1
|
Cui M, Zhang Y, Xu B, Xu F, Chen J, Zhang S, Chen C, Luo Z. High-entropy alloy nanomaterials for electrocatalysis. Chem Commun (Camb) 2024; 60:12615-12632. [PMID: 39377768 DOI: 10.1039/d4cc04075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
High-entropy alloys (HEAs) exhibit a remarkable capacity to modulate geometric and electronic structures for the construction of catalysts with unpredictable and exceptional performance, and have attracted substantial acclaim within the domain of materials science. In this comprehensive review, we present a thorough summary of the synthesis and multiple applications of HEAs in the realm of electrocatalysis. Our review encompasses the diverse synthesis methodologies of HEA nanomaterials and their pivotal roles in amplifying electrocatalytic performance in hydrogen evolution reactions (HERs), oxygen evolution reactions (OERs), oxygen reduction reactions (ORRs), alcohol oxidation reactions (AORs), and CO2 reduction reactions (CO2RRs), and more. Furthermore, we address the intricate challenges and promising avenues that lie ahead in this research area. Reviewing recent breakthroughs, emerging paradigms, and prospects on the horizon, it becomes increasingly evident that HEAs harbor immense potential to reshape the landscape of energy conversion and storage, and emerge as paramount contenders for the development of cutting-edge electrocatalytic materials that hold the key to a sustainable energy future.
Collapse
Affiliation(s)
- Mingjin Cui
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Zhang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Bo Xu
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Fei Xu
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Jianwei Chen
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Shaoyin Zhang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Chunhong Chen
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Zhimin Luo
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
2
|
Feng Y, Zhang S, Chen M, Zhu L, Pei A, Wu F, Liao X, Gao Q, Wang W, Yang Z, Ye H, Chen BH. Revealing the mechanism of bifunctional PtLa electrocatalyst for highly efficient methanol oxidation, hydrogen evolution, and coupling reaction. J Colloid Interface Sci 2024; 679:918-928. [PMID: 39486230 DOI: 10.1016/j.jcis.2024.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
The development of clean energy solutions, such as fuel cells and hydrogen energy, is crucial for addressing the global energy shortage. Platinum (Pt)-based catalysts are widely used in fuel cells and hydrogen energy generation (for example, via water electrolysis). However, reducing the amount of Pt used while maintaining the catalytic performance of such catalysts is essential. Herein, PtLa catalysts (PtxLay/C) doped with rare earth element lanthanum (La) with different Pt/La atomic ratios were synthesized using a simple chemical reduction method, resulting in Pt65La35/C, Pt78La22/C, Pt97La3/C, and Pt100/C. These PtxLay/C catalysts exhibited excellent electrocatalytic activity and stability in methanol oxidation reaction (MOR), hydrogen evolution reaction (HER), and their coupling reaction as MOR||HER under alkaline conditions. The mechanism by which La doping enhances the electrocatalytic properties and stability of Pt-based catalysts was investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), aberration-corrected scanning transmission electron microscopy (AC-STEM), in-situ Fourier transform infrared (FTIR) and operando Raman spectroscopy. For HER, La doping facilitated the adsorption and activation of H2O at Pt sites, improving water dissociation and *OH desorption and reducing Pt poisoning by *OH. This enhances both the catalytic performance and stability of PtxLay/C for HER. Pt78La22/C exhibited a considerably lower overpotential of only 111 mV at 100 mA cm-2 compared to commercial 20 wt% Pt/C (Pt/C-Johnson Matthey (JM)), which requires 153 mV. For MOR, La promotes CO bond cleavage and reduces CO adsorption at the Pt sites, thereby enhancing both the performance and stability of the catalysts. The mass activity (MA) of Pt78La22/C for MOR is 4.44 A mg-1Pt, which is 12.33 times higher than that of Pt/C-JM (0.36 A/mgPt), and surpasses those of Pt65La35/C, Pt97La3/C, and Pt100/C (2.93, 0.24, and 2.91 A mg-1Pt, respectively). Additionally, Pt78La22/C exhibited outstanding catalytic performance for MOR||HER, with a current density of 20 mA cm-2 at 1.030 V, demonstrating good stability with negligible voltage changes after a 15 h chronoamperometry (CA) testing. This study provides a new strategy for synthesizing Pt-based catalysts with enhanced efficiency and low-energy input for HER||MOR.
Collapse
Affiliation(s)
- Yingliang Feng
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Sifan Zhang
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Mingzhi Chen
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Lihua Zhu
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - An Pei
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Fengshun Wu
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Xianping Liao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.
| | | | | | | | - Bing Hui Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Guterman V, Alekseenko A, Belenov S, Menshikov V, Moguchikh E, Novomlinskaya I, Paperzh K, Pankov I. Exploring the Potential of Bimetallic PtPd/C Cathode Catalysts to Enhance the Performance of PEM Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1672. [PMID: 39453008 PMCID: PMC11510532 DOI: 10.3390/nano14201672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Bimetallic platinum-containing catalysts are deemed promising for electrolyzers and proton-exchange membrane fuel cells (PEMFCs). A significant number of laboratory studies and commercial offers are related to PtNi/C and PtCo/C electrocatalysts. The behavior of PtPd/C catalysts has been studied much less, although palladium itself is the metal closest to platinum in its properties. Using a series of characterization methods, this paper presents a comparative study of structural characteristics of the commercial PtPd/C catalysts containing 38% wt. of precious metals and the well-known HiSpec4000 Pt/C catalyst. The electrochemical behavior of the catalysts was studied both in a three-electrode electrochemical cell and in the membrane electrode assemblies (MEAs) of hydrogen-air PEMFCs. Both PtPd/C samples demonstrated higher values of the electrochemically active surface area, as well as greater specific and mass activity in the oxygen reduction reaction in comparison with conventional Pt/C, while not being inferior to the latter in durability. The MEA based on the best of the PtPd/C catalysts also exhibited higher performance in single tests and long-term durability testing. The results of this study conducted indicate the prospects of using bimetallic PtPd/C materials for cathode catalysts in PEMFCs.
Collapse
Affiliation(s)
- Vladimir Guterman
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Anastasia Alekseenko
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Sergey Belenov
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
- Prometheus R&D LLC, 4g/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Vladislav Menshikov
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
- Prometheus R&D LLC, 4g/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Elizaveta Moguchikh
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Irina Novomlinskaya
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
- Prometheus R&D LLC, 4g/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Kirill Paperzh
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Ilya Pankov
- Research Institute of Physical Organic Chemistry, Southern Federal University, 194/2 Stachki St., Rostov-on-Don 344090, Russia;
| |
Collapse
|
4
|
Zhang J, Wang X, Du F, Wu J, Xiao S, Zhou Y, Wu H, Shao Z, Cai W, Li Y. Phosphorous Vacancy and Built-In Electric Field Effect of Co-Doped MoP@MXene Heterostructures to Tune Catalytic Activity for Efficient Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400304. [PMID: 38881255 DOI: 10.1002/smll.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Developing cost-effective, durable bifunctional electrocatalysts is crucial but remains challenging due to slow hydrogen/oxygen evolution reaction (HER/OER) kinetics in water electrolysis. Herein, a combined engineering strategy of phosphorous vacancy (Vp) and spontaneous built-in electric field (BIEF) is proposed to design novel highly-conductive Co-doped MoP@MXene heterostructures with phosphorous vacancy (Vp-Co-MoP@MXene). Wherein, Co doping regulates the surface electronic structure and charge re-distribution of MoP, Vp induces more defects and active sites, while BIEF accelerates the interfacial charge transfer rate between Vp-Co-MoP and MXene. Therefore, the synergistic integration of Vp-Co-MoP/MXene efficiently decreases activation energy and kinetic barrier, thus promoting its intrinsically catalytic activity and structural stability. Consequently, the Vp-Co-MoP@MXene catalyst displays low overpotentials of 102.3/196.5 and 265.0/320.0 mV at 10/50 mA cm-2 for HER and OER, respectively. Notably, two-electrode electrolyzers with the Vp-Co-MoP@MXene bifunctional catalysts to achieve 10/50 mA cm-2, only need low-cell voltages of 1.57/1.64 V in alkaline media. Besides, experimental and theoretical results confirm that the hetero-structure effectively reduces hydrogen adsorption free energy and rate-determining-step energy barrier of OER intermediates, thereby greatly boosting its intrinsically catalytic activity. This work verifies an effective strategy to fabricate efficient non-precious bifunctional electro-catalysts for water splitting via combination engineering of phosphorous vacancy, cation doping, and BIEF.
Collapse
Affiliation(s)
- Jiacheng Zhang
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xinying Wang
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Feixiang Du
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Jiayi Wu
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Shengfu Xiao
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yiru Zhou
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Hao Wu
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Zhuhang Shao
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Weitong Cai
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yunyong Li
- School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|
5
|
Rafiq K, Sabir M, Abid MZ, Hussain E. Unveiling the scope and perspectives of MOF-derived materials for cutting-edge applications. NANOSCALE 2024; 16:16791-16837. [PMID: 39206569 DOI: 10.1039/d4nr02168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Although synthesis and design of MOFs are crucial factors to the successful implementation of targeted applications, there is still lack of knowledge among researchers about the synthesis of MOFs and their derived composites for practical applications. For example, many researchers manipulate study results, and it has become quite difficult to quit this habit specifically among the young researchers Undoubtedly, MOFs have become an excellent class of compounds but there are many challenges associated with their improvement to attain diverse applications. It has been noted that MOF-derived materials have gained considerable interest owing to their unique chemical properties. These compounds have exhibited excellent potential in various sectors such as energy, catalysis, sensing and environmental applications. It is worth mentioning that most of the researchers rely on commercially available MOFs for use as precursor supports, but it is an unethical and wrong practice because it prevents the exploration of the hidden diversity of similar materials. The reported studies have significant gaps and flaws, they do not have enough details about the exact parameters used for the synthesis of MOFs and their derived materials. For example, many young researchers claim that MOF-based materials cannot be synthesized as per the reported instructions for large-scale implementation. In this regard, current article provides a comprehensive review of the most recent advancements in the design of MOF-derived materials. The methodologies and applications have been evaluated together with their advantages and drawbacks. Additionally, this review suggests important precautions and solutions to overcome the drawbacks associated with their preparation. Applications of MOF-derived materials in the fields of energy, catalysis, sensing and environment have been discussed. No doubt, these materials have become excellent class but there are still many challenges ahead to specify it for the targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Mamoona Sabir
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur-63100, Pakistan.
| |
Collapse
|
6
|
Tang YF, Liu LB, Yu M, Liu S, Sui PF, Sun W, Fu XZ, Luo JL, Liu S. Strong effect-correlated electrochemical CO 2 reduction. Chem Soc Rev 2024; 53:9344-9377. [PMID: 39162094 DOI: 10.1039/d4cs00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Electrochemical CO2 reduction (ECR) holds great potential to alleviate the greenhouse effect and our dependence on fossil fuels by integrating renewable energy for the electrosynthesis of high-value fuels from CO2. However, the high thermodynamic energy barrier, sluggish reaction kinetics, inadequate CO2 conversion rate, poor selectivity for the target product, and rapid electrocatalyst degradation severely limit its further industrial-scale application. Although numerous strategies have been proposed to enhance ECR performances from various perspectives, scattered studies fail to comprehensively elucidate the underlying effect-performance relationships toward ECR. Thus, this review presents a comparative summary and a deep discussion with respect to the effects strongly-correlated with ECR, including intrinsic effects of materials caused by various sizes, shapes, compositions, defects, interfaces, and ligands; structure-induced effects derived from diverse confinements, strains, and fields; electrolyte effects introduced by different solutes, solvents, cations, and anions; and environment effects induced by distinct ionomers, pressures, temperatures, gas impurities, and flow rates, with an emphasis on elaborating how these effects shape ECR electrocatalytic activities and selectivity and the underlying mechanisms. In addition, the challenges and prospects behind different effects resulting from various factors are suggested to inspire more attention towards high-throughput theoretical calculations and in situ/operando techniques to unlock the essence of enhanced ECR performance and realize its ultimate application.
Collapse
Affiliation(s)
- Yu-Feng Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Lin-Bo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Mulin Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Shuo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Peng-Fei Sui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jing-Li Luo
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
7
|
Wang Z, Li Y, Ma Z, Wang D, Ren X. Strategies for overcoming challenges in selective electrochemical CO 2 conversion to ethanol. iScience 2024; 27:110437. [PMID: 39114499 PMCID: PMC11304069 DOI: 10.1016/j.isci.2024.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
The electrochemical conversion of carbon dioxide (CO2) to valuable chemicals is gaining significant attention as a pragmatic solution for achieving carbon neutrality and storing renewable energy in a usable form. Recent research increasingly focuses on designing electrocatalysts that specifically convert CO2 into ethanol, a desirable product due to its high-energy density, ease of storage, and portability. However, achieving high-efficiency ethanol production remains a challenge compared to ethylene (a competing product with a similar electron configuration). Existing electrocatalytic systems often suffer from limitations such as low energy efficiency, poor stability, and inadequate selectivity toward ethanol. Inspired by recent progress in the field, this review explores fundamental principles and material advancements in CO2 electroreduction, emphasizing strategies for ethanol production over ethylene. We discuss electrocatalyst design, reaction mechanisms, challenges, and future research directions. These advancements aim to bridge the gap between current research and industrialized applications of this technology.
Collapse
Affiliation(s)
- Zihong Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Yecheng Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Zhihao Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Dazhuang Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Xiaodi Ren
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
8
|
Liu M, Zhao J, Dong H, Meng H, Cao D, Zhu K, Yao J, Wang G. Electrodeposition of Ni/Cu Bimetallic Conductive Metal-Organic Frameworks Electrocatalysts with Boosted Oxygen Reduction Activity for Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405309. [PMID: 39148192 DOI: 10.1002/smll.202405309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Zinc-air batteries employing non-Pt cathodes hold significant promise for advancing cathodic oxygen reduction reaction (ORR). However, poor intrinsic electrical conductivity and aggregation tendency hinder the application of metal-organic frameworks (MOFs) as active ORR cathodes. Conductive MOFs possess various atomically dispersed metal centers and well-aligned inherent topologies, eliminating the additional carbonization processes for achieving high conductivity. Here, a novel room-temperature electrochemical cathodic electrodeposition method is introduced for fabricating uniform and continuous layered 2D bimetallic conductive MOF films cathodes without polymeric binders, employing the organic ligand 2,3,6,7,10,11-hexaiminotriphenylene (HITP) and varying the Ni/Cu ratio. The influence of metal centers on modulating the ORR performance is investigated by density functional theory (DFT), demonstrating the performance of bimetallic conductive MOFs can be effectively tuned by the unpaired 3d electrons and the Jahn-Teller effect in the doped Cu. The resulting bimetallic Ni2.1Cu0.9(HITP)2 exhibits superior ORR performance, boasting a high onset potential of 0.93 V. Moreover, the assembled aqueous zinc-air battery demonstrates high specific capacity of 706.2 mA h g-1, and exceptional long-term charge/discharge stability exceeding 1250 cycles.
Collapse
Affiliation(s)
- Mufei Liu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Jing Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Hao Meng
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Jiaxin Yao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
- Heilongjiang Hachuan Carbon Materials Technology Co. LTD, National Quality Supervision, Inspection Center of Graphite Products, Jixi, 158100, P. R. China
| |
Collapse
|
9
|
Chen S, Chung LH, Chen S, Jiang Z, Li N, Hu J, Liao WM, He J. Efficient Lead Removal by Assembly of Bio-Derived Ellagate Framework, Which Enables Electrocatalytic Reduction of CO 2 to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400978. [PMID: 38593307 DOI: 10.1002/smll.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Lead (Pb) poisoning and CO2-induced global warming represent two exemplary environmental and energy issues threatening humanity. Various biomass-derived materials are reported to take up Pb and convert CO2 electrochemically into low-valent carbon species, but these works address the problems separately rather than settle the issues simultaneously. In this work, cheap, natural ellagic acid (EA) extracted from common plants is adopted to assemble a stable metal-organic framework (MOF), EA-Pb, by effective capture of Pb2+ ions in an aqueous medium (removal rate close to 99%). EA-Pb represents the first structurally well-defined Pb-based MOF showing selective electrocatalytic CO2-to-HCOO- conversion with Faradaic efficiency (FE) of 95.37% at -1.08 V versus RHE. The catalytic mechanism is studied by 13CO2 labeling, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and theoretical calculation. The use of EA-Pb as an electrocatalyst for CO2 reduction represents a 2-in-1 solution of converting detrimental wastes (Pb2+) as well as natural resources (EA) into wealth (electrocatalytic EA-Pb) for addressing the global warming issue.
Collapse
Affiliation(s)
- Song Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Shaoru Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhixin Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Ning Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Wei-Ming Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| |
Collapse
|
10
|
Long X, Huang F, Yao Z, Li P, Zhong T, Zhao H, Tian S, Shu D, He C. Advancements in Electrocatalytic Nitrogen Reduction: A Comprehensive Review of Single-Atom Catalysts for Sustainable Ammonia Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400551. [PMID: 38516940 DOI: 10.1002/smll.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single-atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In-depth insights into the material preparation methods, single-atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.
Collapse
Affiliation(s)
- Xianhu Long
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fan Huang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhangnan Yao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
11
|
Altaf C, Colak TO, Karagoz E, Wang J, Liu Y, Chen Y, Liu M, Unal U, Sankir ND, Sankir M. Co-sensitization of Copper Indium Gallium Disulfide and Indium Sulfide on Zinc Oxide Nanostructures: Effect of Morphology in Electrochemical Carbon Dioxide Reduction. ACS OMEGA 2024; 9:19209-19218. [PMID: 38708266 PMCID: PMC11064200 DOI: 10.1021/acsomega.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Recent advances in nanoparticle materials can facilitate the electro-reduction of carbon dioxide (CO2) to form valuable products with high selectivity. Copper (Cu)-based electrodes are promising candidates to drive efficient and selective CO2 reduction. However, the application of Cu-based chalcopyrite semiconductors in the electrocatalytic reduction of CO2 is still limited. This study demonstrated that novel zinc oxide (ZnO)/copper indium gallium sulfide (CIGS)/indium sulfide (InS) heterojunction electrodes could be used in effective CO2 reduction for formic acid production. It has been determined that Faradaic efficiencies for formic acid production using ZnO nanowire (NW) and nanoflower (NF) structures vary due to structural and morphological differences. A ZnO NW/CIGS/InS heterojunction electrode resulted in the highest efficiency of 77.2% and 0.35 mA cm-2 of current density at a -0.24 V (vs. reversible hydrogen electrode) bias potential. Adding a ZTO intermediate layer by the spray pyrolysis method decreased the yield of formic acid and increased the yield of H2. Our work offers a new heterojunction electrode for efficient formic acid production via cost-effective and scalable CO2 reduction.
Collapse
Affiliation(s)
- Cigdem
Tuc Altaf
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
| | - Tuluhan Olcayto Colak
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
| | - Emine Karagoz
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
| | - Jiayi Wang
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Ya Liu
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yubin Chen
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Maochang Liu
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Ugur Unal
- Department
of Chemistry, Surface Science and Technology Centre (KUYTAM), Koç University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Nurdan Demirci Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
| | - Mehmet Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, Sogutozu Caddesi No 43, Sogutozu 06560, Ankara, Turkey
| |
Collapse
|
12
|
Modi KH, Pataniya PM, Sumesh CK. 2D Monolayer Catalysts: Towards Efficient Water Splitting and Green Hydrogen Production. Chemistry 2024; 30:e202303978. [PMID: 38299695 DOI: 10.1002/chem.202303978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
A viable alternative to non-renewable hydrocarbon fuels is hydrogen gas, created using a safe, environmentally friendly process like water splitting. An important role in water-splitting applications is played by the development of two-dimensional (2D) layered transition metal chalcogenides (TMDCs), transition metal carbides (MXenes), graphene-derived 2D layered nanomaterials, phosphorene, and hexagonal boron nitride. Advanced synthesis methods and characterization instruments enabled an effective application for improved electrocatalytic water splitting and sustainable hydrogen production. Enhancing active sites, modifying the phase and electronic structure, adding conductive elements like transition metals, forming heterostructures, altering the defect state, etc., can improve the catalytic activity of 2D stacked hybrid monolayer nanomaterials. The majority of global research and development is focused on finding safer substitutes for petrochemical fuels, and this review summarizes recent advancements in the field of 2D monolayer nanomaterials in water splitting for industrial-scale green hydrogen production and fuel cell applications.
Collapse
Affiliation(s)
- Krishna H Modi
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, 388421, Changa, Gujarat, India
| | - Pratik M Pataniya
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, 388421, Changa, Gujarat, India
| | - C K Sumesh
- Department of Physical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT, 388421, Changa, Gujarat, India
| |
Collapse
|
13
|
Cao X, Luo W, Liu H. A prediction model for CO 2/CO adsorption performance on binary alloys based on machine learning. RSC Adv 2024; 14:12235-12246. [PMID: 38628487 PMCID: PMC11019484 DOI: 10.1039/d4ra00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Despite the rapid development of computational methods, including density functional theory (DFT), predicting the performance of a catalytic material merely based on its atomic arrangements remains challenging. Although quantum mechanics-based methods can model 'real' materials with dopants, grain boundaries, and interfaces with acceptable accuracy, the high demand for computational resources no longer meets the needs of modern scientific research. On the other hand, Machine Learning (ML) method can accelerate the screening of alloy-based catalytic materials. In this study, an ML model was developed to predict the CO2 and CO adsorption affinity on single-atom doped binary alloys based on the thermochemical properties of component metals. By using a greedy algorithm, the best combination of features was determined, and the ML model was trained and verified based on a data set containing 78 alloys on which the adsorption energy values of CO2 and CO were calculated from DFT. Comparison between predicted and DFT calculated adsorption energy values suggests that the extreme gradient boosting (XGBoost) algorithm has excellent generalization performance, and the R-squared (R2) for CO2 and CO adsorption energy prediction are 0.96 and 0.91, respectively. The errors of predicted adsorption energy are 0.138 eV and 0.075 eV for CO2 and CO, respectively. This model can be expected to advance our understanding of structure-property relationships at the fundamental level and be used in large-scale screening of alloy-based catalysts.
Collapse
Affiliation(s)
- Xiaofeng Cao
- School of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 P. R. China
| | - Wenjia Luo
- School of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 P. R. China
| | - Huimin Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu 610500 P. R. China
| |
Collapse
|
14
|
Guo L, Zhou J, Liu F, Meng X, Ma Y, Hao F, Xiong Y, Fan Z. Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction. ACS NANO 2024; 18:9823-9851. [PMID: 38546130 DOI: 10.1021/acsnano.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
With the increasingly serious greenhouse effect, the electrochemical carbon dioxide reduction reaction (CO2RR) has garnered widespread attention as it is capable of leveraging renewable energy to convert CO2 into value-added chemicals and fuels. However, the performance of CO2RR can hardly meet expectations because of the diverse intermediates and complicated reaction processes, necessitating the exploitation of highly efficient catalysts. In recent years, with advanced characterization technologies and theoretical simulations, the exploration of catalytic mechanisms has gradually deepened into the electronic structure of catalysts and their interactions with intermediates, which serve as a bridge to facilitate the deeper comprehension of structure-performance relationships. Transition metal-based catalysts (TMCs), extensively applied in electrochemical CO2RR, demonstrate substantial potential for further electronic structure modulation, given their abundance of d electrons. Herein, we discuss the representative feasible strategies to modulate the electronic structure of catalysts, including doping, vacancy, alloying, heterostructure, strain, and phase engineering. These approaches profoundly alter the inherent properties of TMCs and their interaction with intermediates, thereby greatly affecting the reaction rate and pathway of CO2RR. It is believed that the rational electronic structure design and modulation can fundamentally provide viable directions and strategies for the development of advanced catalysts toward efficient electrochemical conversion of CO2 and many other small molecules.
Collapse
Affiliation(s)
- Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
15
|
Wang H, Kang X, Han B. Rare-earth Element-based Electrocatalysts Designed for CO 2 Electro-reduction. CHEMSUSCHEM 2024; 17:e202301539. [PMID: 38109070 DOI: 10.1002/cssc.202301539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Electrochemical CO2 reduction presents a promising approach for synthesizing fuels and chemical feedstocks using renewable energy sources. Although significant advancements have been made in the design of catalysts for CO2 reduction reaction (CO2RR) in recent years, the linear scaling relationship of key intermediates, selectivity, stability, and economical efficiency are still required to be improved. Rare earth (RE) elements, recognized as pivotal components in various industrial applications, have been widely used in catalysis due to their unique properties such as redox characteristics, orbital structure, oxygen affinity, large ion radius, and electronic configuration. Furthermore, RE elements could effectively modulate the adsorption strength of intermediates and provide abundant metal active sites for CO2RR. Despite their potential, there is still a shortage of comprehensive and systematic analysis of RE elements employed in the design of electrocatalysts of CO2RR. Therefore, the current approaches for the design of RE element-based electrocatalysts and their applications in CO2RR are thoroughly summarized in this review. The review starts by outlining the characteristics of CO2RR and RE elements, followed by a summary of design strategies and synthetic methods for RE element-based electrocatalysts. Finally, an overview of current limitations in research and an outline of the prospects for future investigations are proposed.
Collapse
Affiliation(s)
- Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
16
|
Song Y, Guo P, Ma T, Su J, Huang L, Guo W, Liu Y, Li G, Xin Y, Zhang Q, Zhang S, Shen H, Feng X, Yang D, Tian J, Ravi SK, Tang BZ, Ye R. Ultrathin, Cationic Covalent Organic Nanosheets for Enhanced CO 2 Electroreduction to Methanol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310037. [PMID: 37931925 DOI: 10.1002/adma.202310037] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Indexed: 11/08/2023]
Abstract
Metalloporphyrins and metallophthalocyanines emerge as popular building blocks to develop covalent organic nanosheets (CONs) for CO2 reduction reaction (CO2RR). However, existing CONs predominantly yield CO, posing a challenge in achieving efficient methanol production through multielectron reduction. Here, ultrathin, cationic, and cobalt-phthalocyanine-based CONs (iminium-CONs) are reported for electrochemical CO2-to-CH3OH conversion. The integration of quaternary iminium groups enables the formation of ultrathin morphology with uniformly anchored cobalt active sites, which are pivotal for facilitating rapid multielectron transfer. Moreover, the cationic iminium-CONs exhibit a lower activity for hydrogen evolution side reaction. Consequently, iminium-CONs manifest significantly enhanced selectivity for methanol production, as evidenced by a remarkable 711% and 270% improvement in methanol partial current density (jCH3OH) compared to pristine CoTAPc and neutral imine-CONs, respectively. Under optimized conditions, iminium-CONs deliver a high jCH3OH of 91.7 mA cm-2 at -0.78 V in a flow cell. Further, iminium-CONs achieve a global methanol Faradaic efficiency (FECH3OH) of 54% in a tandem device. Thanks to the single-site feature, the methanol is produced without the concurrent generation of other liquid byproducts. This work underscores the potential of cationic covalent organic nanosheets as a compelling platform for electrochemical six-electron reduction of CO2 to methanol.
Collapse
Affiliation(s)
- Yun Song
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Peng Guo
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jianjun Su
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Libei Huang
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Weihua Guo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Yong Liu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Geng Li
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Yinger Xin
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Qiang Zhang
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Siwei Zhang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, China
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Hanchen Shen
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, China
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dengtao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jia Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, China
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Ruquan Ye
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
17
|
Cho J, Medina A, Saih I, Il Choi J, Drexler M, Goddard WA, Alamgir FM, Jang SS. 2D Metal/Graphene and 2D Metal/Graphene/Metal Systems for Electrocatalytic Conversion of CO 2 to Formic Acid. Angew Chem Int Ed Engl 2024; 63:e202320268. [PMID: 38271278 DOI: 10.1002/anie.202320268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
Efficiently transforming CO2 into renewable energy sources is crucial for decarbonization efforts. Formic acid (HCOOH) holds great promise as a hydrogen storage compound due to its high hydrogen density, non-toxicity, and stability under ambient conditions. However, the electrochemical reduction of CO2 (CO2 RR) on conventional carbon black-supported metal catalysts faces challenges such as low stability through dissolution and agglomeration, as well as suffering from high overpotentials and the necessity to overcome the competitive hydrogen evolution reaction (HER). In this study, we modify the physical/chemical properties of metal surfaces by depositing metal monolayers on graphene (M/G) to create highly active and stable electrocatalysts. Strong covalent bonding between graphene and metal is induced by the hybridization of sp and d orbitals, especially the sharpd z 2 ${{d}_{{z}^{2}}}$ ,d y z ${{d}_{yz}}$ , andd x z ${{d}_{xz}}$ orbitals of metals near the Fermi level, playing a decisive role. Moreover, charge polarization on graphene in M/G enables the deposition of another thin metallic film, forming metal/graphene/metal (M/G/M) structures. Finally, evaluating overpotentials required for CO2 reduction to HCOOH, CO, and HER, we find that Pd/G, Pt/G/Ag, and Pt/G/Au exhibit excellent activity and selectivity toward HCOOH production. Our novel 2D hybrid catalyst design methodology may offer insights into enhanced electrochemical reactions through the electronic mixing of metal and other p-block elements.
Collapse
Affiliation(s)
- Jinwon Cho
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Arturo Medina
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Ines Saih
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Ji Il Choi
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Matthew Drexler
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Faisal M Alamgir
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| | - Seung Soon Jang
- School of materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr., Atlanta, GA 30332-0245, USA
| |
Collapse
|
18
|
Sanati S, Wang Q, Abazari R, Liu M. Recent advanced strategies for bimetallenes toward electrocatalytic energy conversion reactions. Chem Commun (Camb) 2024; 60:3129-3137. [PMID: 38404151 DOI: 10.1039/d3cc06073j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts.
Collapse
Affiliation(s)
- Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran.
| | - Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China.
| | - Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran.
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha, 410083, P. R. China.
| |
Collapse
|
19
|
Chen Y, Shen Y, Dai L, Yao S, An C. Coordination Confined Thermolysis Synthesis of the Ni Single Atom Catalyst on the N-Doped Commercial Carbon for the Production of Syngas. Inorg Chem 2024; 63:2131-2137. [PMID: 38212991 DOI: 10.1021/acs.inorgchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The electrochemical conversion of CO2 into controllable syngas (CO/H2) over a wide potential range is challenging. The main electrocatalysts are based on the noble metals Au (Ag) or heavy metal Pb. The development of alternative nonprecious catalysts is of paramount importance for practice. In this work, a simple coordination confined thermal pyrolysis method has been developed for the synthesis of Ni single-atom catalyst loaded onto nitrogen-doped commercial carbon. The catalyst is in the form of NiN3-C, which exhibits a high-performance electrocatalytic reduction of CO2 toward producing syngas with Faraday efficiencies of 62.28% of CO and 36.7% of H2. The Gibbs free energies of COOH* and H* on the NiN3-C structure were estimated by using density functional theory (DFT). The formation of COOH* intermediate is the speed-limiting step in the process, with ΔG COOH* being 0.7 eV, while H* is the speed-limiting step in the hydrogen evolution, respectively. This work provides a feasible method for the achievement of nonprecious catalysts for the resourceful use of CO2.
Collapse
Affiliation(s)
- Yuping Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yongli Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Linxiu Dai
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shuang Yao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Changhua An
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
20
|
Chen T, Qiu C, Zhang X, Wang H, Song J, Zhang K, Yang T, Zuo Y, Yang Y, Gao C, Xiao W, Jiang Z, Wang Y, Xiang Y, Xia D. An Ultrasmall Ordered High-Entropy Intermetallic with Multiple Active Sites for the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:1174-1184. [PMID: 38153040 PMCID: PMC10785812 DOI: 10.1021/jacs.3c12649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Controlling multimetallic ensembles at the atomic level is significantly challenging, particularly for high-entropy alloys with more than five elements. Herein, we report an innovative ultrasmall (∼2 nm) PtFeCoNiCuZn high-entropy intermetallic (PFCNCZ-HEI) with a well-ordered structure synthesized by using the space-confined strategy. By exploiting these combined metals, the PFCNCZ-HEI nanoparticles achieve an ultrahigh mass activity of 2.403 A mgPt-1 at 0.90 V vs reversible hydrogen electrode for the oxygen reduction reaction, which is up to 19-fold higher than that of state-of-the-art commercial Pt/C. A proton exchange membrane fuel cell assembled with PFCNCZ-HEI as the cathode (0.03 mgPt cm-2) exhibits a power density of 1.4 W cm-2 and a high mass-normalized rated power of 45 W mgPt-1. Furthermore, theoretical calculations reveal that the outer electrons of the non-noble-metal atoms on the surface of the PFCNCZ-HEI nanoparticle are modulated to show characteristics of multiple active centers. This work offers a promising catalyst design direction for developing highly ordered HEI nanoparticles for electrocatalysis.
Collapse
Affiliation(s)
- Tao Chen
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Chunyu Qiu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinkai Zhang
- Beijing
Key Laboratory of Bio-inspired Energy Materials and Devices, School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Hangchao Wang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Jin Song
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Kun Zhang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Tonghuan Yang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yuxuan Zuo
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yali Yang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Chuan Gao
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Wukun Xiao
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Zewen Jiang
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Yucheng Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Xiang
- Beijing
Key Laboratory of Bio-inspired Energy Materials and Devices, School
of Space and Environment, Beihang University, Beijing 100191, China
| | - Dingguo Xia
- Beijing
Key Laboratory of Theory and Technology for Advanced Batteries Materials,
School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
21
|
Song W, Xiao C, Ding J, Huang Z, Yang X, Zhang T, Mitlin D, Hu W. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301477. [PMID: 37078970 DOI: 10.1002/adma.202301477] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This topical review focuses on the distinct role of carbon support coordination environment of single-atom catalysts (SACs) for electrocatalysis. The article begins with an overview of atomic coordination configurations in SACs, including a discussion of the advanced characterization techniques and simulation used for understanding the active sites. A summary of key electrocatalysis applications is then provided. These processes are oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2 RR). The review then shifts to modulation of the metal atom-carbon coordination environments, focusing on nitrogen and other non-metal coordination through modulation at the first coordination shell and modulation in the second and higher coordination shells. Representative case studies are provided, starting with the classic four-nitrogen-coordinated single metal atom (MN4 ) based SACs. Bimetallic coordination models including homo-paired and hetero-paired active sites are also discussed, being categorized as emerging approaches. The theme of the discussions is the correlation between synthesis methods for selective doping, the carbon structure-electron configuration changes associated with the doping, the analytical techniques used to ascertain these changes, and the resultant electrocatalysis performance. Critical unanswered questions as well as promising underexplored research directions are identified.
Collapse
Affiliation(s)
- Wanqing Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Caixia Xiao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zechuan Huang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyi Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - David Mitlin
- Materials Science Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
22
|
Lv XW, Wang Z, Lai Z, Liu Y, Ma T, Geng J, Yuan ZY. Rechargeable Zinc-Air Batteries: Advances, Challenges, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306396. [PMID: 37712176 DOI: 10.1002/smll.202306396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Indexed: 09/16/2023]
Abstract
Rechargeable zinc-air batteries (Re-ZABs) are one of the most promising next-generation batteries that can hold more energy while being cost-effective and safer than existing devices. Nevertheless, zinc dendrites, non-portability, and limited charge-discharge cycles have long been obstacles to the commercialization of Re-ZABs. Over the past 30 years, milestone breakthroughs have been made in technical indicators (safety, high energy density, and long battery life), battery components (air cathode, zinc anode, and gas diffusion layer), and battery configurations (flexibility and portability), however, a comprehensive review on advanced design strategies for Re-ZABs system from multiple angles is still lacking. This review underscores the progress and strategies proposed so far to pursuit the high-efficiency Re-ZABs system, including the aspects of rechargeability (from primary to rechargeable), air cathode (from unifunctional to bifunctional), zinc anode (from dendritic to stable), electrolytes (from aqueous to non-aqueous), battery configurations (from non-portable to portable), and industrialization progress (from laboratorial to practical). Critical appraisals of the advanced modification approaches (such as surface/interface modulation, nanoconfinement catalysis, defect electrochemistry, synergistic electrocatalysis, etc.) are highlighted for cost-effective flexible Re-ZABs with good sustainability and high energy density. Finally, insights are further rendered properly for the future research directions of advanced zinc-air batteries.
Collapse
Affiliation(s)
- Xian-Wei Lv
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhongli Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhuangzhuang Lai
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuping Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Tianyi Ma
- School of Science, RMIT University Melbourne, Melbourne, Victoria, 3000, Australia
| | - Jianxin Geng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, College of Chemistry, Nankai University, Tianjin, 300350, China
| |
Collapse
|
23
|
Wang Z, Zhou Y, Qiu P, Xia C, Fang W, Jin J, Huang L, Deng P, Su Y, Crespo-Otero R, Tian X, You B, Guo W, Di Tommaso D, Pang Y, Ding S, Xia BY. Advanced Catalyst Design and Reactor Configuration Upgrade in Electrochemical Carbon Dioxide Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303052. [PMID: 37589167 DOI: 10.1002/adma.202303052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2 RR) driven by renewable energy shows great promise in mitigating and potentially reversing the devastating effects of anthropogenic climate change and environmental degradation. The simultaneous synthesis of energy-dense chemicals can meet global energy demand while decoupling emissions from economic growth. However, the development of CO2 RR technology faces challenges in catalyst discovery and device optimization that hinder their industrial implementation. In this contribution, a comprehensive overview of the current state of CO2 RR research is provided, starting with the background and motivation for this technology, followed by the fundamentals and evaluated metrics. Then the underlying design principles of electrocatalysts are discussed, emphasizing their structure-performance correlations and advanced electrochemical assembly cells that can increase CO2 RR selectivity and throughput. Finally, the review looks to the future and identifies opportunities for innovation in mechanism discovery, material screening strategies, and device assemblies to move toward a carbon-neutral society.
Collapse
Affiliation(s)
- Zhitong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yansong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peng Qiu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wensheng Fang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Jian Jin
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Rachel Crespo-Otero
- Department of Chemistry, University of College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Devis Di Tommaso
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Rd, Xi'an, 710049, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| |
Collapse
|
24
|
Alonso-Vante N. Parameters Affecting the Fuel Cell Reactions on Platinum Bimetallic Nanostructures. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Zhang S, Yin L, Wang S, Liu JC, Zhang Y, Wen Y, Zhang Q, Du Y. Ternary Rare Earth Alloy Pt 3-xIr xSc Nanoparticles Modulate Negatively Charged Pt via Charge Transfer To Facilitate pH-Universal Hydrogen Evolution. ACS NANO 2023; 17:23103-23114. [PMID: 37930125 DOI: 10.1021/acsnano.3c08921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Rare earth (RE) elements possess electronic configurations that can provide additional pathways for tailoring the electronic structures of active elements through alloying, making it an important area of exploration in electrocatalysis. However, the large negative redox potential between RE and Pt has hindered the development of RE nanoalloys. In this study, a solid-phase synthesis strategy was employed to synthesize ternary Pt3-xIrxSc nanoparticles (NPs). By leveraging the electronegativity difference between Pt (2.28), Ir (2.20), and Sc (1.36), a charge-balance strategy was implemented to stabilize and enhance the catalytic performance of the alloy. The electron transfer from Sc to Pt/Ir results in the latter being negatively charged, and the Ir modifies the electron density of Pt, enabling favorable adsorption of active H species during the hydrogen evolution reaction (HER). Pt2IrSc exhibits enhanced HER activity at all pH values, achieving low overpotentials at 10 mA cm-2 of only 13, 18, and 25 mV in 0.5 M H2SO4, 1 M PBS, and 1 M KOH, respectively. This electrocatalyst also exhibits robust electrocatalytic stability even after 20,000 cycles. This work represents an application of the charge balance strategy to RE nanoalloys, and it is expected to inspire the design and synthesis of highly reactive RE nanoalloys.
Collapse
Affiliation(s)
- Shuai Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Siyuan Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Jin-Cheng Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yongqing Wen
- Rare Earth Advanced Materials Technology Innovation Center, Baotou 014010, China
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
26
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Zhu J, Shao J, Shen BA, Chen J, Yu Y, Song S, Zhang XB, Zhang B, Zhao BH. Formamide Electrosynthesis from Methanol and Ammonia in Water over Pr-Doped MnO 2. JACS AU 2023; 3:2987-2992. [PMID: 38034964 PMCID: PMC10685412 DOI: 10.1021/jacsau.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023]
Abstract
A rare earth element doping strategy is reported to boost the activity and enhance the stability of MnO2 for selective formamide production through electrocatalytic oxidation coupling (EOC) of methanol and ammonia. MnO2 doped with 1% Pr was selected as the best candidate with an optimized formamide yield of 211.32 μmol cm-2 h-1, a Faradaic efficiency of 22.63%, and a stability of more than 50 h. The easier formation of Mn6+ species and the lower dissolution rate of Mn species over Pr-doped MnO2 revealed by in situ Raman spectra were responsible for the boosted formamide production and enhanced stability. In addition, a two-electrode flow electrolyzer was developed to integrate EOC with C2H2 semihydrogenation for simultaneously producing value-added products in both the anode and cathode.
Collapse
Affiliation(s)
- Jiewei Zhu
- Department
of Catalysis Science and Engineering, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
| | - Jiang Shao
- Institute
of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Bai-An Shen
- Institute
of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jixiang Chen
- Department
of Catalysis Science and Engineering, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
| | - Yifu Yu
- Institute
of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Shuyan Song
- State
Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xin-Bo Zhang
- State
Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bin Zhang
- Department
of Catalysis Science and Engineering, School of Chemical Engineering
and Technology, Tianjin University, Tianjin 300072, China
- Institute
of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Bo-Hang Zhao
- Institute
of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
28
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
29
|
Wang K, Wang L, Huang J, Chen Y, Liu X, Yang T, Wei G, Gao S. Structural design of FeCo alloy implanted into N,S co-doped carbon nanotubes via self-catalyzed growth for advanced liquid and flexible all-state-state Zn-air battery. NANOSCALE 2023; 15:18395-18406. [PMID: 37933493 DOI: 10.1039/d3nr04491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The introduction of transition bimetallic alloys can effectively improve oxygen reduction reaction (ORR) activity. However, the alloy particles are inclined to dissolve under harsher conditions, resulting in a serious decrease in catalytic activity and stability. Herein, an efficient ORR catalyst, FeCo alloy nanoparticles (NPs) encapsulated in N,S co-doped carbon nanotubes (FeCo10-NSCNTs), was developed through a self-catalyzed growth strategy. Due to the delicate structural design, the N,S co-doped structure can effectively improve the ORR performance by modulating the electronic properties and surface polarity of the carbon substrate, and the randomly connected carbon nanotube structure with large specific surface area can further enhance the adsorption and dissociation of gas molecules, accelerating the kinetics of gas participation in the reaction. Carbon-encapsulated FeCo alloys are beneficial for improving catalytic activity and durability. The FeCo10-NSCNTs displayed excellent ORR activity with a half-wave potential of E1/2 = 0.84 V and robust stability of 13 k cycles. More impressively, the assembled liquid-state Zn-air battery (ZAB) with FeCo10-NSCNTs as the air-electrode delivers an output power density of 146.68 mW cm-2 along with excellent operation durability. The assembled all-solid ZAB has good cyclic stability under 0-180° bending conditions. The synthesized N,S co-doping, carbon nanotubes and FeCo alloys provide important guidance for the construction of cheap non-noble metal-carbon hybrid nanomaterials.
Collapse
Affiliation(s)
- Kun Wang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
| | - Liyuan Wang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
| | - Jinrui Huang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
| | - Ye Chen
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
| | - Xupo Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
| | - Tianfang Yang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P.R. China
| | - Gangya Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P.R. China
| | - Shuyan Gao
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P.R. China
| |
Collapse
|
30
|
Lenef JD, Lee SY, Fuelling KM, Rivera Cruz KE, Prajapati A, Delgado Cornejo DO, Cho TH, Sun K, Alvarado E, Arthur TS, Roberts CA, Hahn C, McCrory CCL, Dasgupta NP. Atomic Layer Deposition of Cu Electrocatalysts on Gas Diffusion Electrodes for CO 2 Reduction. NANO LETTERS 2023. [PMID: 37987745 DOI: 10.1021/acs.nanolett.3c02917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Electrochemical reduction of CO2 using Cu catalysts enables the synthesis of C2+ products including C2H4 and C2H5OH. In this study, Cu catalysts were fabricated using plasma-enhanced atomic layer deposition (PEALD), achieving conformal deposition of catalysts throughout 3-D gas diffusion electrode (GDE) substrates while maintaining tunable control of Cu nanoparticle size and areal loading. The electrochemical CO2 reduction at the Cu surface yielded a total Faradaic efficiency (FE) > 75% for C2+ products. Parasitic hydrogen evolution was minimized to a FE of ∼10%, and a selectivity of 42.2% FE for C2H4 was demonstrated. Compared to a line-of-sight physical vapor deposition method, PEALD Cu catalysts show significant suppression of C1 products compared to C2+, which is associated with improved control of catalyst morphology and conformality within the porous GDE substrate. Finally, PEALD Cu catalysts demonstrated a stable performance for 15 h with minimal reduction in the C2H4 production rate.
Collapse
Affiliation(s)
- Julia D Lenef
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Si Young Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kalyn M Fuelling
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin E Rivera Cruz
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aditya Prajapati
- Materials Science Division (MSD), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Daniel O Delgado Cornejo
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tae H Cho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kai Sun
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eugenio Alvarado
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy S Arthur
- Toyota Research Institute of North America, Ann Arbor, Michigan 48105, United States
| | - Charles A Roberts
- Toyota Research Institute of North America, Ann Arbor, Michigan 48105, United States
| | - Christopher Hahn
- Materials Science Division (MSD), Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Charles C L McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Neil P Dasgupta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
32
|
Mok DH, Li H, Zhang G, Lee C, Jiang K, Back S. Data-driven discovery of electrocatalysts for CO 2 reduction using active motifs-based machine learning. Nat Commun 2023; 14:7303. [PMID: 37952012 PMCID: PMC10640609 DOI: 10.1038/s41467-023-43118-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
The electrochemical carbon dioxide reduction reaction (CO2RR) is an attractive approach for mitigating CO2 emissions and generating value-added products. Consequently, discovery of promising CO2RR catalysts has become a crucial task, and machine learning (ML) has been utilized to accelerate catalyst discovery. However, current ML approaches are limited to exploring narrow chemical spaces and provide only fragmentary catalytic activity, even though CO2RR produces various chemicals. Here, by merging pre-developed ML model and a CO2RR selectivity map, we establish high-throughput virtual screening strategy to suggest active and selective catalysts for CO2RR without being limited to a database. Further, this strategy can provide guidance on stoichiometry and morphology of the catalyst to researchers. We predict the activity and selectivity of 465 metallic catalysts toward four expected reaction products. During this process, we discover previously unreported and promising behavior of Cu-Ga and Cu-Pd alloys. These findings are then validated through experimental methods.
Collapse
Affiliation(s)
- Dong Hyeon Mok
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Hong Li
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guiru Zhang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chaehyeon Lee
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea
| | - Kun Jiang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.
| |
Collapse
|
33
|
Cho JH, Ma J, Kim SY. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO 2 reduction: Strategy and challenge. EXPLORATION (BEIJING, CHINA) 2023; 3:20230001. [PMID: 37933280 PMCID: PMC10582615 DOI: 10.1002/exp.20230001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/30/2023] [Indexed: 11/08/2023]
Abstract
The realization of a complete techno-economy through a significant carbon dioxide (CO2) reduction in the atmosphere has been explored to promote a low-carbon economy in various ways. CO2 reduction reactions (CO2RRs) can be induced using sustainable energy, including electric and solar energy, using systems such as electrochemical (EC) CO2RR and photoelectrochemical (PEC) systems. This study summarizes various fabrication strategies for non-noble metal, copper-based, and metal-organic framework-based catalysts with excellent Faradaic efficiency (FE) for target carbon compounds, and for noble metals with low overvoltage. Although EC and PEC systems achieve high energy conversion efficiency with excellent catalysts, they still require external power and lack complete bias-free operation. Therefore, photovoltaics, which can overcome the limitations of these systems, have been introduced. The utilization of silicon and perovskite-based solar cells for photovoltaics-assisted EC (PV-EC) and photovoltaics-assisted PEC (PV-PEC) CO2RR systems are cost-efficient, and the III-V semiconductor photoabsorbers achieved high solar-to-carbon efficiency. This work focuses on PV-EC and PV-PEC CO2RR systems and their components and then summarizes the special cell configurations, including the tandem and stacked structures. Additionally, the study discusses current issues, such as low energy conversion, expensive PV, theoretical limits, and industrial scale-up, along with proposed solutions.
Collapse
Affiliation(s)
- Jin Hyuk Cho
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Joonhee Ma
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Soo Young Kim
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| |
Collapse
|
34
|
Zhang YZ, Li PH, Ren YN, He Y, Zhang CX, Hu J, Cao XQ, Leung MKH. Metal-Based Electrocatalysts for Selective Electrochemical Nitrogen Reduction to Ammonia. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2580. [PMID: 37764608 PMCID: PMC10535433 DOI: 10.3390/nano13182580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Ammonia (NH3) plays a significant role in the manufacture of fertilizers, nitrogen-containing chemical production, and hydrogen storage. The electrochemical nitrogen reduction reaction (e-NRR) is an attractive prospect for achieving clean and sustainable NH3 production, under mild conditions driven by renewable energy. The sluggish cleavage of N≡N bonds and poor selectivity of e-NRR are the primary challenges for e-NRR, over the competitive hydrogen evolution reaction (HER). The rational design of e-NRR electrocatalysts is of vital significance and should be based on a thorough understanding of the structure-activity relationship and mechanism. Among the various explored e-NRR catalysts, metal-based electrocatalysts have drawn increasing attention due to their remarkable performances. This review highlighted the recent progress and developments in metal-based electrocatalysts for e-NRR. Different kinds of metal-based electrocatalysts used in NH3 synthesis (including noble-metal-based catalysts, non-noble-metal-based catalysts, and metal compound catalysts) were introduced. The theoretical screening and the experimental practice of rational metal-based electrocatalyst design with different strategies were systematically summarized. Additionally, the structure-function relationship to improve the NH3 yield was evaluated. Finally, current challenges and perspectives of this burgeoning area were provided. The objective of this review is to provide a comprehensive understanding of metal-based e-NRR electrocatalysts with a focus on enhancing their efficiency in the future.
Collapse
Affiliation(s)
- Yi-Zhen Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Peng-Hui Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
| | - Yi-Nuo Ren
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
| | - Yun He
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430024, China
| | - Cheng-Xu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiao-Qiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
| | - Michael K. H. Leung
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Zhong L, Pan W, Shi Z, Mao C, Peng J, Huang J. Hollow Nitrogen-Doped porous carbon spheres decorated with atomically dispersed Ni-N 3 sites for efficient electrocatalytic CO 2 reduction. J Colloid Interface Sci 2023; 649:571-580. [PMID: 37364457 DOI: 10.1016/j.jcis.2023.06.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Hollow nitrogen-doped porous carbon spheres (HNCS) with plentiful coordination N sites, high surface area, and superior electrical conductivity are ideal catalyst supports due to their easily access of reactants to active sites and excellent stability. To date, nevertheless, little has been reported on HNCS as supports to metal-single-atomic sites for CO2 reduction (CO2R). Here we report our findings in preparation of nickel-single-atom catalysts anchored on HNCS (Ni SAC@HNCS) for highly efficient CO2R. The obtained Ni SAC@HNCS catalyst exhibits excellent activity and selectivity for the electrocatalytic CO2-to-CO conversion, achieving a Faradaic efficiency (FE) of 95.2% and a partial current density of 20.2 mA cm-2. When applied to a flow cell, the Ni SAC@HNCS delivers above 95% FECO over a wide potential range and a peak FECO of 99%. Further, there is no obvious degradation in FECO and the current for CO production during continuous electrocatalysis of 9 h, suggesting good stability of Ni SAC@HNCS.
Collapse
Affiliation(s)
- Lei Zhong
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Wenhao Pan
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Zhikai Shi
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Chengwei Mao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Jiayao Peng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Jianlin Huang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
36
|
Zhang S, Yin L, Li Q, Wang S, Wang W, Du Y. Laves phase Ir 2Sm intermetallic nanoparticles as a highly active electrocatalyst for acidic oxygen evolution reaction. Chem Sci 2023; 14:5887-5893. [PMID: 37293647 PMCID: PMC10246678 DOI: 10.1039/d3sc01052j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/15/2023] [Indexed: 06/10/2023] Open
Abstract
Rare earth (RE) intermetallic nanoparticles (NPs) are significant for fundamental explorations and promising for practical applications in electrocatalysis. However, they are difficult to synthesize because of the unusually low reduction potential and extremely high oxygen affinity of RE metal-oxygen bonds. Herein, intermetallic Ir2Sm NPs were firstly synthesized on graphene as a superior acidic oxygen evolution reaction (OER) catalyst. It was verified that intermetallic Ir2Sm is a new phase belonging to the C15 cubic MgCu2 type in the Laves phase family. Meanwhile, intermetallic Ir2Sm NPs achieved a mass activity of 1.24 A mgIr-1 at 1.53 V and stability of 120 h at 10 mA cm-2 in 0.5 M H2SO4 electrolyte, which corresponds to a 5.6-fold and 12-fold enhancement relative to Ir NPs. Experimental results together with density functional theory (DFT) calculations show that in the structurally ordered intermetallic Ir2Sm NPs, the alloying of Sm with Ir atoms modulates the electronic nature of Ir, thereby reducing the binding energy of the oxygen-based intermediate, resulting in faster kinetics and enhanced OER activity. This study provides a new perspective for the rational design and practical application of high-performance RE alloy catalysts.
Collapse
Affiliation(s)
- Shuai Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| | - Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| | - Qingqing Li
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| | - Siyuan Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| | - Weihua Wang
- College of Electronic Information and Optical Engineering, Nankai University Tianjin 300350 China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| |
Collapse
|
37
|
Zheng X, Peng Y, Xu S, Huang L, Liu Y, Li D, Zhu J, Jiang D. NiCoP-nanocubes-decorated CoSe 2 nanowire arrays as high-performance electrocatalysts toward oxygen evolution reaction. J Colloid Interface Sci 2023; 648:141-148. [PMID: 37295366 DOI: 10.1016/j.jcis.2023.05.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Designing effective, robust, and low-cost catalysts for oxygen evolution reaction (OER) is an urgent requirement yet challenging task in water electrolysis. In this study, a NiCoP-nanocubes-decorated CoSe2 nanowires arrays three-dimensional/two-dimensional (3D/2D) electrocatalyst (NiCoP-CoSe2-2) was developed for catalyzing OER via a combined selenylation, co-precipitation, and phosphorization method. The as-obtained NiCoP-CoSe2-2 3D/2D electrocatalyst exhibits a low overpotential of 202 mV at 10 mA cm-2 with a small Tafel slope of 55.6 mV dec-1, which is superior to most of reported CoSe2 and NiCoP-based heterogeneous electrocatalysts. Experimental analyses and density functional theory (DFT) calculations proof that the interfacial coupling and synergy between CoSe2 nanowires and NiCoP nanocubes are not only beneficial to strengthen the charge transfer ability and accelerate reaction kinetics, but also facilitate the optimization of interfacial electronic structure, thereby enhancing the OER property of NiCoP-CoSe2-2. This study offers insights for the investigation and construction of transition metal phosphide/selenide heterogeneous electrocatalyst toward OER in alkaline media and broadens the prospect of industrial applications in energy storage and conversion fields.
Collapse
Affiliation(s)
- Xinyu Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Peng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengjie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Longhui Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Jianjun Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
38
|
Lai W, Liu Y, Zeng M, Han D, Xiao M, Wang S, Ren S, Meng Y. One-Step Electrochemical Dealloying of 3D Bi-Continuous Micro-Nanoporous Bismuth Electrodes and CO 2RR Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111767. [PMID: 37299670 DOI: 10.3390/nano13111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
The rapid development of electrochemical CO2 reduction offers a promising route to convert intermittent renewable energy into products of high value-added fuels or chemical feedstocks. However, low faradaic efficiency, low current density, and a narrow potential range still limit the large-scale application of CO2RR electrocatalysts. Herein, monolith 3D bi-continuous nanoporous bismuth (np-Bi) electrodes are fabricated via a simple one-step electrochemical dealloying strategy from Pb-Bi binary alloy. The unique bi-continuous porous structure ensures highly effective charge transfer; meanwhile, the controllable millimeter-sized geometric porous structure enables easy catalyst adjustment to expose highly suitable surface curvatures with abundant reactive sites. This results in a high selectivity of 92.6% and superior potential window (400 mV, selectivity > 88%) for the electrochemical reduction of carbon dioxide to formate. Our scalable strategy provides a feasible pathway for mass-producing high-performance and versatile CO2 electrocatalysts.
Collapse
Affiliation(s)
- Wenqin Lai
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yating Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Mingming Zeng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongmei Han
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China
| | - Min Xiao
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shan Ren
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
39
|
Li C, Kwon S, Chen X, Zhang L, Sharma A, Jiang S, Zhang H, Zhou M, Pan J, Zhou G, Goddard WA, Fang J. Improving Oxygen Reduction Performance of Surface-Layer-Controlled Pt-Ni Nano-Octahedra via Gaseous Etching. NANO LETTERS 2023; 23:3476-3483. [PMID: 37040582 DOI: 10.1021/acs.nanolett.3c00567] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This study demonstrates an atomic composition manipulation on Pt-Ni nano-octahedra to enhance their electrocatalytic performance. By selectively extracting Ni atoms from the {111} facets of the Pt-Ni nano-octahedra using gaseous carbon monoxide at an elevated temperature, a Pt-rich shell is formed, resulting in an ∼2 atomic layer Pt-skin. The surface-engineered octahedral nanocatalyst exhibits a significant enhancement in both mass activity (∼1.8-fold) and specific activity (∼2.2-fold) toward the oxygen reduction reaction compared with its unmodified counterpart. After 20,000 potential cycles of durability tests, the surface-etched Pt-Ni nano-octahedral sample shows a mass activity of 1.50 A/mgPt, exceeding the initial mass activity of the unetched counterpart (1.40 A/mgPt) and outperforming the benchmark Pt/C (0.18 A/mgPt) by a factor of 8. DFT calculations predict this improvement with the Pt surface layers and support these experimental observations. This surface-engineering protocol provides a promising strategy for developing novel electrocatalysts with improved catalytic features.
Collapse
Affiliation(s)
- Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Soonho Kwon
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaobo Chen
- Materials Science and Engineering Program, Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Anju Sharma
- Analytical and Diagnostics Lab, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shaojie Jiang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Hanlei Zhang
- Advanced Materials Characterization Laboratory, Materials Research Center, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jinfong Pan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Guangwen Zhou
- Materials Science and Engineering Program, Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
40
|
Jia Y, Hsu HS, Huang WC, Lee DW, Lee SW, Chen TY, Zhou L, Wang JH, Wang KW, Dai S. Probing the Roles of Indium Oxides on Copper Catalysts for Enhanced Selectivity during CO 2-to-CO Electrochemical Reduction. NANO LETTERS 2023; 23:2262-2268. [PMID: 36913488 DOI: 10.1021/acs.nanolett.2c04925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) provides an alternative protocol to producing industrial chemicals with renewable electricity sources, and the highly selective, durable, and economic catalysts should expedite CO2RR applications. Here, we demonstrate a composite Cu-In2O3 catalyst in which a trace amount of In2O3 decorated on Cu surface greatly improves the selectivity and stability for CO2-to-CO reduction as compared to the counterparts (Cu or In2O3), realizing a CO faradaic efficiency (FECO) of 95% at -0.7 V (vs RHE) and no obvious degradation within 7 h. In situ X-ray absorption spectroscopy reveals that In2O3 undergoes the redox reaction and preserves the metallic state of Cu during the CO2RR process. Strong electronic interaction and coupling occur at the Cu/In2O3 interface which serves as the active site for selective CO2RR. Theoretical calculation confirms the roles of In2O3 in preventing oxidation and altering the electronic structure of Cu to assist COOH* formation and demote CO* adsorption at the Cu/In2O3 interface.
Collapse
Affiliation(s)
- Yanyan Jia
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hua-Shan Hsu
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Wan-Chun Huang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Da-Wei Lee
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Sheng-Wei Lee
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Lihui Zhou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jeng-Han Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
41
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
42
|
Chen S, Li X, Li H, Chen K, Luo T, Fu J, Liu K, Wang Q, Zhu M, Liu M. Proton Transfer Dynamics-Mediated CO 2 Electroreduction. CHEMSUSCHEM 2023:e202202251. [PMID: 36820747 DOI: 10.1002/cssc.202202251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) is crucial to addressing environmental crises and producing chemicals. Proton activation and transfer are essential in CO2 RR. To date, few research reviews have focused on this process and its effect on catalytic performance. Recent studies have demonstrated ways to improve CO2 RR by regulating proton transfer dynamics. This Concept highlights the use of regulating proton transfer dynamics to enhance CO2 RR for the target product and discusses modulation strategies for proton transfer dynamics and operative mechanisms in typical systems, including single-atom catalysts, molecular catalysts, metal heterointerfaces, and organic-ligand modified metal catalysts. Characterization methods for proton transfer dynamics during CO2 RR are also discussed, providing powerful tools for the hydrogen-involving electrochemical study. This Concept offers new insights into the CO2 RR mechanism and guides the design of efficient CO2 RR systems.
Collapse
Affiliation(s)
- Shanyong Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Xiaoqing Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kejun Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| |
Collapse
|
43
|
Recent Progress in Surface-Defect Engineering Strategies for Electrocatalysts toward Electrochemical CO2 Reduction: A Review. Catalysts 2023. [DOI: 10.3390/catal13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Climate change, caused by greenhouse gas emissions, is one of the biggest threats to the world. As per the IEA report of 2021, global CO2 emissions amounted to around 31.5 Gt, which increased the atmospheric concentration of CO2 up to 412.5 ppm. Thus, there is an imperative demand for the development of new technologies to convert CO2 into value-added feedstock products such as alcohols, hydrocarbons, carbon monoxide, chemicals, and clean fuels. The intrinsic properties of the catalytic materials are the main factors influencing the efficiency of electrochemical CO2 reduction (CO2-RR) reactions. Additionally, the electroreduction of CO2 is mainly affected by poor selectivity and large overpotential requirements. However, these issues can be overcome by modifying heterogeneous electrocatalysts to control their morphology, size, crystal facets, grain boundaries, and surface defects/vacancies. This article reviews the recent progress in electrochemical CO2 reduction reactions accomplished by surface-defective electrocatalysts and identifies significant research gaps for designing highly efficient electrocatalytic materials.
Collapse
|
44
|
Jeon TY, Lee HK, Yoon GH, Lee SH, Yun HJ, Kim KJ, Lee KS, Pinna N, Yu SH. Selective dealloying of chemically disordered Pt-Ni bimetallic nanoparticles for the oxygen reduction reaction. NANOSCALE 2023; 15:1136-1144. [PMID: 35880665 DOI: 10.1039/d2nr02677e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Changes in electronic and compositional structures of Pt-Ni electrocatalysts with 44% of Ni fraction with repeated chemical dealloying have been studied. By comparing the Pt-enriched surfaces formed using hydroquinone and sulfuric acid as a leaching agent, we found that hydroquinone generated Pt-enriched surfaces exhibit the highest oxygen reduction reaction (ORR) activity after repeating the treatment twice. In particular, it was found that while sulfuric acid causes an uncontrollable dissolution of Ni clusters, the unique selectivity of hydroquinone allows the preferential dissolution of Ni atoms alloyed with Pt. Despite its wide usage in the field, the results show that traditional acid leaching is unsuitable for Pt-Ni alloys with a high Ni content and an incomplete alloying level. We finally proved that the unique and lasting selectivity of hydroquinone enables an incompletely alloyed Pt-Ni catalyst to obtain a highly ORR active Pt shell region without an extensive loss of Ni.
Collapse
Affiliation(s)
- Tae-Yeol Jeon
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| | - Han-Koo Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| | - Geon-Hee Yoon
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Si-Hwan Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Hyung Joong Yun
- Research Center for Materials Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Ki-Jeong Kim
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Seung-Ho Yu
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
45
|
Cu-Sn Aerogels for Electrochemical CO 2 Reduction with High CO Selectivity. Molecules 2023; 28:molecules28031033. [PMID: 36770699 PMCID: PMC9919718 DOI: 10.3390/molecules28031033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
This work reports the synthesis of CuxSny alloy aerogels for electrochemical CO2 reduction catalysts. An in situ reduction and the subsequent freeze-drying process can successfully give CnxSny aerogels with tuneable Sn contents, and such aerogels are composed of three-dimensional architectures made from inter-connected fine nanoparticles with pores as the channels. Density functional theory (DFT) calculations show that the introduction of Sn in Cu aerogels inhibits H2 evolution reaction (HER) activity, while the accelerated CO desorption on the catalyst surface is found at the same time. The porous structure of aerogel also favors exposing more active sites. Counting these together, with the optimized composition of Cu95Sn5 aerogel, the high selectivity of CO can be achieved with a faradaic efficiency of over 90% in a wide potential range (-0.7 V to -1.0 V vs. RHE).
Collapse
|
46
|
Gao S, Li P, Shi Y, He Y, Lei L, Hao S, Zhang X. Ternary PtCoMo Alloy with Dual Surface Co and Mo Defects for Synergistically Enhanced Acidic Oxygen Reduction. ChemElectroChem 2023. [DOI: 10.1002/celc.202201087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shaojie Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P.R. China
| | - Ping Li
- Institute of Zhejiang University-QuZhou 78 Jiuhua Boulevard North QuZhou Zhejiang Province 324003 P.R. China
| | - Yao Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P.R. China
| | - Yi He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P.R. China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P.R. China
- Institute of Zhejiang University-QuZhou 78 Jiuhua Boulevard North QuZhou Zhejiang Province 324003 P.R. China
| | - Shaoyun Hao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P.R. China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P.R. China
- Institute of Zhejiang University-QuZhou 78 Jiuhua Boulevard North QuZhou Zhejiang Province 324003 P.R. China
| |
Collapse
|
47
|
Li C, Pan J, Zhang L, Fang J. Colloidal synthesis of monodisperse trimetallic Pt-Fe-Ni nanocrystals and their enhanced electrochemical performances. NANOTECHNOLOGY 2022; 34:075401. [PMID: 36384027 DOI: 10.1088/1361-6528/aca337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Among the multi-metallic nanocatalysts, Pt-based alloy nanocrystals (NCs) have demonstrated promising performance in fuel cells and water electrolyzers. Herein, we demonstrate a facile colloidal synthesis of monodisperse trimetallic Pt-Fe-Ni alloy NCs through a co-reduction of metal precursors. The as-synthesized ternary NCs exhibit superior mass and specific activities toward oxygen reduction reaction (ORR), which are ∼2.8 and 5.6 times as high as those of the benchmark Pt/C catalyst, respectively. The ORR activity of the carbon-supported Pt-Fe-Ni nanocatalyst is persistently retained after the durability test. Owing to the incorporation of Fe and Ni atoms into the Pt lattice, the as-prepared trimetallic Pt-alloy electrocatalyst also manifestly enhances the electrochemical activity and durability toward the oxygen evolution reaction with a reduced overpotential when compared with that of the benchmark Pt/C (△η= 0.20 V, at 10 mA cm-2). This synthetic strategy paves the way for improving the reactivity for a broad range of electrocatalytic applications.
Collapse
Affiliation(s)
- Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States of America
| | - Jinfong Pan
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States of America
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States of America
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States of America
| |
Collapse
|
48
|
Du L, Xiong H, Lu H, Yang L, Liao R, Xia BY, You B. Electroshock synthesis of a bifunctional nonprecious multi-element alloy for alkaline hydrogen oxidation and evolution. EXPLORATION (BEIJING, CHINA) 2022; 2:20220024. [PMID: 37324802 PMCID: PMC10190983 DOI: 10.1002/exp.20220024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
The design and production of active, durable, and nonprecious electrocatalysts toward alkaline hydrogen oxidation and evolution reactions (HOR/HER) are extremely appealing for the implementation of hydrogen economy, but remain challenging. Here, we report a facile electric shock synthesis of an efficient, stable, and inexpensive NiCoCuMoW multi-element alloy on Ni foam (NiCoCuMoW) as a bifunctional electrocatalyst for both HOR and HER. For the HOR, the current density of NiCoCuMoW could reach ∼11.2 mA cm-2 when the overpotential is 100 mV, higher than that for commercial Pt/C (∼7.2 mA cm-2) and control alloy samples with less elements, along with superior CO tolerance. Moreover, for the HER, the overpotential at 10 mA cm-2 for NiCoCuMoW is only 21 mV, along with a Tafel slope of low to 63.7 mV dec-1, rivaling the commercial Pt/C as well (35 mV and 109.7 mV dec-1). Density functional theory calculations indicate that alloying Ni, Co, Cu, Mo, and W can tune the electronic structure of individual metals and provide multiple active sites to optimize the hydrogen and hydroxyl intermediates adsorption, collaboratively resulting in enhanced electrocatalytic activity.
Collapse
Affiliation(s)
- Lijie Du
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Hu Xiong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Hongcheng Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Li‐Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Rong‐Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology (HUST)WuhanHubeiChina
| |
Collapse
|
49
|
Controlled Synthesis of Carbon-Supported Pt-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2022; 5:13. [PMID: 36212026 PMCID: PMC9536324 DOI: 10.1007/s41918-022-00173-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/18/2021] [Accepted: 10/15/2021] [Indexed: 10/26/2022]
Abstract
AbstractProton exchange membrane fuel cells are playing an increasing role in postpandemic economic recovery and climate action plans. However, their performance, cost, and durability are significantly related to Pt-based electrocatalysts, hampering their large-scale commercial application. Hence, considerable efforts have been devoted to improving the activity and durability of Pt-based electrocatalysts by controlled synthesis in recent years as an effective method for decreasing Pt use, and consequently, the cost. Therefore, this review article focuses on the synthesis processes of carbon-supported Pt-based electrocatalysts, which significantly affect the nanoparticle size, shape, and dispersion on supports and thus the activity and durability of the prepared electrocatalysts. The reviewed processes include (i) the functionalization of a commercial carbon support for enhanced catalyst–support interaction and additional catalytic effects, (ii) the methods for loading Pt-based electrocatalysts onto a carbon support that impact the manufacturing costs of electrocatalysts, (iii) the preparation of spherical and nonspherical Pt-based electrocatalysts (polyhedrons, nanocages, nanoframes, one- and two-dimensional nanostructures), and (iv) the postsynthesis treatments of supported electrocatalysts. The influences of the supports, key experimental parameters, and postsynthesis treatments on Pt-based electrocatalysts are scrutinized in detail. Future research directions are outlined, including (i) the full exploitation of the potential functionalization of commercial carbon supports, (ii) scaled-up one-pot synthesis of carbon-supported Pt-based electrocatalysts, and (iii) simplification of postsynthesis treatments. One-pot synthesis in aqueous instead of organic reaction systems and the minimal use of organic ligands are preferred to simplify the synthesis and postsynthesis treatment processes and to promote the mass production of commercial carbon-supported Pt-based electrocatalysts.
Graphical Abstract
This review focuses on the synthesis process of Pt-based electrocatalysts/C to develop aqueous one-pot synthesis at large-scale production for PEMFC stack application.
Collapse
|
50
|
Kong X, Liu G, Tian S, Bu S, Gao Q, Liu B, Lee CS, Wang P, Zhang W. Coupling Cobalt Phthalocyanine Molecules on 3D Nitrogen-Doped Vertical Graphene Arrays for Highly Efficient and Robust CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204615. [PMID: 36319471 DOI: 10.1002/smll.202204615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Metallic phthalocyanines (MePcs) have shown their potential as catalysts for CO2 reduction reactions (CO2 RR). However, their low conductivity, easy agglomeration, and poor stability enslave the further progress of their CO2 RR applications. Herein, an integrated heterogeneous molecular catalyst through anchoring CoPc molecules on 3D nitrogen-doped vertical graphene arrays (NVG) on carbon cloth (CC) is reported. The CoPc-NVG/CC electrodes exhibit superior performance for reducing CO2 to CO with a Faradic efficiency of above 97.5% over a wide potential range (99% at an optimal potential), a very high turnover frequency of 35800 h-1 , and decent stability. It is revealed that NVG interacts with CoPc to form highly efficient channels for electron transfer from NVG to CoPc, facilitating the Co(II)/Co(I) redox of CO2 reduction. The strong coupling effect between NVG and CoPc molecules not only endows CoPc with high intrinsic activity for CO2 RR, but also enhances the stability of electrocatalysts under high potentials. This work paves an efficient approach for developing high-performance heterogeneous catalysts by using rationally designed 3D integrated graphene arrays to host molecular metallic phthalocyanines so as to ameliorate their electronic structures and engineer stable active sites.
Collapse
Affiliation(s)
- Xin Kong
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Guiyang Liu
- Lab of New Materials for Power Sources, Honghe University, Mengzi, 661100, China
| | - Suan Tian
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shuyu Bu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Qili Gao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Bin Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100089, China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|