chemistry, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University 15 St Mary's Street, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Yang C, Wang H, Cao Z, Chen X, Zhou G, Zhao H, Wu Z, Zhao Y, Sun B. Memristor-Based Bionic Tactile Devices: Opening the Door for Next-Generation Artificial Intelligence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308918. [PMID: 38149504 DOI: 10.1002/smll.202308918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Bioinspired tactile devices can effectively mimic and reproduce the functions of the human tactile system, presenting significant potential in the field of next-generation wearable electronics. In particular, memristor-based bionic tactile devices have attracted considerable attention due to their exceptional characteristics of high flexibility, low power consumption, and adaptability. These devices provide advanced wearability and high-precision tactile sensing capabilities, thus emerging as an important research area within bioinspired electronics. This paper delves into the integration of memristors with other sensing and controlling systems and offers a comprehensive analysis of the recent research advancements in memristor-based bionic tactile devices. These advancements incorporate artificial nociceptors and flexible electronic skin (e-skin) into the category of bio-inspired sensors equipped with capabilities for sensing, processing, and responding to stimuli, which are expected to catalyze revolutionary changes in human-computer interaction. Finally, this review discusses the challenges faced by memristor-based bionic tactile devices in terms of material selection, structural design, and sensor signal processing for the development of artificial intelligence. Additionally, it also outlines future research directions and application prospects of these devices, while proposing feasible solutions to address the identified challenges.
Collapse
Affiliation(s)
- Chuan Yang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Hongyan Wang
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zelin Cao
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoliang Chen
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Guangdong Zhou
- College of Artificial Intelligence, Brain-inspired Computing & Intelligent Control of Chongqing Key Lab, Southwest University, Chongqing, 400715, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Zhenhua Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 DongChuan Rd, Shanghai, 200240, China
| | - Yong Zhao
- School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Bai Sun
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
4
|
Wang J, Ilyas N, Ren Y, Ji Y, Li S, Li C, Liu F, Gu D, Ang KW. Technology and Integration Roadmap for Optoelectronic Memristor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307393. [PMID: 37739413 DOI: 10.1002/adma.202307393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Optoelectronic memristors (OMs) have emerged as a promising optoelectronic Neuromorphic computing paradigm, opening up new opportunities for neurosynaptic devices and optoelectronic systems. These OMs possess a range of desirable features including minimal crosstalk, high bandwidth, low power consumption, zero latency, and the ability to replicate crucial neurological functions such as vision and optical memory. By incorporating large-scale parallel synaptic structures, OMs are anticipated to greatly enhance high-performance and low-power in-memory computing, effectively overcoming the limitations of the von Neumann bottleneck. However, progress in this field necessitates a comprehensive understanding of suitable structures and techniques for integrating low-dimensional materials into optoelectronic integrated circuit platforms. This review aims to offer a comprehensive overview of the fundamental performance, mechanisms, design of structures, applications, and integration roadmap of optoelectronic synaptic memristors. By establishing connections between materials, multilayer optoelectronic memristor units, and monolithic optoelectronic integrated circuits, this review seeks to provide insights into emerging technologies and future prospects that are expected to drive innovation and widespread adoption in the near future.
Collapse
Affiliation(s)
- Jinyong Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Nasir Ilyas
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yun Ji
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Sifan Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Changcun Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
5
|
K N, A P S. Unveiling the Radiative Electron-Hole Recombination of MoS 2 Nanostructures at Extreme pH Conditions. J Fluoresc 2024:10.1007/s10895-024-03616-w. [PMID: 38381234 DOI: 10.1007/s10895-024-03616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Nanostructures of MoS2 are in wide research for optoelectronic, energy and biological applications. Opto-electronic and biological applications requires the tuning of photoluminescence properties of MoS2 nanostructures. In this article, nanosized MoS2 is hydrothermally synthesized, and photoluminescence at extreme pH conditions (pH 1 and 13) is examined. As the photoluminescence gives a key to probe the radiative electron-hole recombination, here, photoluminescence emissions are used as an indicator to suggest the pattern of electron-hole recombination in the material at extreme pH conditions. Raman spectroscopy, dynamic light scattering, Scanning electron microscopic image and energy dispersive x-ray analysis are done for material confirmation. At pH 1 and 13 as-synthesized nanostructured MoS2 exhibited both upconversion and downconversion photoluminescence. The intensity of photoluminescence is varied with respect to pH. Excitation-dependent photoluminescence mechanisms and preliminary understanding on the ratio of quantum yields and life span of excited state of as-synthesized nanostructured MoS2 are unveiled here.
Collapse
Affiliation(s)
- Nayana K
- Department of Physics, Government Victoria College, Affiliated to University of Calicut, Palakkad, 678001, Kerala, India
- Department of Physics, N. S. S. College, Affiliated to University of Calicut, Ottapalam, Palakkad, 679103, Kerala, India
| | - Sunitha A P
- Department of Physics, Government Victoria College, Affiliated to University of Calicut, Palakkad, 678001, Kerala, India.
| |
Collapse
|
6
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
7
|
Wang Y, Gao F, Zhou S, Hu P, Fu J. Novel strategy for energy transfer via Ho3+ as a bridge in upconversion nanoparticles. SCIENCE CHINA MATERIALS 2023; 66:3696-3705. [DOI: 10.1007/s40843-023-2504-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/16/2023] [Indexed: 01/05/2025]
|
8
|
Chen X, Wan J, Wei M, Xia Z, Zhou J, Lu M, Yuan Z, Huang L, Xie X. Tandem fabrication of upconversion nanocomposites enabled by confined protons. NANOSCALE 2023; 15:2642-2649. [PMID: 36651807 DOI: 10.1039/d2nr06029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticle (UCNP)-based nanocomposites can address the intrinsic limitations associated with UCNPs and bestow new functions on UCNPs, which can facilitate the development and application of UCNPs. However, the fabrication of UCNP-based composites typically suffers from complex operations, long-drawn-out procedures, and even loss or damage of UCNPs. Herein, we report a tandem fabrication strategy for the preparation of UCNP-based nanocomposites, in which protons, confined in the non-aqueous polar solvent, can produce ligand-free UCNPs for the direct fabrication of a composite without further treatment. Our studies show that the confined protons can be generated by diverse materials and can yield different types of ligand-free nanomaterials for desired composites. This versatile strategy enables a simple but scalable fabrication of UCNP-based nanocomposites, and can be extended to other nanomaterial-based composites. These findings should provide a platform for constructing multifunctional UCNP-based materials, and benefit potential applications of UCNPs in varied fields.
Collapse
Affiliation(s)
- Xiumei Chen
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Jinyu Wan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Minmin Wei
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhengyu Xia
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Jie Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Min Lu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Ze Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Ling Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Xiaoji Xie
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
9
|
Liu S, Wang J, Shao J, Ouyang D, Zhang W, Liu S, Li Y, Zhai T. Nanopatterning Technologies of 2D Materials for Integrated Electronic and Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200734. [PMID: 35501143 DOI: 10.1002/adma.202200734] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
With the reduction of feature size and increase of integration density, traditional 3D semiconductors are unable to meet the future requirements of chip integration. The current semiconductor fabrication technologies are approaching their physical limits based on Moore's law. 2D materials such as graphene, transitional metal dichalcogenides, etc., are of great promise for future memory, logic, and photonic devices due to their unique and excellent properties. To prompt 2D materials and devices from the laboratory research stage to the industrial integrated circuit-level, it is necessary to develop advanced nanopatterning methods to obtain high-quality, wafer-scale, and patterned 2D products. Herein, the recent development of nanopatterning technologies, particularly toward realizing large-scale practical application of 2D materials is reviewed. Based on the technological progress, the unique requirement and advances of the 2D integration process for logic, memory, and optoelectronic devices are further summarized. Finally, the opportunities and challenges of nanopatterning technologies of 2D materials for future integrated chip devices are prospected.
Collapse
Affiliation(s)
- Shenghong Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiefan Shao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
10
|
Sheykhifar Z, Mohseni SM. Highly light-tunable memristors in solution-processed 2D materials/metal composites. Sci Rep 2022; 12:18771. [DOI: 10.1038/s41598-022-23404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractMemristors—competitive microelectronic elements which bring together the electronic sensing and memory effects—potentially are able to respond against physical and chemical effects that influence their sensing capability and memory behavior. However, this young topic is still under debate and needs further attention to be highly responding to or remaining intact against physical effects, e.g., light illumination. To contribute to this scenario, using a composite of two-dimensional graphene or MoS2 doped with meso-structures of metal/metal-oxides of Ag, Cu and Fe family, we presented scalable and printable memristors. The memristive behavior shows strong dependency upon light illumination with a high record of 105 ON/OFF ratio observed so far in 2-terminal systems based on two-dimensional materials or metal oxide structures. Moreover, we found that the memristors can remain stable without illumination, providing a novel approach to use these composites for developing neuromorphic computing circuits. The sensing and memristive mechanisms are explained based on the electronic properties of the materials. Our introduced materials used in the memristor devices can open new routes to achieve high sensing capability and improve memristance of the future microelectronic elements.
Collapse
|
11
|
Wang W, Gao S, Wang Y, Li Y, Yue W, Niu H, Yin F, Guo Y, Shen G. Advances in Emerging Photonic Memristive and Memristive-Like Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105577. [PMID: 35945187 PMCID: PMC9534950 DOI: 10.1002/advs.202105577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/06/2022] [Indexed: 05/19/2023]
Abstract
Possessing the merits of high efficiency, low consumption, and versatility, emerging photonic memristive and memristive-like devices exhibit an attractive future in constructing novel neuromorphic computing and miniaturized bionic electronic system. Recently, the potential of various emerging materials and structures for photonic memristive and memristive-like devices has attracted tremendous research efforts, generating various novel theories, mechanisms, and applications. Limited by the ambiguity of the mechanism and the reliability of the material, the development and commercialization of such devices are still rare and in their infancy. Therefore, a detailed and systematic review of photonic memristive and memristive-like devices is needed to further promote its development. In this review, the resistive switching mechanisms of photonic memristive and memristive-like devices are first elaborated. Then, a systematic investigation of the active materials, which induce a pivotal influence in the overall performance of photonic memristive and memristive-like devices, is highlighted and evaluated in various indicators. Finally, the recent advanced applications are summarized and discussed. In a word, it is believed that this review provides an extensive impact on many fields of photonic memristive and memristive-like devices, and lay a foundation for academic research and commercial applications.
Collapse
Affiliation(s)
- Wenxiao Wang
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Song Gao
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Yaqi Wang
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Yang Li
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Wenjing Yue
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Hongsen Niu
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Feifei Yin
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Yunjian Guo
- School of Information Science and EngineeringShandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinan250022China
| | - Guozhen Shen
- School of Integrated Circuits and ElectronicsBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
12
|
Batool S, Idrees M, Zhang SR, Han ST, Zhou Y. Novel charm of 2D materials engineering in memristor: when electronics encounter layered morphology. NANOSCALE HORIZONS 2022; 7:480-507. [PMID: 35343522 DOI: 10.1039/d2nh00031h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The family of two-dimensional (2D) materials composed of atomically thin layers connected via van der Waals interactions has attracted much curiosity due to a variety of intriguing physical, optical, and electrical characteristics. The significance of analyzing statistics on electrical devices and circuits based on 2D materials is seldom underestimated. Certain requirements must be met to deliver scientific knowledge that is beneficial in the field of 2D electronics: synthesis and fabrication must occur at the wafer level, variations in morphology and lattice alterations must be visible and statistically verified, and device dimensions must be appropriate. The authors discussed the most recent significant concerns of 2D materials in the provided prose and attempted to highlight the prerequisites for synthesis, yield, and mechanism behind device-to-device variability, reliability, and durability benchmarking under memristors characteristics; they also indexed some useful approaches that have already been reported to be advantageous in large-scale production. Commercial applications, on the other hand, will necessitate further effort.
Collapse
Affiliation(s)
- Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Muhammad Idrees
- Additive Manufacturing Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shi-Rui Zhang
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Su-Ting Han
- College of Electronics Science & Technology, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
13
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
14
|
Zhao Y, Wang X, Hu R, Li Y. Linear red/green ratiometric thermometry of Ho 3+/Cr 3+ co-doped red up-conversion tungstate materials. Dalton Trans 2021; 50:15821-15830. [PMID: 34708846 DOI: 10.1039/d1dt03211a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Existing optical thermometers are faced with the challenges of high sensitivity limited to a very narrow high temperature range, while also lacking low temperature sensing performance. A new linear up-conversion (UC) optical thermometer with high sensitivity over a wide temperature range was reported here. The introduction of Cr3+ optimized the red-green (R/G) ratio and improved the temperature sensing characteristics of Ho3+-doped tungstate materials. Notably, as a temperature-related parameter, the R/G emission intensity ratio of Ho3+/Cr3+ co-doped tungstate material fitted well linearly with temperature. The slope of the fitted line corresponded to the absolute sensitivity value; that is, the sensitivity was constantly 0.0217 K-1 over the wide range of 163-663 K. This new UC temperature sensor with high sensitivity extended a new field of optical temperature measurement and demonstrated the possibility of applying this linear sensitivity effect in sensing applications. Most importantly, from an optical temperature sensing point of view, this study provided a novel and effective strategy for linear optical temperature measurement.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.
| | - Xusheng Wang
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.
| | - Rui Hu
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China. .,The Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Li
- Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.
| |
Collapse
|
15
|
Kim JM, Hwang SW. Bipolar Resistive Switching Behavior of PVP-GQD/HfOx/ITO/Graphene Hybrid Flexible Resistive Random Access Memory. Molecules 2021; 26:molecules26226758. [PMID: 34833850 PMCID: PMC8624941 DOI: 10.3390/molecules26226758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
We have investigated highly flexible memristive devices using reduced graphene oxide (RGO) nanosheet nanocomposites with an embedded GQD Layer. Resistive switching behavior of poly (4-vinylphenol):graphene quantum dot (PVP:GQD) composite and HfOx hybrid bilayer was explored for developing flexible resistive random access memory (RRAM) devices. A composite active layer was designed based on graphene quantum dots, which is a low-dimensional structure, and a heterogeneous active layer of graphene quantum dots was applied to the interfacial defect structure to overcome the limitations. Increasing to 0.3–0.6 wt % PVP-GQD, Vf changed from 2.27–2.74 V. When negative deflection is applied to the lower electrode, electrons travel through the HfOx/ITO interface. In addition, as the PVP-GQD concentration increased, the depth of the interfacial defect decreased, and confirmed the repetition of appropriate electrical properties through Al and HfOx/ITO. The low interfacial defects help electrophoresis of Al+ ions to the PVP GQD layer and the HfOx thin film. A local electric field increase occurred, resulting in the breakage of the conductive filament in the defect.
Collapse
Affiliation(s)
- Jin Mo Kim
- Micro LED Research Center, Korea Photonics Technology Institute, Gwangju 61007, Korea;
| | - Sung Won Hwang
- Department of System Semiconductor Engineering, Sangmyung University, Cheonan 31066, Korea
- Correspondence:
| |
Collapse
|
16
|
Seo S, Lee JJ, Lee RG, Kim TH, Park S, Jung S, Lee HK, Andreev M, Lee KB, Jung KS, Oh S, Lee HJ, Kim KS, Yeom GY, Kim YH, Park JH. An Optogenetics-Inspired Flexible van der Waals Optoelectronic Synapse and its Application to a Convolutional Neural Network. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102980. [PMID: 34423469 DOI: 10.1002/adma.202102980] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Optogenetics refers to a technique that uses light to modulate neuronal activity with a high spatiotemporal resolution, which enables the manipulation of learning and memory functions in the human brain. This strategy of controlling neuronal activity using light can be applied for the development of intelligent systems, including neuromorphic and in-memory computing systems. Herein, a flexible van der Waals (vdW) optoelectronic synapse is reported, which is a core component of optogenetics-inspired intelligent systems. This synapse is fabricated on 2D vdW layered rhenium disulfide (ReS2 ) that features an inherent photosensitive memory nature derived from the persistent photoconductivity (PPC) effect, successfully mimicking the dynamics of biological synapses. Based on first-principles calculations, the PPC effect is identified to originate from sulfur vacancies in ReS2 that have an inherent tendency to form shallow defect states near the conduction band edges and under optical excitation lead to large lattice relaxation. Finally, the feasibility of applying the synapses in optogenetics-inspired intelligent systems is demonstrated via training and inference tasks for the CIFAR-10 dataset using a convolutional neural network composed of vdW optoelectronic synapse devices.
Collapse
Affiliation(s)
- Seunghwan Seo
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Je-Jun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Ryong-Gyu Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Tae Hyung Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sangyong Park
- Department of Semiconductor and Display Engineering, Sungkyunkwan University, Suwon, 16419, Korea
- Flash Process Architecture Team, Samsung Electronics Co. Ltd, Pyeongtaek, 17786, Korea
| | - Sooyoung Jung
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Hyun-Kyu Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Maksim Andreev
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Kyeong-Bae Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Kil-Su Jung
- Department of Semiconductor and Display Engineering, Sungkyunkwan University, Suwon, 16419, Korea
- Memory Technology Design Team, Samsung Electronics Co. Ltd, Hwasung, 18448, Korea
| | - Seyong Oh
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
- Querrey Simpson Institute for Bioelectronics (QSIB), Northwestern University, Evanston, IL, 60208, USA
| | - Ho-Jun Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Ki Seok Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16417, Korea
| | - Geun Young Yeom
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16417, Korea
| | - Yong-Hoon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jin-Hong Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16417, Korea
| |
Collapse
|
17
|
Abnavi A, Ahmadi R, Hasani A, Fawzy M, Mohammadzadeh MR, De Silva T, Yu N, Adachi MM. Free-Standing Multilayer Molybdenum Disulfide Memristor for Brain-Inspired Neuromorphic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45843-45853. [PMID: 34542262 DOI: 10.1021/acsami.1c11359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDs) have attracted great interest in electronic and opto-electronic devices for high-integration-density applications such as data storage due to their small vertical dimension and high data storage capability. Here, we report a memristor based on free-standing multilayer molybdenum disulfide (MoS2) with a high current on/off ratio of ∼103 and a stable retention for at least 3000 s. Through light modulation of the carrier density in the suspended MoS2 channel, the on/off ratio can be further increased to ∼105. Moreover, the essential photosynaptic functions with short- and long-term memory (STM and LTM) behaviors are successfully mimicked by such devices. These results also indicate that STM can be transferred to LTM by increasing the light stimuli power, pulse duration, and number of pulses. The electrical measurements performed under vacuum and ambient air conditions propose that the observed resistive switching is due to adsorbed oxygen and water molecules on both sides of the MoS2 channel. Thus, our free-standing 2D multilayer MoS2-based memristors propose a simple approach for fabrication of a low-power-consumption and reliable resistive switching device for neuromorphic applications.
Collapse
Affiliation(s)
- Amin Abnavi
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Ribwar Ahmadi
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Amirhossein Hasani
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Mirette Fawzy
- Department of Physics, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | | | - Thushani De Silva
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Niannian Yu
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Michael M Adachi
- School of Engineering Science, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| |
Collapse
|
18
|
Liao K, Lei P, Tu M, Luo S, Jiang T, Jie W, Hao J. Memristor Based on Inorganic and Organic Two-Dimensional Materials: Mechanisms, Performance, and Synaptic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32606-32623. [PMID: 34253011 DOI: 10.1021/acsami.1c07665] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A memristor is a two-terminal device with nonvolatile resistive switching (RS) behaviors. Recently, memristors have been highly desirable for both fundamental research and technological applications because of their great potential in the development of high-density memory technology and neuromorphic computing. Benefiting from the unique two-dimensional (2D) layered structure and outstanding properties, 2D materials have proven to be good candidates for use in gate-tunable, highly reliable, heterojunction-compatible, and low-power memristive devices. More intriguing, stable and reliable nonvolatile RS behaviors can be achieved in multi- and even monolayer 2D materials, which seems unlikely to be achieved in traditional oxides with thicknesses less than a few nanometers because of the leakage currents. Moreover, such two-terminal devices show a series of synaptic functionalities, suggesting applications in simulating a biological synapse in the neural network. In this review article, we summarize the recent progress in memristors based on inorganic and organic 2D materials, from the material synthesis, device structure and fabrication, and physical mechanism to some versatile memristors based on diverse 2D materials with good RS properties and memristor-based synaptic applications. The development prospects and challenges at the current stage are then highlighted, which is expected to inspire further advancements and new insights into the fields of information storage and neuromorphic computing.
Collapse
Affiliation(s)
- Kanghong Liao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Peixian Lei
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Meilin Tu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Songwen Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Ting Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Wenjing Jie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong China
| |
Collapse
|
19
|
Zeng F, Tan Y, Hu W, Tang X, Luo Z, Huang Q, Guo Y, Zhang X, Yin H, Feng J, Zhao X, Yang B. Impact of Hydroiodic Acid on Resistive Switching Performance of Lead-Free Cs 3Cu 2I 5 Perovskite Memory. J Phys Chem Lett 2021; 12:1973-1978. [PMID: 33594881 DOI: 10.1021/acs.jpclett.0c03763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we employed lead-free Cs3Cu2I5 perovskite films as the functional layers to construct Al/Cs3Cu2I5/ITO memory devices and systematically investigated the impact on the corresponding resistive switching (RS) performance via adding different amounts of hydroiodic acid (HI) in Cs3Cu2I5 precursor solution. The results demonstrated that the crystallinity and morphology of the Cs3Cu2I5 films can be improved and the resistive switching performance can be modulated by adding an appropriate amount of HI. The obtained Cs3Cu2I5 films by adding 5 μL HI exhibit the fewest lattice defects and flattest surface (RMS = 13.3 nm). Besides, the memory device, utilizing the optimized films, has a low electroforming voltage (1.44 V), a large on/off ratio (∼65), and a long retention time (104 s). The RS performance impacted by adding HI, providing a scientific strategy for improving the RS performance of iodine halide perovskite-based memories.
Collapse
Affiliation(s)
- Fanju Zeng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
- School of Big Data Engineering, Kaili University, Kaili, Guizhou 556011, China
| | - Yongqian Tan
- School of Big Data Engineering, Kaili University, Kaili, Guizhou 556011, China
| | - Wei Hu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaosheng Tang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Zhongtao Luo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qiang Huang
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yuanyang Guo
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaomei Zhang
- School of Big Data Engineering, Kaili University, Kaili, Guizhou 556011, China
| | - Haifeng Yin
- School of Big Data Engineering, Kaili University, Kaili, Guizhou 556011, China
| | - Julin Feng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xusheng Zhao
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Ben Yang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
20
|
Yu J, Luo M, Lv Z, Huang S, Hsu HH, Kuo CC, Han ST, Zhou Y. Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. NANOSCALE 2020; 12:23391-23423. [PMID: 33227110 DOI: 10.1039/d0nr06719a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The substantial amount of data generated every second in the big data age creates a pressing requirement for new and advanced data storage techniques. Luminescent nanomaterials (LNMs) not only possess the same optical properties as their bulk materials but also have unique electronic and mechanical characteristics due to the strong constraints of photons and electrons at the nanoscale, enabling the development of revolutionary methods for data storage with superhigh storage capacity, ultra-long working lifetime, and ultra-low power consumption. In this review, we investigate the latest achievements in LNMs for constructing next-generation data storage systems, with a focus on optical data storage and optoelectronic data storage. We summarize the LNMs used in data storage, namely upconversion nanomaterials, long persistence luminescent nanomaterials, and downconversion nanomaterials, and their applications in optical data storage and optoelectronic data storage. We conclude by discussing the superiority of the two types of data storage and survey the prospects for the field.
Collapse
Affiliation(s)
- Jinbo Yu
- Institute of Microscale Optoelectronics, Shenzhen University, 3688 Nanhai Road, Shenzhen, 518060, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Xu X, Zhou X, Wang T, Shi X, Liu Y, Zuo Y, Xu L, Wang M, Hu X, Yang X, Chen J, Yang X, Chen L, Chen P, Peng H. Robust DNA‐Bridged Memristor for Textile Chips. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaojie Xu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Xufeng Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Tianyu Wang
- State Key Laboratory of ASIC and System, School of Microelectronics Fudan University Shanghai 200433 China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Ya Liu
- International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiao Tong University Shannxi 710049 China
| | - Yong Zuo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Limin Xu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Mengying Wang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Xiaofeng Hu
- State Key Laboratory of Surface Physics Fudan University Shanghai 200438 China
| | - Xinju Yang
- State Key Laboratory of Surface Physics Fudan University Shanghai 200438 China
| | - Jiaxin Chen
- Department of Materials Science Fudan University Shanghai 200438 China
| | - Xiubo Yang
- Analytical & Testing Center Northwestern Polytechnical University Shaanxi 710072 China
| | - Lin Chen
- State Key Laboratory of ASIC and System, School of Microelectronics Fudan University Shanghai 200433 China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science, and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| |
Collapse
|
22
|
Xu X, Zhou X, Wang T, Shi X, Liu Y, Zuo Y, Xu L, Wang M, Hu X, Yang X, Chen J, Yang X, Chen L, Chen P, Peng H. Robust DNA-Bridged Memristor for Textile Chips. Angew Chem Int Ed Engl 2020; 59:12762-12768. [PMID: 32342610 DOI: 10.1002/anie.202004333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Electronic textiles may revolutionize many fields, such as communication, health care and artificial intelligence. To date, unfortunately, computing with them is not yet possible. Memristors are compatible with the interwoven structure and manufacturing process in textiles because of its two-terminal crossbar configuration. However, it remains a challenge to realize textile memristors owing to the difficulties in designing advanced memristive materials and achieving high-quality active layers on fiber electrodes. Herein we report a robust textile memristor based on an electrophoretic-deposited active layer of deoxyribonucleic acid (DNA) on fiber electrodes. The unique architecture and orientation of DNA molecules with the incorporation of Ag nanoparticles offer the best-in-class performances, e.g., both ultra-low operation voltage of 0.3 V and power consumption of 100 pW and high switching speed of 20 ns. Fundamental logic calculations such as implication and NAND are demonstrated as functions of textile chips, and it has been thus integrated with power-supplying and light emitting modules to demonstrate an all-fabric information processing system.
Collapse
Affiliation(s)
- Xiaojie Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xufeng Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Tianyu Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Ya Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiao Tong University, Shannxi, 710049, China
| | - Yong Zuo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Limin Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Mengying Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Xiaofeng Hu
- State Key Laboratory of Surface Physics, Fudan University, Shanghai, 200438, China
| | - Xinju Yang
- State Key Laboratory of Surface Physics, Fudan University, Shanghai, 200438, China
| | - Jiaxin Chen
- Department of Materials Science, Fudan University, Shanghai, 200438, China
| | - Xiubo Yang
- Analytical & Testing Center, Northwestern Polytechnical University, Shaanxi, 710072, China
| | - Lin Chen
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
23
|
Peng D, Jiang Y, Huang B, Du Y, Zhao J, Zhang X, Ma R, Golovynskyi S, Chen B, Wang F. A ZnS/CaZnOS Heterojunction for Efficient Mechanical-to-Optical Energy Conversion by Conduction Band Offset. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907747. [PMID: 32128925 DOI: 10.1002/adma.201907747] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/18/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Actively collecting the mechanical energy by efficient conversion to other forms of energy such as light opens a new possibility of energy-saving, which is of pivotal significance for supplying potential solutions for the present energy crisis. Such energy conversion has shown promising applications in modern sensors, actuators, and energy harvesting. However, the implementation of such technologies is being hindered because most luminescent materials show weak and non-recoverable emissions under mechanical excitation. Herein, a new class of heterojunctioned ZnS/CaZnOS piezophotonic systems is presented, which displays highly reproducible mechanoluminescence (ML) with an unprecedented intensity of over two times higher than that of the widely used commercial ZnS (the state-of-the-art ML material). Density functional theory calculations reveal that the high-performance ML originates from efficient charge transfer and recombination through offset of the valence and conduction bands in the heterojunction interface region. By controlling the ZnS-to-CaZnOS ratio in conjunction with manganese (Mn2+ ) and lanthanide (Ln3+ ) doping, tunable ML across the full spectrum is activated by a small mechanical stimulus of 1 N (10 kPa). The findings demonstrate a novel strategy for constructing efficient ML materials by leveraging interface effects and ultimately promoting practical applications for ML.
Collapse
Affiliation(s)
- Dengfeng Peng
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yue Jiang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Yangyang Du
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Hong Kong SAR, 999077, China
| | - Jianxiong Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Hong Kong SAR, 999077, China
| | - Xin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Hong Kong SAR, 999077, China
| | - Ronghua Ma
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Sergii Golovynskyi
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Hong Kong SAR, 999077, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
24
|
Rehman MM, Rehman HMMU, Gul JZ, Kim WY, Karimov KS, Ahmed N. Decade of 2D-materials-based RRAM devices: a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:147-186. [PMID: 32284767 PMCID: PMC7144203 DOI: 10.1080/14686996.2020.1730236] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 06/01/2023]
Abstract
Two dimensional (2D) materials have offered unique electrical, chemical, mechanical and physical properties over the past decade owing to their ultrathin, flexible, and multilayer structure. These layered materials are being used in numerous electronic devices for various applications, and this review will specifically focus on the resistive random access memories (RRAMs) based on 2D materials and their nanocomposites. This study presents the device structures, conduction mechanisms, resistive switching properties, fabrication technologies, challenges and future aspects of 2D-materials-based RRAMs. Graphene, derivatives of graphene and MoS2 have been the major contributors among 2D materials for the application of RRAMs; however, other members of this family such as hBN, MoSe2, WS2 and WSe2 have also been inspected more recently as the functional materials of nonvolatile RRAM devices. Conduction in these devices is usually dominated by either the penetration of metallic ions or migration of intrinsic species. Most prominent advantages offered by RRAM devices based on 2D materials include fast switching speed (<10 ns), less power losses (10 pJ), lower threshold voltage (<1 V) long retention time (>10 years), high electrical endurance (>108 voltage cycles) and extended mechanical robustness (500 bending cycles). Resistive switching properties of 2D materials have been further enhanced by blending them with metallic nanoparticles, organic polymers and inorganic semiconductors in various forms.
Collapse
Affiliation(s)
- Muhammad Muqeet Rehman
- Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| | | | - Jahan Zeb Gul
- Department of Mechatronics & Biomedical Engineering, AIR University, Islamabad, Pakistan
| | - Woo Young Kim
- Faculty of Electronic Engineering, Jeju National University, Jeju, South Korea
| | - Khasan S Karimov
- Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Nisar Ahmed
- Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
| |
Collapse
|
25
|
Park HL, Kim H, Lim D, Zhou H, Kim YH, Lee Y, Park S, Lee TW. Retina-Inspired Carbon Nitride-Based Photonic Synapses for Selective Detection of UV Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906899. [PMID: 31984573 DOI: 10.1002/adma.201906899] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/21/2019] [Indexed: 05/28/2023]
Abstract
Photonic synapses combine sensing and processing in a single device, so they are promising candidates to emulate visual perception of a biological retina. However, photonic synapses with wavelength selectivity, which is a key property for visual perception, have not been developed so far. Herein, organic photonic synapses that selectively detect UV rays and process various optical stimuli are presented. The photonic synapses use carbon nitride (C3 N4 ) as an UV-responsive floating-gate layer in transistor geometry. C3 N4 nanodots dominantly absorb UV light; this trait is the basis of UV selectivity in these photonic synapses. The presented devices consume only 18.06 fJ per synaptic event, which is comparable to the energy consumption of biological synapses. Furthermore, in situ modulation of exposure to UV light is demonstrated by integrating the devices with UV transmittance modulators. These smart systems can be further developed to combine detection and dose-calculation to determine how and when to decrease UV transmittance for preventive health care.
Collapse
Affiliation(s)
- Hea-Lim Park
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Haeju Kim
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Donggyu Lim
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Huanyu Zhou
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hoon Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeongjun Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sungjin Park
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Nano Systems Institute (NSI), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
26
|
Enhanced Optical Switching Characteristics of Organic Phototransistor by Adopting Photo-Responsive Polymer in Hybrid Gate-Insulator Configuration. Polymers (Basel) 2020; 12:polym12030527. [PMID: 32121576 PMCID: PMC7182856 DOI: 10.3390/polym12030527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, we developed polymer gate insulator-based organic phototransistors (p-OPTs) with improved optical switching properties by using a hybrid gate insulator configuration. The hybrid gate insulator of our p-OPT has a photoresponsive layer made of poly(4-vinylphenol) (PVP), which enhances the photoresponse, and an interfacial layer of poly(methyl methacrylate) for reliable optical switching of the device. Our hybrid gate insulator-equipped p-OPT exhibits well-defined optical switching characteristics because no specific type of charge is significantly trapped at an interfacial layer/organic semiconductor (OSC) interface. Moreover, our device is more photoresponsive than the conventional p-OPT (here, an OPT with a single-polymer poly(methyl methacrylate) (PMMA) gate insulator), because the characteristic ultraviolet (UV) absorption of the PVP polymer allows the photoresponsive layer and OSC to contribute to the generation of charge carriers when exposed to UV light.
Collapse
|
27
|
Li H, Wang R, Han S, Zhou Y. Ferroelectric polymers for non‐volatile memory devices: a review. POLYM INT 2020. [DOI: 10.1002/pi.5980] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huilin Li
- Institute of Microscale Optoelectronics, Shenzhen University Shenzhen PR China
- Henan Key Laboratory of Photovoltaic MaterialsHenan University Kaifeng PR China
| | - Ruopeng Wang
- College of Electronics and Information EngineeringShenzhen University Shenzhen PR China
| | - Su‐Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University Shenzhen PR China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University Shenzhen PR China
| |
Collapse
|
28
|
Chen B, Wang F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01358j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review focuses on recent progress in the development of Yb-based upconversion nanoparticles and their emerging technological applications.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering
- City University of Hong Kong
- Hong Kong SAR
- China
- City University of Hong Kong Shenzhen Research Institute
| | - Feng Wang
- Department of Materials Science and Engineering
- City University of Hong Kong
- Hong Kong SAR
- China
- City University of Hong Kong Shenzhen Research Institute
| |
Collapse
|
29
|
Han Y, Wang J, Wan H, Wang S, Hu H, Xiao TH, Cheng Z, Liu T. Solution processable transition metal dichalcogenides-based hybrids for photodetection. NANO MATERIALS SCIENCE 2019. [DOI: 10.1016/j.nanoms.2019.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Zhou F, Chen J, Tao X, Wang X, Chai Y. 2D Materials Based Optoelectronic Memory: Convergence of Electronic Memory and Optical Sensor. RESEARCH 2019; 2019:9490413. [PMID: 31549096 PMCID: PMC6750115 DOI: 10.34133/2019/9490413] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/14/2019] [Indexed: 11/06/2022]
Abstract
The continuous development of electron devices towards the trend of "More than Moore" requires functional diversification that can collect data (sensors) and store (memories) and process (computing units) information. Considering the large occupation proportion of image data in both data center and edge devices, a device integration with optical sensing and data storage and processing is highly demanded for future energy-efficient and miniaturized electronic system. Two-dimensional (2D) materials and their heterostructures have exhibited broadband photoresponse and high photoresponsivity in the configuration of optical sensors and showed fast switching speed, multi-bit data storage, and large ON/OFF ratio in memory devices. In addition, its ultrathin body thickness and transfer process at low temperature allow 2D materials to be heterogeneously integrated with other existing materials system. In this paper, we overview the state-of-the-art optoelectronic random-access memories (ORAMs) based on 2D materials, as well as ORAM synaptic devices and their applications in neural network and image processing. The ORAM devices potentially enable direct storage/processing of sensory data from external environment. We also provide perspectives on possible directions of other neuromorphic sensor design (e.g., auditory and olfactory) based on 2D materials towards the future smart electronic systems for artificial intelligence.
Collapse
Affiliation(s)
- Feichi Zhou
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong
| | - Jiewei Chen
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong
| | - Xiaoming Tao
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong
| | - Xinran Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|