1
|
Dean WF, Mattheyses AL. Illuminating cellular architecture and dynamics with fluorescence polarization microscopy. J Cell Sci 2024; 137:jcs261947. [PMID: 39404619 PMCID: PMC11529880 DOI: 10.1242/jcs.261947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Ever since Robert Hooke's 17th century discovery of the cell using a humble compound microscope, light-matter interactions have continuously redefined our understanding of cell biology. Fluorescence microscopy has been particularly transformative and remains an indispensable tool for many cell biologists. The subcellular localization of biomolecules is now routinely visualized simply by manipulating the wavelength of light. Fluorescence polarization microscopy (FPM) extends these capabilities by exploiting another optical property - polarization - allowing researchers to measure not only the location of molecules, but also their organization or alignment within larger cellular structures. With only minor modifications to an existing fluorescence microscope, FPM can reveal the nanoscale architecture, orientational dynamics, conformational changes and interactions of fluorescently labeled molecules in their native cellular environments. Importantly, FPM excels at imaging systems that are challenging to study through traditional structural approaches, such as membranes, membrane proteins, cytoskeletal networks and large macromolecular complexes. In this Review, we discuss key discoveries enabled by FPM, compare and contrast the most common optical setups for FPM, and provide a theoretical and practical framework for researchers to apply this technique to their own research questions.
Collapse
Affiliation(s)
- William F. Dean
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexa L. Mattheyses
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Eremin SA, Mukhametova LI, Krylov VB, Nifantiev NE. Fluorescence Polarization Assay for Infection Diagnostics: A Review. Molecules 2024; 29:4712. [PMID: 39407640 PMCID: PMC11478262 DOI: 10.3390/molecules29194712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Rapid and specific diagnosis is necessary for both the treatment and prevention of infectious diseases. Bacteria and viruses that enter the bloodstream can trigger a strong immune response in infected animals and humans. The fluorescence polarization assay (FPA) is a rapid and accurate method for detecting specific antibodies in the blood that are produced in response to infection. One of the first examples of FPA is the non-competitive test for detecting brucellosis in animals, which was followed by the development of other protocols for detecting various infections. Fluorescently labeled polysaccharides (in the case of brucellosis and salmonellosis) or specific peptides (in the case of tuberculosis and salmonellosis, etc.) can be used as biorecognition elements for detecting infections. The availability of new laboratory equipment and mobile devices for fluorescence polarization measurements outside the laboratory has stimulated the development of new fluorescence polarization assays (FPAs) and the emergence of commercial kits on the market for the detection of brucellosis, tuberculosis, and equine infectious anemia viruses. It has been shown that, in addition to antibodies, the FPA method can detect both viruses and nucleic acids. The development of more specific and sensitive biomarkers is essential for the diagnosis of infections and therapy monitoring. This review summarizes studies published between 2003 and 2023 that focus on the detection of infections using FPA. Furthermore, it demonstrates the potential for using new biorecognition elements (e.g., aptamers, proteins, peptides) and the combined use of FPA with new technologies, such as PCR and CRISPR/Cas12a systems, for detecting various infectious agents.
Collapse
Affiliation(s)
- Sergei A. Eremin
- Chemical Department, M.V. Lomonosov Moscow State University, Leninsky Gory, 1, 119991 Moscow, Russia;
| | - Liliya I. Mukhametova
- Chemical Department, M.V. Lomonosov Moscow State University, Leninsky Gory, 1, 119991 Moscow, Russia;
| | - Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991 Moscow, Russia
| |
Collapse
|
3
|
Ma Z, Guo Z, Gao Y, Wang Y, Du M, Han Y, Xue Z, Yang W, Ma X. Boosting Excited-State Energy Transfer by Anchoring Dipole Orientation in Binary Thermally Activated Delayed Fluorescence/J-Aggregate Assemblies. Chemistry 2024; 30:e202400046. [PMID: 38619364 DOI: 10.1002/chem.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Förster resonance energy transfer (FRET) has been widely applied in fluorescence imaging, sensing and so on, while developing useful strategy of boosting FRET efficiency becomes a key issue that limits the application. Except optimizing spectral properties, promoting orientation factor (κ2) has been well discussed but rarely utilized for boosting FRET. Herein, we constructed binary nano-assembling of two thermally activated delayed fluorescence (TADF) emitters (2CzPN and DMAC-DPS) with J-type aggregate of cyanine dye (C8S4) as doping films by taking advantage of their electrostatic interactions. Time-resolved spectroscopic measurements indicated that 2CzPN/Cy-J films exhibit an order of magnitude higher kFRET than DMAC-DPS/Cy-J films. Further quantitative analysing on kFRET and kDET indicated higher orientation factor (κ2) in 2CzPN/Cy-J films play a key role for achieving fast kFRET, which was subsequently confirmed by anisotropic measurements. Corresponding DFT/TDDFT calculation revealed strong "two-point" electrostatic anchoring in 2CzPN/Cy-J films that is responsible for highly orientated transitions. We provide a new strategy for boosting FRET in nano-assemblies, which might be inspired for designing FRET-based devices of sensing, imaging and information encryption.
Collapse
Affiliation(s)
- Zhuoming Ma
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Yixuan Gao
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Min Du
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Zheng Xue
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| |
Collapse
|
4
|
Huang W, Cheng Y, Zhai J, Qin Y, Zhang W, Xie X. Expanded single-color barcoding in microspheres with fluorescence anisotropy for multiplexed biochemical detection. Analyst 2023; 148:4406-4413. [PMID: 37552039 DOI: 10.1039/d3an00938f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Single-color barcoding strategies could break the limits of spectral crosstalk in conventional intensity-based fluorescence barcodes. Fluorescence anisotropy (FA), a self-referencing quantity able to differentiate spectrally similar fluorophores, is highly attractive in designing fluorescent barcodes within a limited emission window. In this study, FA-based encoding of polystyrene (PS) microspheres was realized for the first time. The FA signals of fluorophores were stabilized inside PS microspheres owing to hampered rotational motion. Fluorescent labels were incorporated with similar emission but different structures, symmetries, and lifetimes. On the one hand, Förster Resonance Energy Transfer (FRET) including homo-FRET and hetero-FRET resulted in a decrease of steady-state FA with increasing dye loading, converting conventional intensity-based codes into FA-based codes. On the other hand, mixing dyes with different intrinsic FA values generated different FA values at the same fluorescence intensity level. Single color 5-plex FA-encoded microspheres were demonstrated and decoded on a homemade microscopic FA imaging platform in real time. The FA-encoded microspheres were successfully applied to detect the oligonucleotide of the foodborne bacterium, Bacillus cereus, without spectral crosstalk between the encoding and reporting dyes. Overall, FA-based encoding with an expanded coding capacity in the FA dimension holds great potential in multiplexed high-throughput chemical and biological analyses.
Collapse
Affiliation(s)
- Wenyu Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yu Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuemin Qin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Weian Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Fede L, Lefrere G, Hjeij M, Le Page R, Poffo L, Goujon JM, Gratiet AL. Multiparametric Remote Investigation in the near-IR through Optical Fiber for In Situ Measurements. SENSORS (BASEL, SWITZERLAND) 2023; 23:2911. [PMID: 36991622 PMCID: PMC10056751 DOI: 10.3390/s23062911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/19/2023]
Abstract
Diffuse reflectance spectroscopy (DRS) has proven to be a powerful, reliable, and non-invasive optical method for characterizing a specimen. Nevertheless, these methods are based on a rudimentary interpretation of the spectral response and can be irrelevant to understanding 3D structures. In this work, we proposed adding optical modalities into a customized handheld probe head in order to increase the number of parameters in DRS acquired from the light/matter interaction. It consists of (1) placing the sample in a reflectance manual rotation stage to collect spectral backscattered angularly resolved light and (2) illuminating it with two sequential linear polarization orientations. We demonstrate that this innovative approach leads to a compact instrument, capable of performing fast polarization-resolved spectroscopic analysis. Due to the significant amount of data available with this technique in a short time, we observe sensitive quantitative discrimination between two types of biological tissue provided by a raw rabbit leg. We believe that this technique can pave the way for rapid meat quality check or biomedical diagnosis of pathological tissues in situ at an early stage.
Collapse
Affiliation(s)
- Letizia Fede
- Politecnico di Milano, 20133 Milano, Italy
- CNRS, Institut FOTON, Université de Rennes, UMR 6082, F-22305 Lannion, France
| | - Gregory Lefrere
- CNRS, Institut FOTON, Université de Rennes, UMR 6082, F-22305 Lannion, France
- CEA-Gramat, F-46500 Gramat, France
| | - Maroun Hjeij
- CNRS, Institut FOTON, Université de Rennes, UMR 6082, F-22305 Lannion, France
| | - Ronan Le Page
- CNRS, Institut FOTON, Université de Rennes, UMR 6082, F-22305 Lannion, France
| | - Luiz Poffo
- CNRS, Institut FOTON, Université de Rennes, UMR 6082, F-22305 Lannion, France
| | - Jean-Marc Goujon
- CNRS, Institut FOTON, Université de Rennes, UMR 6082, F-22305 Lannion, France
| | - Aymeric Le Gratiet
- CNRS, Institut FOTON, Université de Rennes, UMR 6082, F-22305 Lannion, France
| |
Collapse
|
6
|
Zhang X, Peng Y, Yao L, Shang H, Zheng Z, Chen W, Xu J. Self-Assembly of Multivalent Aptamer-Tethered DNA Monolayers Dedicated to a Fluorescence Polarization-Responsive Circular Isothermal Strand Displacement Amplification for Salmonella Assay. Anal Chem 2023; 95:2570-2578. [PMID: 36653941 DOI: 10.1021/acs.analchem.2c05448] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pathogenic bacteria are pathogens widely spread that are capable of causing mild to life-threatening diseases in human beings or other organisms. Rationally organizing the simple helical motif of double-stranded DNA (dsDNA) tiles into designed ensemble structures with architecturally defined collective properties could lead to promising biosensing applications for pathogen detection. In this work, we facilely engineered multivalent hairpin aptamer probe-tethered DNA monolayers (MHAP-DNA monolayers) and applied them to build a fluorescence polarization-responsive circular isothermal strand displacement amplification (FP-CSDA) for Salmonella assay. In this system, the MHAP-DNA monolayers were constructed based on a dsDNA tile-directed self-assembly. A FAM-labeled reporting probe (RPFAM) with an inherent low FP signal serves as the signaling unit. The presence of target Salmonella leads to the trapping of F RPFAM into the super DNA monolayers via a target-triggered CSDA to peel off the tethered hairpin-structured aptamer probes (HAPs) responsible for the binding of RPFAM. As a result, the FP signal of the FAM fluorophore can be remarkably amplified due to the recycling of target Salmonella and the capacity of structural DNA materials to strongly restrict the free rotation of the FAM fluorophore but without a fluorescence quenching effect. Experimental results demonstrate that the FP assay is able to detect Salmonella with a low limit of detection (LOD) of 7.2 × 100 CFU/mL and high specificity. As a proof-of-concept study, we envision our study using DNA nanoarchitecture as the foundation to modulate CSDA-based FP assays, promising to open up a new avenue for disease diagnosis, food safety detection, and biochemical studies.
Collapse
Affiliation(s)
- Xinlei Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yubo Peng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Li Yao
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huijie Shang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Wei Chen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
7
|
Schnupfhagn C, Schumacher T, Markus P, Papastavrou G, Aftenieva O, König TAF, Dudko V, Matejdes M, Breu J, Lippitz M. Disentangling the Orientations of Spectrally Overlapping Transition Dipoles in Dense Dye Layers. NANO LETTERS 2022; 22:7499-7505. [PMID: 36094390 DOI: 10.1021/acs.nanolett.2c02438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transition dipole orientations of dye assemblies in heterostructures have a crucial impact on the efficiency of novel optoelectronic devices such as organic thin-film transistors and light-emitting diodes. These devices are frequently based on heterojunctions and tandem structures featuring multiple optical transitions. Precise knowledge of preferred orientations, spatial order, and spatial variations is highly relevant. We present a fast and universal large-area screening method to determine the transition dipole orientations in dye assemblies with diffraction-limited spatial resolution. Moreover, our hyperspectral imaging approach disentangles the orientations of different chromophores. As a demonstration, we apply our technique to dye monolayers with two optical transitions sandwiched between two ultrathin silicate nanosheets. A comprehensive model for dipole orientation distributions in monolayers reveals a long-range orientational order and a strong correlation between the two transitions.
Collapse
Affiliation(s)
| | | | - Paul Markus
- Physical Chemistry II, University of Bayreuth, Bayreuth 95447, Germany
| | - Georg Papastavrou
- Physical Chemistry II, University of Bayreuth, Bayreuth 95447, Germany
| | - Olha Aftenieva
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Helmholtzstraße 18, Dresden 01069, Germany
| | - Tobias A F König
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Helmholtzstraße 18, Dresden 01069, Germany
| | - Volodymyr Dudko
- Inorganic Chemistry I, University of Bayreuth, Bayreuth 95447, Germany
| | - Marian Matejdes
- Inorganic Chemistry I, University of Bayreuth, Bayreuth 95447, Germany
| | - Josef Breu
- Inorganic Chemistry I, University of Bayreuth, Bayreuth 95447, Germany
| | - Markus Lippitz
- Experimental Physics III, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
8
|
Shi J, Camacho R, Scheblykin IG. Energy transfer in multi-funnel systems quantitatively assessed by two-dimensional polarization imaging and single funnel approximation: From single molecules to ensembles. J Chem Phys 2022; 156:074108. [DOI: 10.1063/5.0075005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Juanzi Shi
- Division of Chemical Physics and Nano Lund, Lund University, P.O. Box 118, Lund 22100, Sweden
| | - Rafael Camacho
- Center for Cellular Imaging, Core Facilities, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ivan G. Scheblykin
- Division of Chemical Physics and Nano Lund, Lund University, P.O. Box 118, Lund 22100, Sweden
| |
Collapse
|
9
|
Yan H, Tseng TW, Omagari S, Hamilton I, Nakamura T, Vacha M, Kim JS. Dynamic Molecular Conformational Change Leading to Energy Transfer in F8-5% BSP Copolymer Revealed by Single-Molecule Spectroscopy. J Chem Phys 2022; 156:074704. [DOI: 10.1063/5.0080406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hao Yan
- Peking University Shenzhen Graduate School School of Advanced Materials, China
| | - Tzu-Wei Tseng
- Tokyo Institute of Technology Department of Materials Science and Engineering, Japan
| | - Shun Omagari
- Tokyo Institute of Technology Department of Materials Science and Engineering, Japan
| | - Iain Hamilton
- King Abdullah University of Science and Technology Physical Sciences and Engineering Division, Saudi Arabia
| | - Tomonori Nakamura
- Tokyo Institute of Technology Department of Materials Science and Engineering, Japan
| | - Martin Vacha
- Department of Materials Science and Engineering, Tokyo Institute of Technology - Ookayama Campus, Japan
| | - Ji-Seon Kim
- Physics, Imperial College London, United Kingdom
| |
Collapse
|
10
|
Kunsel T, Günther LM, Köhler J, Jansen TLC, Knoester J. Probing size variations of molecular aggregates inside chlorosomes using single-object spectroscopy. J Chem Phys 2021; 155:124310. [PMID: 34598584 DOI: 10.1063/5.0061529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We theoretically investigate the possibility to use single-object spectroscopy to probe size variations of the bacteriochlorophyll aggregates inside chlorosomes. Chlorosomes are the light-harvesting organelles of green sulfur and non-sulfur bacteria. They are known to be the most efficient light-harvesting systems in nature. Key to this efficiency is the organization of bacteriochlorophyll molecules in large self-assembled aggregates that define the secondary structure inside the chlorosomes. Many studies have been reported to elucidate the morphology of these aggregates and the molecular packing inside them. It is widely believed that tubular aggregates play an important role. Because the size (radius and length) of these aggregates affects the optical and excitation energy transport properties, it is of interest to be able to probe these quantities inside chlorosomes. We show that a combination of single-chlorosome linear polarization resolved spectroscopy and single-chlorosome circular dichroism spectroscopy may be used to access the typical size of the tubular aggregates within a chlorosome and, thus, probe possible variations between individual chlorosomes that may result, for instance, from different stages in growth or different growth conditions.
Collapse
Affiliation(s)
- T Kunsel
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - L M Günther
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstraße 30, D-95440 Bayreuth, Germany
| | - J Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstraße 30, D-95440 Bayreuth, Germany
| | - T L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - J Knoester
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Minner-Meinen R, Weber JN, Albrecht A, Matis R, Behnecke M, Tietge C, Frank S, Schulze J, Buschmann H, Walla PJ, Mendel RR, Hänsch R, Kaufholdt D. Split-HaloTag imaging assay for sophisticated microscopy of protein-protein interactions in planta. PLANT COMMUNICATIONS 2021; 2:100212. [PMID: 34746759 PMCID: PMC8555439 DOI: 10.1016/j.xplc.2021.100212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 05/04/2023]
Abstract
An ever-increasing number of intracellular multi-protein networks have been identified in plant cells. Split-GFP-based protein-protein interaction assays combine the advantages of in vivo interaction studies in a native environment with additional visualization of protein complex localization. Because of their simple protocols, they have become some of the most frequently used methods. However, standard fluorescent proteins present several drawbacks for sophisticated microscopy. With the HaloTag system, these drawbacks can be overcome, as this reporter forms covalent irreversible bonds with synthetic photostable fluorescent ligands. Dyes can be used in adjustable concentrations and are suitable for advanced microscopy methods. Therefore, we have established the Split-HaloTag imaging assay in plants, which is based on the reconstitution of a functional HaloTag protein upon protein-protein interaction and the subsequent covalent binding of an added fluorescent ligand. Its suitability and robustness were demonstrated using a well-characterized interaction as an example of protein-protein interaction at cellular structures: the anchoring of the molybdenum cofactor biosynthesis complex to filamentous actin. In addition, a specific interaction was visualized in a more distinctive manner with subdiffractional polarization microscopy, Airyscan, and structured illumination microscopy to provide examples of sophisticated imaging. Split-GFP and Split-HaloTag can complement one another, as Split-HaloTag represents an alternative option and an addition to the large toolbox of in vivo methods. Therefore, this promising new Split-HaloTag imaging assay provides a unique and sensitive approach for more detailed characterization of protein-protein interactions using specific microscopy techniques, such as 3D imaging, single-molecule tracking, and super-resolution microscopy.
Collapse
Affiliation(s)
- Rieke Minner-Meinen
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Jan-Niklas Weber
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Andreas Albrecht
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hagenring 30.023c, 38106 Braunschweig, Germany
| | - Rainer Matis
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hagenring 30.023c, 38106 Braunschweig, Germany
| | - Maria Behnecke
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Cindy Tietge
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Stefan Frank
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Jutta Schulze
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Henrik Buschmann
- Botany Department, Universität Osnabrück, Barbara Strasse 11, 49076 Osnabrück, Germany
| | - Peter Jomo Walla
- Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Hagenring 30.023c, 38106 Braunschweig, Germany
| | - Ralf-R. Mendel
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | - Robert Hänsch
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Tiansheng Road No. 2, Beibei District, 400715 Chongqing, P.R. China
- Corresponding author
| | - David Kaufholdt
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Andreiuk B, Aparin IO, Reisch A, Klymchenko AS. Bulky Barbiturates as Non-Toxic Ionic Dye Insulators for Enhanced Emission in Polymeric Nanoparticles. Chemistry 2021; 27:12877-12883. [PMID: 34164869 DOI: 10.1002/chem.202101986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 12/17/2022]
Abstract
Bulky hydrophobic counterions (weakly coordinating anions) can insulate ionic dyes against aggregation-caused quenching (ACQ) and enable preparation of highly fluorescent dye-loaded nanoparticles (NPs) for bioimaging, biosensing and light harvesting. Here, we introduce a family of hydrophobic anions based on fluorinated C-acyl barbiturates with delocalized negative charge and bulky non-polar groups. Similarly to fluorinated tetraphenylborates, these barbiturates prevent ACQ of cationic dye alkyl rhodamine B inside polymer NPs made of biodegradable poly(lactic-co-glycolic acid) (PLGA). Their efficiency to prevent ACQ increases for analogues with higher acidity and bulkiness. Their structure controls dye-dye communication, yielding bright NPs with on/off switching or stable emission. They enhance dye encapsulation inside NPs, allowing intracellular imaging without dye leakage. Compared to fluorinated tetraphenylborates known as cytotoxic transmembrane ion transporters, the barbiturates display a significantly lower cytotoxicity. These chemically available and versatile barbiturate derivatives are promising counterion scaffolds for preparation of bright non-toxic fluorescent nanomaterials.
Collapse
Affiliation(s)
- Bohdan Andreiuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI Chimie des Systèmes Complexes, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| | - Ilya O Aparin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI Chimie des Systèmes Complexes, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI Chimie des Systèmes Complexes, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI Chimie des Systèmes Complexes, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| |
Collapse
|
13
|
Lüttig J, Brixner T, Malý P. Anisotropy in fifth-order exciton-exciton-interaction two-dimensional spectroscopy. J Chem Phys 2021; 154:154202. [PMID: 33887932 DOI: 10.1063/5.0046894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exciton-exciton-interaction two-dimensional (EEI2D) spectroscopy is a fifth-order variant of 2D electronic spectroscopy. It can be used to probe biexciton dynamics in molecular systems and to observe exciton diffusion in extended systems such as polymers or light-harvesting complexes. The exciton transport strongly depends on the geometrical and energetic landscape and its perturbations. These can be of both local character, such as molecular orientation and energetic disorder, and long-range character, such as polymer kinks and structural domains. In the present theoretical work, we investigate the anisotropy in EEI2D spectroscopy. We introduce a general approach for how to calculate the anisotropy by using the response-function formalism in an efficient way. In numerical simulations, using a Frenkel exciton model with Redfield-theory dynamics, we demonstrate how the measurement of anisotropy in EEI2D spectroscopy can be used to identify various geometrical effects on exciton transport in dimers and polymers. Investigating a molecular heterodimer as an example, we demonstrate the utility of anisotropy in EEI2D spectroscopy for disentangling dynamic localization and annihilation. We further calculate the annihilation in extended systems such as conjugated polymers. In a polymer, a change in the anisotropy provides a unique signature for exciton transport between differently oriented sections. We analyze three types of geometry variations in polymers: a kink, varying geometric and energetic disorder, and different geometric domains. Our findings underline that employing anisotropy in EEI2D spectroscopy provides a way to distinguish between different geometries and can be used to obtain a better understanding of long-range exciton transport.
Collapse
Affiliation(s)
- Julian Lüttig
- Institut für Physikalische und Theoretische Chemie, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Am Hubland, 97074 Würzburg, Germany
| | - Pavel Malý
- Institut für Physikalische und Theoretische Chemie, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
14
|
Chen L, Chen X, Yang X, He C, Wang M, Xi P, Gao J. Advances of super-resolution fluorescence polarization microscopy and its applications in life sciences. Comput Struct Biotechnol J 2020; 18:2209-2216. [PMID: 32952935 PMCID: PMC7476067 DOI: 10.1016/j.csbj.2020.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022] Open
Abstract
Fluorescence polarization microscopy (FPM) analyzes both intensity and orientation of fluorescence dipole, and reflects the structural specificity of target molecules. It has become an important tool for studying protein organization, orientational order, and structural changes in cells. However, suffering from optical diffraction limit, conventional FPM has low orientation resolution and observation accuracy, as the polarization information is averaged by multiple fluorescent molecules within a diffraction-limited volume. Recently, novel super-resolution FPMs have been developed to break the diffraction barrier. In this review, we will introduce the recent progress to achieve sub-diffraction determination of dipole orientation. Biological applications, based on polarization analysis of fluorescence dipole, are also summarized, with focus on chromophore-target molecule interaction and molecular organization.
Collapse
Affiliation(s)
- Long Chen
- Department of Automation, Tsinghua University, 100084 Beijing, China.,MOE Key Laboratory of Bioinformatics; Bioinformatics Division, Center for Synthetic & Systems Biology, BNRist; Center for Synthetic & Systems Biology, Tsinghua University, 100084 Beijing, China
| | - Xingye Chen
- Department of Automation, Tsinghua University, 100084 Beijing, China
| | - Xusan Yang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Miaoyan Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Juntao Gao
- Department of Automation, Tsinghua University, 100084 Beijing, China.,MOE Key Laboratory of Bioinformatics; Bioinformatics Division, Center for Synthetic & Systems Biology, BNRist; Center for Synthetic & Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
15
|
Chen X, Zhanghao K, Li M, Qiao C, Liu W, Xi P, Dai Q. Enhanced reconstruction of structured illumination microscopy on a polarized specimen. OPTICS EXPRESS 2020; 28:25642-25654. [PMID: 32907080 DOI: 10.1364/oe.395092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Structured illumination microscopy (SIM) requires polarization control to guarantee the high-contrast illumination pattern. However, this modulated polarization will induce artifacts in SIM when imaging fluorescent dipoles. Here we proposed the polarization weighted recombination of frequency components to reconstruct SIM data with suppressed artifacts and better resolving power. Both the simulation results and experimental data demonstrate that our algorithm can obtain isotropic resolution on dipoles and resolve a clearer structure in high-density sections compared to the conventional algorithm. Our work reinforces the SIM theory and paves the avenue for the application of SIM on a polarized specimen.
Collapse
|
16
|
Chen C, Wang Y, Jiang M, Wang J, Guan J, Zhang B, Wang L, Lin J, Jin P. Parallel Polarization Illumination with a Multifocal Axicon Metalens for Improved Polarization Imaging. NANO LETTERS 2020; 20:5428-5434. [PMID: 32584049 DOI: 10.1021/acs.nanolett.0c01877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polarization imaging is an important branch of the microscopy technique that can provide additional information and enhanced contrast. The illumination system of a polarization microscope enables many different polarizations but makes the setup bulky, complicated, and slow. Here, we design and fabricate an ultrathin planar axicon metalens that also enables parallel illumination with different polarizations. Our results reveal a diffraction-limited size and high degree of linear polarization. To verify our approach, we accurately map the polarization angle of an aluminum grating, which is used as a polarizer. Furthermore, we demonstrate that elliptical polarization can be generated without additional design. A single metalens has the same capabilities as a conventional illumination module containing a polarizer, compensator, and rotation-stage/optical modulator. In addition, our device has the potential to enable rapid super-resolution polarization imaging. The new method could be useful in many applications and areas, including, e.g., materials research and biomedicine.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yiqun Wang
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Minwei Jiang
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jian Wang
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jian Guan
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Baoshun Zhang
- Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jie Lin
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Peng Jin
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
17
|
Wilhelm P, Blank D, Lupton JM, Vogelsang J. Control of Intrachain Morphology in the Formation of Polyfluorene Aggregates on the Single-Molecule Level. Chemphyschem 2020; 21:961-965. [PMID: 32255242 PMCID: PMC7317353 DOI: 10.1002/cphc.202000118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Controlling the morphology of π-conjugated polymers for organic optoelectronic devices has long been a goal in the field of materials science. Since the morphology of a polymer chain is closely intertwined with its photophysical properties, it is desirable to be able to change the arrangement of the polymers at will. We investigate the π-conjugated polymer poly(9,9-dioctylfluorene) (PFO), which can exist in three distinctly different structural phases: the α-, β-, and γ-phase. Every phase has a different chain structure and a unique photoluminescence (PL) spectrum. Due to its unique properties and the pronounced spectral structure-property relations, PFO can be used as a model system to study the morphology of π-conjugated polymers. To avoid ensemble averaging, we examine the PL spectrum of single PFO chains embedded in a non-fluorescent matrix. With single-molecule spectroscopy the structural phase of every single chain can be determined, and changes can be monitored very easily. To manipulate the morphology, solvent vapor annealing (SVA) was applied, which leads to a diffusion of the polymer chains in the matrix. The β- and γ-phases appear during the self-assembly of single α-phase PFO chains into mesoscopic aggregates. The extent of β- and γ-phase formation is directed by the solvent-swelling protocol used for aggregation. Aggregation unequivocally promotes formation of the more planar β- and γ-phases. Once these lower-energy more ordered structural phases are formed, SVA cannot return the polymer chain to the less ordered phase by aggregate swelling.
Collapse
Affiliation(s)
- Philipp Wilhelm
- Institut für Experimentelle und Angewandte PhysikUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Dominik Blank
- Institut für Experimentelle und Angewandte PhysikUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - John M. Lupton
- Institut für Experimentelle und Angewandte PhysikUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte PhysikUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| |
Collapse
|
18
|
Melnychuk N, Egloff S, Runser A, Reisch A, Klymchenko AS. Light‐Harvesting Nanoparticle Probes for FRET‐Based Detection of Oligonucleotides with Single‐Molecule Sensitivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913804] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nina Melnychuk
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Sylvie Egloff
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Anne Runser
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| |
Collapse
|
19
|
Melnychuk N, Egloff S, Runser A, Reisch A, Klymchenko AS. Light‐Harvesting Nanoparticle Probes for FRET‐Based Detection of Oligonucleotides with Single‐Molecule Sensitivity. Angew Chem Int Ed Engl 2020; 59:6811-6818. [DOI: 10.1002/anie.201913804] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/30/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Nina Melnychuk
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Sylvie Egloff
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Anne Runser
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| |
Collapse
|
20
|
Killinger BA, Melki R, Brundin P, Kordower JH. Endogenous alpha-synuclein monomers, oligomers and resulting pathology: let's talk about the lipids in the room. NPJ PARKINSONS DISEASE 2019; 5:23. [PMID: 31728405 PMCID: PMC6851126 DOI: 10.1038/s41531-019-0095-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Alpha-synuclein is an intrinsically disordered, highly dynamic protein that pathogenically aggregates into inclusion structures called Lewy bodies, in several neurogenerative diseases termed synucleinopathies. Despite its importance for understanding disease, the oligomerization status of alpha-synuclein in healthy cells remains unclear. Alpha-synuclein may exist predominantly as either a monomer or a variety of oligomers of different molecular weights. There is solid evidence to support both theories. Detection of apparent endogenous oligomers are intimately dependent on vesicle and lipid interactions. Here we consider the possibility that apparent endogenous alpha-synuclein oligomers are in fact conformations of membrane-bound alpha-synuclein and not a bona fide stable soluble species. This perspective posits that the formation of any alpha-synuclein oligomers within the cell is likely toxic and interconversion between monomer and oligomer is tightly controlled. This differs from the hypothesis that there is a continuum of endogenous non-toxic oligomers and they convert, through unclear mechanisms, to toxic oligomers. The distinction is important, because it clarifies the biological origin of synucleinopathy. We suggest that a monomer-only, lipid-centric view of endogenous alpha-synuclein aggregation can explain how alpha-synuclein pathology is triggered, and that the interactions between alpha-synuclein and lipids can represent a target for therapeutic intervention. This discussion is well-timed due to recent studies that show lipids are a significant component of Lewy pathology.
Collapse
Affiliation(s)
- Bryan A Killinger
- 1Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612 USA
| | - Ronald Melki
- 2CEA and Laboratory of Neurodegenerative Diseases, Institut Francois Jacob (MIRCen), CNRS, 92265 Fontenay-Aux-Roses cedex, France
| | - Patrik Brundin
- 3Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Jeffrey H Kordower
- 1Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
21
|
Wilhelm P, Vogelsang J, Höger S, Lupton JM. Homo-FRET in π-Conjugated Polygons: Intermediate-Strength Dipole-Dipole Coupling Makes Energy Transfer Reversible. NANO LETTERS 2019; 19:5483-5488. [PMID: 31294999 DOI: 10.1021/acs.nanolett.9b01998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The concept of homo-FRET is often used to describe energy transfer between like chromophores of molecular aggregates such as in π-conjugated polymers. Homo-FRET is revealed by a dynamic depolarization in fluorescence but strictly only applies to the limit of weak dipole-dipole coupling, where energy transfer occurs on time scales much longer than those of nuclear relaxation. By considering the polarization anisotropy of photoluminescence emission and excitation of model multichromophoric aggregates on the single-molecule level, we demonstrate the transition of energy-transfer dynamics from the case of weak coupling to that of strong coupling, revealing the elusive regime of intermediate-strength coupling where energy transfer between degenerate donor and acceptor chromophores becomes reversible so that information on the excitation route of the emitting chromophore is lost.
Collapse
Affiliation(s)
- Philipp Wilhelm
- Institut für Experimentelle und Angewandte Physik , Universität Regensburg , Universitätsstrasse 31 , 93053 Regensburg , Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik , Universität Regensburg , Universitätsstrasse 31 , 93053 Regensburg , Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie , Universität Bonn , Gerhard-Domagk-Straße 1 , 53121 Bonn , Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik , Universität Regensburg , Universitätsstrasse 31 , 93053 Regensburg , Germany
| |
Collapse
|