1
|
Askins EJ, Zoric MR, Li M, Amine R, Amine K, Curtiss LA, Glusac KD. Triarylmethyl cation redox mediators enhance Li-O 2 battery discharge capacities. Nat Chem 2023; 15:1247-1254. [PMID: 37414882 DOI: 10.1038/s41557-023-01268-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
A major impediment to Li-O2 battery commercialization is the low discharge capacities resulting from electronically insulating Li2O2 film growth on carbon electrodes. Redox mediation offers an effective strategy to drive oxygen chemistry into solution, avoiding surface-mediated Li2O2 film growth and extending discharge lifetimes. As such, the exploration of diverse redox mediator classes can aid the development of molecular design criteria. Here we report a class of triarylmethyl cations that are effective at enhancing discharge capacities up to 35-fold. Surprisingly, we observe that redox mediators with more positive reduction potentials lead to larger discharge capacities because of their improved ability to suppress the surface-mediated reduction pathway. This result provides important structure-property relationships for future improvements in redox-mediated O2/Li2O2 discharge capacities. Furthermore, we applied a chronopotentiometry model to investigate the zones of redox mediator standard reduction potentials and the concentrations needed to achieve efficient redox mediation at a given current density. We expect this analysis to guide future redox mediator exploration.
Collapse
Affiliation(s)
- Erik J Askins
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Marija R Zoric
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Matthew Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Rachid Amine
- Material Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Larry A Curtiss
- Material Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
2
|
Liu T, Zhao S, Xiong Q, Yu J, Wang J, Huang G, Ni M, Zhang X. Reversible Discharge Products in Li-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208925. [PMID: 36502282 DOI: 10.1002/adma.202208925] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Indexed: 05/19/2023]
Abstract
Lithium-air (Li-air) batteries stand out among the post-Li-ion batteries due to their high energy density, which has rapidly progressed in the past years. Regarding the fundamental mechanism of Li-air batteries that discharge products produced and decomposed during charging and recharging progress, the reversibility of products closely affects the battery performance. Along with the upsurge of the mainstream discharge products lithium peroxide, with devoted efforts to screening electrolytes, constructing high-efficiency cathodes, and optimizing anodes, much progress is made in the fundamental understanding and performance. However, the limited advancement is insufficient. In this case, the investigations of other discharge products, including lithium hydroxide, lithium superoxide, lithium oxide, and lithium carbonate, emerge and bring breakthroughs for the Li-air battery technologies. To deepen the understanding of the electrochemical reactions and conversions of discharge products in the battery, recent advances in the various discharge products, mainly focusing on the growth and decomposition mechanisms and the determining factors are systematically reviewed. The perspectives for Li-air batteries on the fundamental development of discharge products and future applications are also provided.
Collapse
Affiliation(s)
- Tong Liu
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Siyuan Zhao
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Qi Xiong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jie Yu
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Jian Wang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Meng Ni
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
3
|
Dou Y, Kan D, Su Y, Zhang Y, Wei Y, Zhang Z, Zhou Z. Critical Factors Affecting the Catalytic Activity of Redox Mediators on Li-O 2 Battery Discharge. J Phys Chem Lett 2022; 13:7081-7086. [PMID: 35900208 DOI: 10.1021/acs.jpclett.2c01818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Redox mediators (RMs) have a substantial ability to govern oxygen reduction reaction (ORR) in Li-O2 batteries, which can realize large capacity and high-rate capability. However, studies on understanding RM-assisted ORR mechanisms are still in their infancy. Herein, a quinone-based molecule, vitamin K1 (VK1), is first used as the ORR RM for Li-O2 batteries, together with 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ), to elucidate key factors on the catalytic activity of RMs. By combining experiments and first-principle computations, we demonstrate that the reduced VK1 has strong oxygen affinity and can effectively retard the deposition of Li2O2 films on the electrode surface, thereby guaranteeing enough active sites for electron transfer. Besides, the low reaction free energy of disproportionation of the Li(VK1)O2 intermediate into Li2O2 also significantly accelerates the ORR process. Consequently, the catalytic activity of VK1 is significantly boosted, and the discharge capacity of VK1-assisted batteries is 3.2-4.5 times that of DBBQ-assisted batteries. This study provides new insight for better understanding the working roles of RMs in Li-O2 batteries.
Collapse
Affiliation(s)
- Yaying Dou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dongxiao Kan
- Advanced Materials Research Center, Northwest Institute for Non-Ferrous Metal Research, Xi'an, Shanxi 710016, China
| | - Yuwei Su
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
| | - Yantao Zhang
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, Jilin 130012, China
| | - Zhang Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Zhou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
4
|
Wang N, Fu J, Cao X, Tang L, Meng X, Han Z, Sun L, Qi S, Xiong D. Hydrophobic RuO2/Graphene/N-doped Porous Carbon Hybrid Catalyst for Li-Air Batteries Operating in Ambient Air. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Zhou Y, Gu Q, Yin K, Li Y, Tao L, Tan H, Yang Y, Guo S. Engineering e
g
Orbital Occupancy of Pt with Au Alloying Enables Reversible Li−O
2
Batteries. Angew Chem Int Ed Engl 2022; 61:e202201416. [DOI: 10.1002/anie.202201416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yin Zhou
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Qianfeng Gu
- Department of Materials Science and Engineering City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong 999077 China
| | - Kun Yin
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering, Beijing Institute of Technology Beijing 10081 China
| | - Yiju Li
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Hao Tan
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Yong Yang
- State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials Northwestern Polytechnical University Xi'an 710072 China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| |
Collapse
|
6
|
Silva JFL, Policano MC, Tonon GC, Anchieta CG, Doubek G, Filho RM. The Potential of Hydrophobic Membranes in Enabling the Operation of Lithium-Air Batteries with Ambient Air. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Zhou Y, Gu Q, Yin K, Li Y, Tao L, Tan H, Yang Y, Guo S. Engineering e
g
Orbital Occupancy of Pt with Au Alloying Enables Reversible Li−O
2
Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yin Zhou
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Qianfeng Gu
- Department of Materials Science and Engineering City University of Hong Kong Tat Chee Avenue 83 Kowloon Hong Kong 999077 China
| | - Kun Yin
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications School of Materials Science & Engineering, Beijing Institute of Technology Beijing 10081 China
| | - Yiju Li
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Hao Tan
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Yong Yang
- State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials Northwestern Polytechnical University Xi'an 710072 China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University Beijing 100871 China
| |
Collapse
|
8
|
Zhang C, Wang A, Guo L, Yi J, Luo J. A Moisture-Assisted Rechargeable Mg-CO 2 Battery. Angew Chem Int Ed Engl 2022; 61:e202200181. [PMID: 35170161 DOI: 10.1002/anie.202200181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/07/2022]
Abstract
New sustainable energy conversion and storage technologies are required to address the energy crisis and CO2 emission. Among various metal-CO2 batteries that utilize CO2 and offer high energy density, rechargeable Mg-CO2 batteries based on earth-abundant and safe magnesium (Mg) metal have been limited due to the lack of a compatible electrolyte, operation atmosphere, and unambiguous reaction process. Herein, the first rechargeable nonaqueous Mg-CO2 batteries have been proposed with moisture assistance in a CO2 atmosphere. These display more than 250 h cycle life and maintain the discharge voltage over 1 V at 200 mA g-1 . Combining with the experimental observations and theoretical calculations, the reaction in the moisture-assisted Mg-CO2 battery is revealed to be 2 Mg+3 CO2 +6 H2 O↔2 MgCO3 ⋅3 H2 O+C. It is anticipated that the moisture-assisted rechargeable Mg-CO2 batteries would stimulate the development of multivalent metal-CO2 batteries and extend CO2 fixation and utilization for carbon neutrality.
Collapse
Affiliation(s)
- Chenyue Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineer and Technology, Tianjin University, Tianjin, 300072, China
| | - Aoxuan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineer and Technology, Tianjin University, Tianjin, 300072, China
| | - Longyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineer and Technology, Tianjin University, Tianjin, 300072, China
| | - Jin Yi
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiayan Luo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineer and Technology, Tianjin University, Tianjin, 300072, China.,Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
9
|
Zhang C, Wang A, Guo L, Yi J, Luo J. A Moisture‐Assisted Rechargeable Mg−CO
2
Battery. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenyue Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineer and Technology Tianjin University Tianjin 300072 China
| | - Aoxuan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineer and Technology Tianjin University Tianjin 300072 China
| | - Longyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineer and Technology Tianjin University Tianjin 300072 China
| | - Jin Yi
- Institute for Sustainable Energy/College of Sciences Shanghai University Shanghai 200444 China
| | - Jiayan Luo
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineer and Technology Tianjin University Tianjin 300072 China
- Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| |
Collapse
|
10
|
Li J, Dai A, Amine K, Lu J. Correlating Catalyst Design and Discharged Product to Reduce Overpotential in Li-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007760. [PMID: 33739573 DOI: 10.1002/smll.202007760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Li-CO2 batteries with dual efficacy for greenhouse gas CO2 sequestration and high energy output have been regarded as a promising electrochemical energy storage technology. However, battery feasibility has been hampered by inferior electrochemical performance due to large overpotentials and low cyclability primarily caused by the difficult decomposition of ultra-stable Li2 CO3 during charge. The use of cathode catalysts has been highlighted as a promising solution and catalyst properties, as well as the nature of discharge products, are closely correlated with electrochemical performance. Here, the catalyst design strategies that include active site enrichment, electrical transport enhancement, and mass transfer improvement are summarized. Catalyst effects on product decomposition are then subsequently introduced, while product geometry and chemical composition will be explored, with an emphasis on the formation/decomposition of Li2 C2 O4 instead of Li2 CO3 . Building on previous research, future directions that facilitate improvements in catalyst design are put forward to reinforce the fundamental development of Li-CO2 batteries.
Collapse
Affiliation(s)
- Jiantao Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| | - Alvin Dai
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
- Department of Material Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam, 34212, Saudi Arabia
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| |
Collapse
|
11
|
Wu M, Liu D, Li Z, Tang Y, Ding Y, Li Y, Wu ZS, Zhao H. α-MnO 2/MWCNTs as an electrocatalyst for rechargeable relatively closed system Li-O 2 batteries. Chem Commun (Camb) 2021; 57:11823-11826. [PMID: 34697613 DOI: 10.1039/d1cc03814a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a new, relatively closed system Li-O2 (RCLO) battery, without extra oxygen being involved in the reaction during the charge and discharge process, is reported. This relatively closed system effectively solves the key issue of poor circulation caused by oxygen generation in conventional Li-O2 batteries.
Collapse
Affiliation(s)
- Min Wu
- New Energy Laboratory, Dalian Jiaotong University, 794 Huanghe Road, Dalian 116028, China. .,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. .,Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Dechong Liu
- New Energy Laboratory, Dalian Jiaotong University, 794 Huanghe Road, Dalian 116028, China.
| | - Zhuxin Li
- New Energy Laboratory, Dalian Jiaotong University, 794 Huanghe Road, Dalian 116028, China.
| | - Yu Tang
- New Energy Laboratory, Dalian Jiaotong University, 794 Huanghe Road, Dalian 116028, China.
| | - Yajun Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. .,Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yuejiao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. .,Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. .,Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hong Zhao
- New Energy Laboratory, Dalian Jiaotong University, 794 Huanghe Road, Dalian 116028, China.
| |
Collapse
|
12
|
Shan N, Redfern PC, Ngo AT, Zapol P, Markovic N, Curtiss LA. Theoretical evidence of water serving as a promoter for lithium superoxide disproportionation in Li-O 2 batteries. Phys Chem Chem Phys 2021; 23:10440-10447. [PMID: 33890602 DOI: 10.1039/d0cp05924b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Experimental evidence has demonstrated that the presence of water in non-aqueous electrolytes significantly affects Li-O2 electrochemistry. Understanding the reaction mechanism for Li2O2 formation in the presence of water impurities is important to understand Li-O2 battery performance. A recent experiment has found that very small amounts of water (as low as 40 ppm) can significantly affect the product formation in Li-O2 batteries as opposed to essentially no water (1 ppm). Although experimental as well as theoretical work has proposed mechanisms of Li2O2 formation in the presence of much larger amounts of water, none of the mechanisms provide an explanation for the observations for very small amounts of water. In this work, density functional theory (DFT) was utilized to obtain a mechanistic understanding of the Li-O2 discharge chemistry in a dimethoxyethane (DME) electrolyte containing an isolated water and no water. The reaction pathways for Li2O2 formation from LiO2 on a model system were carefully evaluated with different level of theories, i.e. PBE (PW), B3LYP/6-31G(2df,p), B3LYP/6-311++G(2df,p) and G4MP2. The results indicate that the LiO2 disproportionation reaction to Li2O2 can be promoted by the water in DME electrolyte, which explains why there is a significant difference compared to when no water is present in the experimentally observed discharge product distributions. Ab initio molecular dynamics calculations were also used to investigate the disproportionation of LiO2 dimer in explicit DME. This work adds to the fundamental understanding of the discharge chemistry of a Li-O2 battery.
Collapse
Affiliation(s)
- Nannan Shan
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Paul C Redfern
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Anh T Ngo
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA. and Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Peter Zapol
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Nenad Markovic
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Larry A Curtiss
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
13
|
Dutta A, Ito K, Nomura A, Kubo Y. Quantitative Delineation of the Low Energy Decomposition Pathway for Lithium Peroxide in Lithium-Oxygen Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001660. [PMID: 33042767 PMCID: PMC7539218 DOI: 10.1002/advs.202001660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/07/2020] [Indexed: 05/06/2023]
Abstract
Identification of a low-potential decomposition pathway for lithium peroxide (Li2O2) in nonaqueous lithium-oxygen (Li-O2) battery is urgently needed to ameliorate its poor energy efficiency. In this study, experimental data and theoretical calculations demonstrate that the recharge overpotential (η RC) of Li-O2 battery is fundamentally dependent on the Li2O2 crystallization pathway which is intrinsically related to the microscopic structural properties of the growing crystals during discharge. The Li2O2 grown by concurrent surface reduction and chemical disproportionation seems to form two discrete phases that have been deconvoluted and the amount of Li2O2 deposited by these two routes is quantitatively estimated. Systematic analyses have demonstrated that, regardless of the bulk morphology, solution-grown Li2O2 shows higher η RC (>1 V) which can be attributed to higher structural order in the crystal compared to the surface-grown Li2O2. Presumably due to a cohesive interaction between the electrode surface and growing crystals, the surface-grown Li2O2 seems to possess microscopic structural disorder that facilitates a delithiation induced partial solution-phase oxidation at lower η RC (<0.5 V). This difference in η RC for differently grown Li2O2 provides crucial insights into necessary control over Li2O2 crystallization pathways to improve the energy efficiency of a Li-O2 battery.
Collapse
Affiliation(s)
- Arghya Dutta
- Center for Green Research on Energy and Environmental MaterialsNational Institute for Materials Science1‐1 NamikiTsukuba305‐0044Japan
| | - Kimihiko Ito
- Center for Green Research on Energy and Environmental MaterialsNational Institute for Materials Science1‐1 NamikiTsukuba305‐0044Japan
| | - Akihiro Nomura
- Center for Green Research on Energy and Environmental MaterialsNational Institute for Materials Science1‐1 NamikiTsukuba305‐0044Japan
- NIMS‐SoftBank Advanced Technologies Development CenterNational Institute for Materials Science1‐1 NamikiTsukuba305‐0044Japan
| | - Yoshimi Kubo
- Center for Green Research on Energy and Environmental MaterialsNational Institute for Materials Science1‐1 NamikiTsukuba305‐0044Japan
- NIMS‐SoftBank Advanced Technologies Development CenterNational Institute for Materials Science1‐1 NamikiTsukuba305‐0044Japan
| |
Collapse
|
14
|
Wang C, Zhang Z, Liu W, Zhang Q, Wang X, Xie Z, Zhou Z. Enzyme‐Inspired Room‐Temperature Lithium–Oxygen Chemistry via Reversible Cleavage and Formation of Dioxygen Bonds. Angew Chem Int Ed Engl 2020; 59:17856-17863. [DOI: 10.1002/anie.202009792] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Chengyi Wang
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
| | - Zihe Zhang
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
| | - Weiwei Liu
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
| | - Qinming Zhang
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
| | - Xin‐Gai Wang
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
| | - Zhaojun Xie
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
| | - Zhen Zhou
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education School of Chemical Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
15
|
Wang C, Zhang Z, Liu W, Zhang Q, Wang X, Xie Z, Zhou Z. Enzyme‐Inspired Room‐Temperature Lithium–Oxygen Chemistry via Reversible Cleavage and Formation of Dioxygen Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chengyi Wang
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
| | - Zihe Zhang
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
| | - Weiwei Liu
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
| | - Qinming Zhang
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
| | - Xin‐Gai Wang
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
| | - Zhaojun Xie
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
| | - Zhen Zhou
- School of Materials Science and Engineering Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) Nankai University Tianjin 300350 China
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education School of Chemical Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
16
|
Han XB, Ye S. Structural Design of Oxygen Reduction Redox Mediators (ORRMs) Based on Anthraquinone (AQ) for the Li–O2 Battery. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang-Bin Han
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8577, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
17
|
Wang R, Wei Y, An L, Yang R, Guo L, Weng Z, Da P, Chen W, Jin J, Li J, Xi P. Construction and Application of Interfacial Inorganic Nanostructures. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Yicheng Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Rui Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Linchuan Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Zheng Weng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Wenqing Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Jianyi Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou Gansu 730000 China
| |
Collapse
|
18
|
Li C, Wei J, Qiu K, Wang Y. Li-air Battery with a Superhydrophobic Li-Protective Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23010-23016. [PMID: 32348116 DOI: 10.1021/acsami.0c05494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Li-air batteries operated in ambient air are imperative toward real practical applications. However, the passivation of lithium metal anodes induced by attacking air hinders their long-term running, accelerating the degradation of Li-air batteries. Herein, a hydrogel-derived hierarchical porous carbon (HDHPC) layer with superhydrophobicity is proved as an effective Li-protective layer for a Li-air battery that suppresses the H2O attack and lithium dendrite formation during cycling. Accordingly, the HDHPC protective layer-based Li-air cell exhibits eminent cycling stability in ambient air [relative humidity (RH) of ∼40%], which is far better than that of the Li-air cell without the HDHPC protective layer. It is also demonstrated that the conversion of O2/Li2O2 in Li-air batteries adversely affects the decomposition of the byproduct and electrolyte. The usage of the HDHPC protective layer pioneers a new avenue of developing high-performance Li-air batteries in ambient air.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Jishi Wei
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Ke Qiu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Tian X, Zhou K. 3D printing of cellular materials for advanced electrochemical energy storage and conversion. NANOSCALE 2020; 12:7416-7432. [PMID: 32211665 DOI: 10.1039/d0nr00291g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
3D printing, an advanced layer-by-layer assembly technology, is an ideal platform for building architectures with customized geometries and controllable microstructures. Bio-inspired cellular material is one of most representative 3D-printed architectures, and attracting growing attention compared to block counterparts. The integration of 3D printing and cellular materials offer massive advantages and opens up great opportunities in diverse application fields, particularly in electrochemical energy storage and conversion (EESC). This article gives a comprehensive overview of 3D-printed cellular materials for advanced EESC. It begins with an introduction of advanced 3D printing techniques for cellular material fabrication, followed by the corresponding material design principles. Recent advances in 3D-printed cellular materials for EESC applications, including rechargeable batteries, supercapacitors and electrocatalysts are then summarized and discussed. Finally, current trends and challenges along with in-depth future perspectives are provided.
Collapse
Affiliation(s)
- Xiaocong Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, 430074 Wuhan, China.
| | | |
Collapse
|
20
|
Guo H, Hou G, Dai L, Yao Y, Wei C, Liang Z, Si P, Ci L. Stable Lithium Anode of Li-O 2 Batteries in a Wet Electrolyte Enabled by a High-Current Treatment. J Phys Chem Lett 2020; 11:172-178. [PMID: 31825623 DOI: 10.1021/acs.jpclett.9b02749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rechargeable Li-air (O2) batteries have attracted a great deal of attention because of their high theoretical energy density and been regarded as a promising next-generation energy storage technology. Among numerous obstacles to Li-air (O2) batteries preventing their use in practical applications, water is a representative impurity for Li-air (O2), which could hasten the deterioration of the anode and accelarate the premature death of cells. Here, we report an effective in situ high-current pretreatment process to enhance the cycling performance of Li-O2 batteries in a wet tetraethylene glycol dimethyl ether-based electrolyte. With the help of certain levels of H2O (from 100 to 2000 ppm) in the electrolyte, adequate Li2O formed on the lithium anode surface after high-current pretreatment, which is necessary for a robust and uniform solid electrolyte interphase layer to protect Li metal during the long-term discharge-charge cycling process. This in situ high-current pretreatment method in a wet electrolyte is shown to be an effective approach for enhancing the cycling performance of Li-O2 batteries with a stable Li metal anode and promoting the realization of practical Li-air batteries.
Collapse
Affiliation(s)
- Huanhuan Guo
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China
| | - Guangmei Hou
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China
| | - Linna Dai
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China
| | - Yuqing Yao
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China
| | - Chuanliang Wei
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China
| | - Zhen Liang
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China
| | - Pengchao Si
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China
| | - Lijie Ci
- SDU & Rice Joint Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering , Shandong University , Jinan 250061 , China
- School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , P. R. China
| |
Collapse
|
21
|
Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 2020; 49:1569-1614. [DOI: 10.1039/c7cs00863e] [Citation(s) in RCA: 788] [Impact Index Per Article: 197.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review article summarizes the current trends and provides guidelines towards next-generation rechargeable lithium and lithium-ion battery chemistries.
Collapse
Affiliation(s)
- Feixiang Wu
- School of Metallurgy and Environment
- Central South University
- Changsha 410083
- China
| | - Joachim Maier
- Max Planck Institute for Solid State Research
- Stuttgart 70569
- Germany
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale
- Department of Materials Science and Engineering
- CAS Key Laboratory of Materials for Energy Conversion
- University of Science and Technology of China
- Hefei
| |
Collapse
|
22
|
Wang Z, Tao H, Yue Y. Metal‐Organic‐Framework‐Based Cathodes for Enhancing the Electrochemical Performances of Batteries: A Review. ChemElectroChem 2019. [DOI: 10.1002/celc.201900843] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhaoyang Wang
- State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of Technology Wuhan 430070 China
| | - Haizheng Tao
- State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of Technology Wuhan 430070 China
| | - Yuanzheng Yue
- State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of Technology Wuhan 430070 China
- Department of Chemistry and BioscienceAalborg University DK-9220 Aalborg Denmark
- School of Materials Science and EngineeringQilu University of Technology Jinan 250300 China
| |
Collapse
|